|
96bc40c1
|
2023-01-26T13:11:58
|
|
Implement arithmetic coding with 12-bit precision
This actually works and apparently always has worked. It only failed
because the libjpeg code, which did not originally support arithmetic
coding, assumed that optimize_coding should always be TRUE for 12-bit
data precision.
|
|
fc01f467
|
2023-01-05T06:36:46
|
|
TurboJPEG 3 API overhaul
(ChangeLog update forthcoming)
- Prefix all function names with "tj3" and remove version suffixes from
function names. (Future API overhauls will increment the prefix to
"tj4", etc., thus retaining backward API/ABI compatibility without
versioning each individual function.)
- Replace stateless boolean flags (including TJ*FLAG_ARITHMETIC and
TJ*FLAG_LOSSLESS, which were never released) with stateful integer
parameters, the value of which persists between function calls.
* Use parameters for the JPEG quality and subsampling as well, in
order to eliminate the awkwardness of specifying function arguments
that weren't relevant for lossless compression.
* tj3DecompressHeader() now stores all relevant information about the
JPEG image, including the width, height, subsampling type, entropy
coding type, etc. in parameters rather than returning that
information in its arguments.
* TJ*FLAG_LIMITSCANS has been reimplemented as an integer parameter
(TJ*PARAM_SCANLIMIT) that allows the number of scans to be
specified.
- Use the const keyword for all pointer arguments to unmodified
buffers, as well as for both dimensions of 2D pointers. Addresses
#395.
- Use size_t rather than unsigned long to represent buffer sizes, since
unsigned long is a 32-bit type on Windows. Addresses #24.
- Return 0 from all buffer size functions if an error occurs, rather
than awkwardly trying to return -1 in an unsigned data type.
- Implement 12-bit and 16-bit data precision using dedicated
compression, decompression, and image I/O functions/methods.
* Suffix the names of all data-precision-specific functions with 8,
12, or 16.
* Because the YUV functions are intended to be used for video, they
are currently only implemented with 8-bit data precision, but they
can be expanded to 12-bit data precision in the future, if
necessary.
* Extend TJUnitTest and TJBench to test 12-bit and 16-bit data
precision, using a new -precision option.
* Add appropriate regression tests for all of the above to the 'test'
target.
* Extend tjbenchtest to test 12-bit and 16-bit data precision, and
add separate 'tjtest12' and 'tjtest16' targets.
* BufferedImage I/O in the Java API is currently limited to 8-bit
data precision, since the BufferedImage class does not
straightforwardly support higher data precisions.
* Extend the PPM reader to convert 12-bit and 16-bit PBMPLUS files
to grayscale or CMYK pixels, as it already does for 8-bit files.
- Properly accommodate lossless JPEG using dedicated parameters
(TJ*PARAM_LOSSLESS, TJ*PARAM_LOSSLESSPSV, and TJ*PARAM_LOSSLESSPT),
rather than using a flag and awkwardly repurposing the JPEG quality.
Update TJBench to properly reflect whether a JPEG image is lossless.
- Re-organize the TJBench usage screen.
- Update the Java docs using Java 11, to improve the formatting and
eliminate HTML frames.
- Use the accurate integer DCT algorithm by default for both
compression and decompression, since the "fast" algorithm is a legacy
feature, it does not pass the ISO compliance tests, and it is not
actually faster on modern x86 CPUs.
* Remove the -accuratedct option from TJBench and TJExample.
- Re-implement the 'tjtest' target using a CMake script that enables
the appropriate tests, depending on the data precision and whether or
not the Java API is part of the build.
- Consolidate the C and Java versions of tjbenchtest into one script.
- Consolidate the C and Java versions of tjexampletest into one script.
- Combine all initialization functions into a single function
(tj3Init()) that accepts an integer parameter specifying the
subsystems to initialize.
- Enable decompression scaling explicitly, using a new function/method
(tj3SetScalingFactor()/TJDecompressor.setScalingFactor()), rather
than implicitly using awkward "desired width"/"desired height"
parameters.
- Introduce a new macro/constant (TJUNSCALED/TJ.UNSCALED) that maps to
a scaling factor of 1/1.
- Implement partial image decompression, using a new function/method
(tj3SetCroppingRegion()/TJDecompressor.setCroppingRegion()) and
TJBench option (-crop). Extend tjbenchtest to test the new feature.
Addresses #1.
- Allow the JPEG colorspace to be specified explicitly when
compressing, using a new parameter (TJ*PARAM_COLORSPACE). This
allows JPEG images with the RGB and CMYK colorspaces to be created.
