tjexampletest.in


Log

Author Commit Date CI Message
DRC d5183047 2023-11-15T11:06:23 tjexampletest.in: Fix code formatting issue (introduced by 837e471a90e79b37cb4f7ef9950321f48c7c5f41)
DRC 837e471a 2023-11-14T11:17:25 tjexample.c: Fix error when decompressing (regression introduced by 300a344d653d4a8779706e42828d945c6a53ff9d) 300a344d653d4a8779706e42828d945c6a53ff9d fixed the recompression code path but also broke the pure decompression code path, because the fix caused the TurboJPEG decompression instance to be destroyed before tj3SaveImage() could use it. Furthermore, the fix in 300a344d653d4a8779706e42828d945c6a53ff9d prevented pixel density information from being transferred from the input image to the output image when recompressing. This commit does the following: - Modify tjexample.c so that a single TurboJPEG instance is initialized for lossless transformation and shared by all code paths. In addition to fixing both of the aforementioned issues, this makes the code more readable. - Extend tjexampletest to test the recompression code path, thus ensuring that the issues fixed by this commit and 300a344d653d4a8779706e42828d945c6a53ff9d are not reintroduced. - Modify tjexample.c to remove redundant fclose(), tj3Destroy(), and tj3Free() calls.
DRC fc01f467 2023-01-05T06:36:46 TurboJPEG 3 API overhaul (ChangeLog update forthcoming) - Prefix all function names with "tj3" and remove version suffixes from function names. (Future API overhauls will increment the prefix to "tj4", etc., thus retaining backward API/ABI compatibility without versioning each individual function.) - Replace stateless boolean flags (including TJ*FLAG_ARITHMETIC and TJ*FLAG_LOSSLESS, which were never released) with stateful integer parameters, the value of which persists between function calls. * Use parameters for the JPEG quality and subsampling as well, in order to eliminate the awkwardness of specifying function arguments that weren't relevant for lossless compression. * tj3DecompressHeader() now stores all relevant information about the JPEG image, including the width, height, subsampling type, entropy coding type, etc. in parameters rather than returning that information in its arguments. * TJ*FLAG_LIMITSCANS has been reimplemented as an integer parameter (TJ*PARAM_SCANLIMIT) that allows the number of scans to be specified. - Use the const keyword for all pointer arguments to unmodified buffers, as well as for both dimensions of 2D pointers. Addresses #395. - Use size_t rather than unsigned long to represent buffer sizes, since unsigned long is a 32-bit type on Windows. Addresses #24. - Return 0 from all buffer size functions if an error occurs, rather than awkwardly trying to return -1 in an unsigned data type. - Implement 12-bit and 16-bit data precision using dedicated compression, decompression, and image I/O functions/methods. * Suffix the names of all data-precision-specific functions with 8, 12, or 16. * Because the YUV functions are intended to be used for video, they are currently only implemented with 8-bit data precision, but they can be expanded to 12-bit data precision in the future, if necessary. * Extend TJUnitTest and TJBench to test 12-bit and 16-bit data precision, using a new -precision option. * Add appropriate regression tests for all of the above to the 'test' target. * Extend tjbenchtest to test 12-bit and 16-bit data precision, and add separate 'tjtest12' and 'tjtest16' targets. * BufferedImage I/O in the Java API is currently limited to 8-bit data precision, since the BufferedImage class does not straightforwardly support higher data precisions. * Extend the PPM reader to convert 12-bit and 16-bit PBMPLUS files to grayscale or CMYK pixels, as it already does for 8-bit files. - Properly accommodate lossless JPEG using dedicated parameters (TJ*PARAM_LOSSLESS, TJ*PARAM_LOSSLESSPSV, and TJ*PARAM_LOSSLESSPT), rather than using a flag and awkwardly repurposing the JPEG quality. Update TJBench to properly reflect whether a JPEG image is lossless. - Re-organize the TJBench usage screen. - Update the Java docs using Java 11, to improve the formatting and eliminate HTML frames. - Use the accurate integer DCT algorithm by default for both compression and decompression, since the "fast" algorithm is a legacy feature, it does not pass the ISO compliance tests, and it is not actually faster on modern x86 CPUs. * Remove the -accuratedct option from TJBench and TJExample. - Re-implement the 'tjtest' target using a CMake script that enables the appropriate tests, depending on the data precision and whether or not the Java API is part of the build. - Consolidate the C and Java versions of tjbenchtest into one script. - Consolidate the C and Java versions of tjexampletest into one script. - Combine all initialization functions into a single function (tj3Init()) that accepts an integer parameter specifying the subsystems to initialize. - Enable decompression scaling explicitly, using a new function/method (tj3SetScalingFactor()/TJDecompressor.setScalingFactor()), rather than implicitly using awkward "desired width"/"desired height" parameters. - Introduce a new macro/constant (TJUNSCALED/TJ.UNSCALED) that maps to a scaling factor of 1/1. - Implement partial image decompression, using a new function/method (tj3SetCroppingRegion()/TJDecompressor.setCroppingRegion()) and TJBench option (-crop). Extend tjbenchtest to test the new feature. Addresses #1. - Allow the JPEG colorspace to be specified explicitly when compressing, using a new parameter (TJ*PARAM_COLORSPACE). This allows JPEG images