Branch
Hash :
91f96be0
Author :
Date :
2021-06-06T11:51:12
Change the license of the library from LGPL 2.0 to LGPL 2.1.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
/*
* Copyright (C) 1999-2001, 2016 Free Software Foundation, Inc.
* This file is part of the GNU LIBICONV Library.
*
* The GNU LIBICONV Library is free software; you can redistribute it
* and/or modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either version 2.1
* of the License, or (at your option) any later version.
*
* The GNU LIBICONV Library is distributed in the hope that it will be
* useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with the GNU LIBICONV Library; see the file COPYING.LIB.
* If not, see <https://www.gnu.org/licenses/>.
*/
/*
* JOHAB Hangul
*
* Ken Lunde writes in his "CJKV Information Processing" book, p. 114:
* "Hangul can be composed of two or three jamo (some jamo are considered
* compound). Johab uses 19 initial jamo (consonants), 21 medial jamo (vowels)
* and 27 final jamo (consonants; 28 when you include the "fill" character
* for Hangul containing only two jamo). Multiplying these numbers results in
* 11172."
*
* Structure of the Johab encoding (see p. 181-184):
* bit 15 = 1
* bit 14..10 = initial jamo, only 19+1 out of 32 possible values are used
* bit 9..5 = medial jamo, only 21+1 out of 32 possible values are used
* bit 4..0 = final jamo, only 27+1 out of 32 possible values are used
*
* Structure of the Unicode encoding:
* grep '^0x\([8-C]...\|D[0-7]..\)' unicode.org-mappings/EASTASIA/KSC/JOHAB.TXT
* You see that all characters there are marked "HANGUL LETTER" or "HANGUL
* SYLLABLE". If you eliminate the "HANGUL LETTER"s, the table is sorted
* in ascending order according to Johab encoding and according to the Unicode
* encoding. Now look a little more carefully, and you see that the following
* formula holds:
* unicode == 0xAC00
* + 21 * 28 * (jamo_initial_index[(johab >> 10) & 31] - 1)
* + 28 * (jamo_medial_index[(johab >> 5) & 31] - 1)
* + jamo_final_index[johab & 31]
* where the index tables are defined as below.
*/
/* Tables mapping 5-bit groups to jamo letters. */
/* Note that Jamo XX = UHC 0xA4A0+XX = Unicode 0x3130+XX */
#define NONE 0xfd
#define FILL 0xff
static const unsigned char jamo_initial[32] = {
NONE, FILL, 0x01, 0x02, 0x04, 0x07, 0x08, 0x09,
0x11, 0x12, 0x13, 0x15, 0x16, 0x17, 0x18, 0x19,
0x1a, 0x1b, 0x1c, 0x1d, 0x1e, NONE, NONE, NONE,
NONE, NONE, NONE, NONE, NONE, NONE, NONE, NONE,
};
static const unsigned char jamo_medial[32] = {
NONE, NONE, FILL, 0x1f, 0x20, 0x21, 0x22, 0x23,
NONE, NONE, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29,
NONE, NONE, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
NONE, NONE, 0x30, 0x31, 0x32, 0x33, NONE, NONE,
};
static const unsigned char jamo_final[32] = {
NONE, FILL, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06,
0x07, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, 0x11, NONE, 0x12, 0x14, 0x15, 0x16, 0x17,
0x18, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, NONE, NONE,
};
/* Same as jamo_final, except that it excludes characters already
contained in jamo_initial. 11 characters instead of 27. */
static const unsigned char jamo_final_notinitial[32] = {
NONE, NONE, NONE, NONE, 0x03, NONE, 0x05, 0x06,
NONE, NONE, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, NONE, NONE, NONE, 0x14, NONE, NONE, NONE,
NONE, NONE, NONE, NONE, NONE, NONE, NONE, NONE,
};
/* Tables mapping 5-bit groups to packed indices. */
#define none -1
#define fill 0
static const signed char jamo_initial_index[32] = {
none, fill, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06,
0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e,
0x0f, 0x10, 0x11, 0x12, 0x13, none, none, none,
none, none, none, none, none, none, none, none,
};
static const signed char jamo_medial_index[32] = {
none, none, fill, 0x01, 0x02, 0x03, 0x04, 0x05,
none, none, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b,
none, none, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11,
none, none, 0x12, 0x13, 0x14, 0x15, none, none,
};
static const signed char jamo_final_index[32] = {
none, fill, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06,
0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e,
0x0f, 0x10, none, 0x11, 0x12, 0x13, 0x14, 0x15,
0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, none, none,
};
static int
johab_hangul_mbtowc (conv_t conv, ucs4_t *pwc, const unsigned char *s, size_t n)
{
unsigned char c1 = s[0];
if ((c1 >= 0x84 && c1 <= 0xd3)) {
if (n >= 2) {
unsigned char c2 = s[1];