- Remove the error/difference image feature from TJBench. Identical
images to the ones that TJBench created can be generated using
ImageMagick with
'magick composite <original_image> <output_image> -compose difference <diff_image>'
- Handle JPEG images with unknown subsampling types. TJ*PARAM_SUBSAMP
is set to TJ*SAMP_UNKNOWN (== -1) for such images, but they can still
be decompressed fully into packed-pixel images or losslessly
transformed (with the exception of lossless cropping.) They cannot
be partially decompressed or decompressed into planar YUV images.
Note also that TJBench, due to its lack of support for imperfect
transforms, requires that the subsampling type be known when
rotating, flipping, or transversely transposing an image. Addresses
#436
- The Java version of TJBench now has identical functionality to the C
version. This was accomplished by (somewhat hackishly) calling the
TurboJPEG C image I/O functions through JNI and copying the pixels
between the C heap and the Java heap.
- Add parameters (TJ*PARAM_RESTARTROWS and TJ*PARAM_RESTARTBLOCKS) and
a TJBench option (-restart) to allow the restart marker interval to
be specified when compressing. Eliminate the undocumented TJ_RESTART
environment variable.
- Add a parameter (TJ*PARAM_OPTIMIZE), a transform option
(TJ*OPT_OPTIMIZE), and a TJBench option (-optimize) to allow
optimized baseline Huffman coding to be specified when compressing.
Eliminate the undocumented TJ_OPTIMIZE environment variable.
- Add parameters (TJ*PARAM_XDENSITY, TJ*PARAM_DENSITY, and
TJ*DENSITYUNITS) to allow the pixel density to be specified when
compressing or saving a Windows BMP image and to be queried when
decompressing or loading a Windows BMP image. Addresses #77.
- Refactor the fuzz targets to use the new API.
* Extend decompression coverage to 12-bit and 16-bit data precision.
* Replace the awkward cjpeg12 and cjpeg16 targets with proper
TurboJPEG-based compress12, compress12-lossless, and
compress16-lossless targets
- Fix innocuous UBSan warnings uncovered by the new fuzzers.
- Implement previous versions of the TurboJPEG API by wrapping the new
functions (tested by running the 2.1.x versions of TJBench, via
tjbenchtest, and TJUnitTest against the new implementation.)
* Remove all JNI functions for deprecated Java methods and implement
the deprecated methods using pure Java wrappers. It should be
understood that backward API compatibility in Java applies only to
the Java classes and that one cannot mix and match a JAR file from
one version of libjpeg-turbo with a JNI library from another
version.
- tj3Destroy() now silently accepts a NULL handle.
- tj3Alloc() and tj3Free() now return/accept void pointers, as malloc()
and free() do.
- The image I/O functions now accept a TurboJPEG instance handle, which
is used to transmit/receive parameters and to receive error
information.
Closes #517
|
|
98ff1fd1
|
2022-11-21T20:57:39
|
|
TurboJPEG: Add lossless JPEG detection capability
Add a new TurboJPEG C API function (tjDecompressHeader4()) and Java API
method (TJDecompressor.getFlags()) that return the bitwise OR of any
flags that are relevant to the JPEG image being decompressed (currently
TJFLAG_PROGRESSIVE, TJFLAG_ARITHMETIC, TJFLAG_LOSSLESS, and their Java
equivalents.) This allows a calling program to determine whether the
image being decompressed is a lossless JPEG image, which means that the
decompression scaling feature will not be available and that a
full-sized destination buffer should be allocated.
More specifically, this fixes a buffer overrun in TJBench, TJExample,
and the decompress* fuzz targets that occurred when attempting (in vain)
to decompress a lossless JPEG image with decompression scaling enabled.
|
|
6002720c
|
2022-11-15T23:10:35
|
|
TurboJPEG: Opt. enable arithmetic entropy coding
|
|
087ec126
|
2017-11-15T20:50:53
|
|
tjbenchtest: Test new TurboJPEG progressive flag
|
|
4893e5d8
|
2017-11-17T19:00:53
|
|
Merge branch 'master' into dev
|
|
78e97e38
|
2017-11-15T19:39:45
|
|
Uniquify tjbenchtest log file names based on args
+ clean up log files when 'make testclean' is invoked
+ fix 'tjbenchtest -yuv -alloc'
+ fix tjexampletest so that it creates images under /tmp
+ clean up tjexampletest
|
|
952191da
|
2016-12-03T14:21:11
|
|
Build: Fix issues when building as a Git submodule
- Replace CMAKE_SOURCE_DIR with CMAKE_CURRENT_SOURCE_DIR
- Replace CMAKE_BINARY_DIR with CMAKE_CURRENT_BINARY_DIR
- Don't use "libjpeg-turbo" in any of the package system filenames
(because CMAKE_PROJECT_NAME will not be the same if building LJT as
a submodule.)