with the RGB and CMYK colorspaces to be created. - Remove the error/difference image feature from TJBench. Identical images to the ones that TJBench created can be generated using ImageMagick with 'magick composite <original_image> <output_image> -compose difference <diff_image>' - Handle JPEG images with unknown subsampling types. TJ*PARAM_SUBSAMP is set to TJ*SAMP_UNKNOWN (== -1) for such images, but they can still be decompressed fully into packed-pixel images or losslessly transformed (with the exception of lossless cropping.) They cannot be partially decompressed or decompressed into planar YUV images. Note also that TJBench, due to its lack of support for imperfect transforms, requires that the subsampling type be known when rotating, flipping, or transversely transposing an image. Addresses #436 - The Java version of TJBench now has identical functionality to the C version. This was accomplished by (somewhat hackishly) calling the TurboJPEG C image I/O functions through JNI and copying the pixels between the C heap and the Java heap. - Add parameters (TJ*PARAM_RESTARTROWS and TJ*PARAM_RESTARTBLOCKS) and a TJBench option (-restart) to allow the restart marker interval to be specified when compressing. Eliminate the undocumented TJ_RESTART environment variable. - Add a parameter (TJ*PARAM_OPTIMIZE), a transform option (TJ*OPT_OPTIMIZE), and a TJBench option (-optimize) to allow optimized baseline Huffman coding to be specified when compressing. Eliminate the undocumented TJ_OPTIMIZE environment variable. - Add parameters (TJ*PARAM_XDENSITY, TJ*PARAM_DENSITY, and TJ*DENSITYUNITS) to allow the pixel density to be specified when compressing or saving a Windows BMP image and to be queried when decompressing or loading a Windows BMP image. Addresses #77. - Refactor the fuzz targets to use the new API. * Extend decompression coverage to 12-bit and 16-bit data precision. * Replace the awkward cjpeg12 and cjpeg16 targets with proper TurboJPEG-based compress12, compress12-lossless, and compress16-lossless targets - Fix innocuous UBSan warnings uncovered by the new fuzzers. - Implement previous versions of the TurboJPEG API by wrapping the new functions (tested by running the 2.1.x versions of TJBench, via tjbenchtest, and TJUnitTest against the new implementation.) * Remove all JNI functions for deprecated Java methods and implement the deprecated methods using pure Java wrappers. It should be understood that backward API compatibility in Java applies only to the Java classes and that one cannot mix and match a JAR file from one version of libjpeg-turbo with a JNI library from another version. - tj3Destroy() now silently accepts a NULL handle. - tj3Alloc() and tj3Free() now return/accept void pointers, as malloc() and free() do. - The image I/O functions now accept a TurboJPEG instance handle, which is used to transmit/receive parameters and to receive error information. Closes #517
DRC 8c40ac8a 2017-11-16T18:46:01 Add TurboJPEG C example and clean up Java example Also rename example.c --> example.txt and add a disclaimer to that file so people will stop trying to compile it.
DRC cd8a1258 2017-11-15T09:19:27 Build: Fix 'tjtest' target on Windows tjbenchtest and its Java derivatives are useful for rooting out hidden problems with the more esoteric TJBench and TurboJPEG features. For instance, on Windows, running tjbenchtest uncovered 5fce2e942136cb70e5a30ff15a2d58b07947aa84. This commit also causes tjbenchtest and tjbenchtest.java to append -yuv and -alloc to their log file names, depending on the arguments passed, and it causes the build system to clean up those log files when the 'testclean' target is built.
DRC 4893e5d8 2017-11-17T19:00:53 Merge branch 'master' into dev
DRC 78e97e38 2017-11-15T19:39:45 Uniquify tjbenchtest log file names based on args + clean up log files when 'make testclean' is invoked + fix 'tjbenchtest -yuv -alloc' + fix tjexampletest so that it creates images under /tmp + clean up tjexampletest
DRC 952191da 2016-12-03T14:21:11 Build: Fix issues when building as a Git submodule - Replace CMAKE_SOURCE_DIR with CMAKE_CURRENT_SOURCE_DIR - Replace CMAKE_BINARY_DIR with CMAKE_CURRENT_BINARY_DIR - Don't use "libjpeg-turbo" in any of the package system filenames (because CMAKE_PROJECT_NAME will not be the same if building LJT as a submodule.) Closes #122
DRC 6abd3916 2016-11-15T08:47:43 Unified CMake-based build system See #56 for discussion. Fixes #21, Fixes #29, Fixes #37, Closes #56, Fixes #58, Closes #73 Obviates #82 See also: https://sourceforge.net/p/libjpeg-turbo/feature-requests/5/ https://sourceforge.net/p/libjpeg-turbo/patches/5/
DRC 73d74c13 2012-06-29T23:46:38 Add flags to the TurboJPEG API that allow the caller to force the use of either the fast or the accurate DCT/IDCT algorithms in the underlying codec. git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@851 632fc199-4ca6-4c93-a231-07263d6284db
DRC fd3aba35 2012-06-29T23:14:48 Added flags to the TurboJPEG API that allow the caller to force the use of either the fast or the accurate DCT/IDCT algorithms in the underlying codec. git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/branches/1.2.x@849 632fc199-4ca6-4c93-a231-07263d6284db
DRC cb6157be 2012-01-31T11:38:13 Add more extensive TurboJPEG regression tests git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@771 632fc199-4ca6-4c93-a231-07263d6284db
DRC 9cd4e4b0 2012-01-31T07:56:44 Add more extensive TurboJPEG regression tests git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/branches/1.2.x@762 632fc199-4ca6-4c93-a231-07263d6284db