if ((c2 >= 0x41 && c2 < 0x7f) || (c2 >= 0x81 && c2 < 0xff)) {
unsigned int johab = (c1 << 8) | c2;
unsigned int bitspart1 = (johab >> 10) & 31;
unsigned int bitspart2 = (johab >> 5) & 31;
unsigned int bitspart3 = johab & 31;
int index1 = jamo_initial_index[bitspart1];
int index2 = jamo_medial_index[bitspart2];
int index3 = jamo_final_index[bitspart3];
/* Exclude "none" values. */
if (index1 >= 0 && index2 >= 0 && index3 >= 0) {
/* Deal with "fill" values in initial or medial position. */
if (index1 == fill) {
if (index2 == fill) {
unsigned char jamo3 = jamo_final_notinitial[bitspart3];
if (jamo3 != NONE) {
*pwc = (ucs4_t) 0x3130 + jamo3;
return 2;
}
} else if (index3 == fill) {
unsigned char jamo2 = jamo_medial[bitspart2];
if (jamo2 != NONE && jamo2 != FILL) {
*pwc = (ucs4_t) 0x3130 + jamo2;
return 2;
}
}
/* Syllables composed only of medial and final don't exist. */
} else if (index2 == fill) {
if (index3 == fill) {
unsigned char jamo1 = jamo_initial[bitspart1];
if (jamo1 != NONE && jamo1 != FILL) {
*pwc = (ucs4_t) 0x3130 + jamo1;
return 2;
}
}
/* Syllables composed only of initial and final don't exist. */
} else {
/* index1 and index2 are not fill, but index3 may be fill. */
/* Nothing more to exclude. All 11172 code points are valid. */
*pwc = 0xac00 + ((index1 - 1) * 21 + (index2 - 1)) * 28 + index3;
return 2;
}
}
}
return RET_ILSEQ;
}
return RET_TOOFEW(0);
}
return RET_ILSEQ;
}
/* 51 Jamo: 19 initial, 21 medial, 11 final not initial. */
static const unsigned short johab_hangul_page31[51] = {
0x8841, 0x8c41, 0x8444, 0x9041, 0x8446, 0x8447, 0x9441, /*0x30-0x37*/
0x9841, 0x9c41, 0x844a, 0x844b, 0x844c, 0x844d, 0x844e, 0x844f, /*0x38-0x3f*/
0x8450, 0xa041, 0xa441, 0xa841, 0x8454, 0xac41, 0xb041, 0xb441, /*0x40-0x47*/
0xb841, 0xbc41, 0xc041, 0xc441, 0xc841, 0xcc41, 0xd041, 0x8461, /*0x48-0x4f*/
0x8481, 0x84a1, 0x84c1, 0x84e1, 0x8541, 0x8561, 0x8581, 0x85a1, /*0x50-0x57*/
0x85c1, 0x85e1, 0x8641, 0x8661, 0x8681, 0x86a1, 0x86c1, 0x86e1, /*0x58-0x5f*/
0x8741, 0x8761, 0x8781, 0x87a1, /*0x60-0x67*/
};
/* Tables mapping packed indices to 5-bit groups. */
/* index1+1 = jamo_initial_index[bitspart1] <==>
bitspart1 = jamo_initial_index_inverse[index1] */
static const char jamo_initial_index_inverse[19] = {
0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, 0x11, 0x12, 0x13, 0x14,
};
/* index2+1 = jamo_medial_index[bitspart2] <==>
bitspart2 = jamo_medial_index_inverse[index2] */
static const char jamo_medial_index_inverse[21] = {
0x03, 0x04, 0x05, 0x06, 0x07,
0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
0x1a, 0x1b, 0x1c, 0x1d,
};
/* index3 = jamo_final_index[bitspart3] <==>
bitspart3 = jamo_final_index_inverse[index3] */
static const char jamo_final_index_inverse[28] = {
0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, 0x11, 0x13, 0x14, 0x15, 0x16, 0x17,
0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d,
};
static int
johab_hangul_wctomb (conv_t conv, unsigned char *r, ucs4_t wc, size_t n)
{
if (n >= 2) {
if (wc >= 0x3131 && wc < 0x3164) {
unsigned short c = johab_hangul_page31[wc-0x3131];
r[0] = (c >> 8); r[1] = (c & 0xff);
return 2;
} else if (wc >= 0xac00 && wc < 0xd7a4) {
unsigned int index1;
unsigned int index2;
unsigned int index3;
unsigned short c;
unsigned int tmp = wc - 0xac00;
index3 = tmp % 28; tmp = tmp / 28;
index2 = tmp % 21; tmp = tmp / 21;
index1 = tmp;
c = (((((1 << 5)
| jamo_initial_index_inverse[index1]) << 5)
| jamo_medial_index_inverse[index2]) << 5)
| jamo_final_index_inverse[index3];
r[0] = (c >> 8); r[1] = (c & 0xff);
return 2;
}
return RET_ILUNI;
}
return RET_TOOSMALL;
}
/*
* Decomposition of JOHAB Hangul in one to three Johab Jamo elements.
*/
/* Decompose wc into r[0..2], and return the number of resulting Jamo elements.
Return RET_ILUNI if decomposition is not possible. */
static int johab_hangul_decompose (conv_t conv, ucs4_t* r, ucs4_t wc)
{
unsigned char buf[2];
int ret = johab_hangul_wctomb(conv,buf,wc,2);
if (ret != RET_ILUNI) {
unsigned int hangul = (buf[0] << 8) | buf[1];
unsigned char jamo1 = jamo_initial[(hangul >> 10) & 31];
unsigned char jamo2 = jamo_medial[(hangul >> 5) & 31];
unsigned char jamo3 = jamo_final[hangul & 31];
if ((hangul >> 15) != 1) abort();
if (jamo1 != NONE && jamo2 != NONE && jamo3 != NONE) {
/* They are not all three == FILL because that would correspond to
johab = 0x8441, which doesn't exist. */
ucs4_t* p = r;
if (jamo1 != FILL)
*p++ = 0x3130 + jamo1;
if (jamo2 != FILL)
*p++ = 0x3130 + jamo2;
if (jamo3 != FILL)
*p++ = 0x3130 + jamo3;
return p-r;
}
}
return RET_ILUNI;
}
#undef fill
#undef none
#undef FILL
#undef NONE