Closes #122
|
|
6abd3916
|
2016-11-15T08:47:43
|
|
Unified CMake-based build system
See #56 for discussion.
Fixes #21, Fixes #29, Fixes #37, Closes #56, Fixes #58, Closes #73
Obviates #82
See also:
https://sourceforge.net/p/libjpeg-turbo/feature-requests/5/
https://sourceforge.net/p/libjpeg-turbo/patches/5/
|
|
684ace19
|
2014-08-22T03:04:06
|
|
Extend tjbenchtest so that it tests the dynamic JPEG buffer allocation feature in TurboJPEG. Disable the tiling feature in TJBench whenever dynamic buffer allocation is enabled (because the tiling feature requires a separate buffer for each tile, using it successfully with dynamic buffer allocation would require a separate TurboJPEG compressor instance for each tile, and it's not worth going to that trouble right now.)
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@1374 632fc199-4ca6-4c93-a231-07263d6284db
|
|
d92949b0
|
2014-08-22T03:00:37
|
|
Run the TurboJPEG conformance tests out of a directory in /tmp (for improved performance, if the source directory is on a remote file share.) Fix an issue in TJBench.java that prevented it from working properly if the source image resided in a directory with a dot in the name.
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@1373 632fc199-4ca6-4c93-a231-07263d6284db
|
|
43513893
|
2014-08-22T02:57:34
|
|
Extend tjbenchtest so that it tests the dynamic JPEG buffer allocation feature in TurboJPEG. Disable the tiling feature in TJBench whenever dynamic buffer allocation is enabled (because the tiling feature requires a separate buffer for each tile, using it successfully with dynamic buffer allocation would require a separate TurboJPEG compressor instance for each tile, and it's not worth going to that trouble right now.)
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/branches/1.3.x@1372 632fc199-4ca6-4c93-a231-07263d6284db
|
|
a1a920cc
|
2014-08-22T02:51:16
|
|
Run the TurboJPEG conformance tests out of a directory in /tmp (for improved performance, if the source directory is on a remote file share.) Fix an issue in TJBench.java that prevented it from working properly if the source image resided in a directory with a dot in the name.
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/branches/1.3.x@1371 632fc199-4ca6-4c93-a231-07263d6284db
|
|
7a6ed075
|
2014-03-17T11:14:52
|
|
Extend YUVImage class to allow reuse of the same buffer with different metadata; port TJBench changes that treat YUV encoding/decoding as an intermediate step of the JPEG compression/decompression pipeline rather than a separate test case; add YUV encode/decode tests to the Java version of tjbenchtest
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@1184 632fc199-4ca6-4c93-a231-07263d6284db
|
|
b53f4102
|
2014-03-13T21:19:12
|
|
Actually, the issue with nightshot_iso_100 is unrelated to the image size. Reducing the size to 128x95, the same size as vgl_6548_0026, does not eliminate the problem. The issue seems to always occur when decompression scaling is enabled. It is unclear at this point whether this is a bug or expected behavior, but the pixels generated by the split decompression functions appear correct. They are just slightly different (but not visibly so) from the pixels generated by the monolithic decompression function.
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@1164 632fc199-4ca6-4c93-a231-07263d6284db
|
|
823fbed4
|
2014-03-13T20:48:38
|
|
Add a mode to tjbenchtest for testing the YUV encoding/decoding functions
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@1163 632fc199-4ca6-4c93-a231-07263d6284db
|
|
73d74c13
|
2012-06-29T23:46:38
|
|
Add flags to the TurboJPEG API that allow the caller to force the use of either the fast or the accurate DCT/IDCT algorithms in the underlying codec.
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@851 632fc199-4ca6-4c93-a231-07263d6284db
|
|
fd3aba35
|
2012-06-29T23:14:48
|
|
Added flags to the TurboJPEG API that allow the caller to force the use of either the fast or the accurate DCT/IDCT algorithms in the underlying codec.
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/branches/1.2.x@849 632fc199-4ca6-4c93-a231-07263d6284db
|
|
cb6157be
|
2012-01-31T11:38:13
|
|
Add more extensive TurboJPEG regression tests
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@771 632fc199-4ca6-4c93-a231-07263d6284db
|
|
9cd4e4b0
|
2012-01-31T07:56:44
|
|
Add more extensive TurboJPEG regression tests
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/branches/1.2.x@762 632fc199-4ca6-4c93-a231-07263d6284db
|