Hash :
e69dd40c
Author :
Date :
2024-01-23T13:26:41
Reorganize source to make things easier to find
- Move all libjpeg documentation, except for README.ijg, into the doc/
subdirectory.
- Move the TurboJPEG C API documentation from doc/html/ into
doc/turbojpeg/.
- Move all C source code and headers into a src/ subdirectory.
- Move turbojpeg-jni.c into the java/ subdirectory.
Referring to #226, there is no ideal solution to this problem. A
semantically ideal solution would have involved placing all source code,
including the SIMD and Java source code, under src/ (or perhaps placing
C library source code under lib/ and C test program source code under
test/), all header files under include/, and all documentation under
doc/. However:
- To me it makes more sense to have separate top-level directories for
each language, since the SIMD extensions and the Java API are
technically optional features. src/ now contains only the code that
is relevant to the core C API libraries and associated programs.
- I didn't want to bury the java/ and simd/ directories or add a level
of depth to them, since both directories already contain source code
that is 3-4 levels deep.
- I would prefer not to separate the header files from the C source
code, because:
1. It would be disruptive. libjpeg and libjpeg-turbo have
historically placed C source code and headers in the same
directory, and people who are familiar with both projects (self
included) are used to looking for the headers in the same directory
as the C source code.
2. In terms of how the headers are used internally in libjpeg-turbo,
the distinction between public and private headers is a bit fuzzy.
- It didn't make sense to separate the test source code from the library
source code, since there is not a clear distinction in some cases.
(For instance, the IJG image I/O functions are used by cjpeg and djpeg
as well as by the TurboJPEG API.)
This solution is minimally disruptive, since it keeps all C source code
and headers together and keeps java/ and simd/ as top-level directories.
It is a bit awkward, because java/ and simd/ technically contain source
code, even though they are not under src/. However, other solutions
would have been more awkward for different reasons.
Closes #226
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
/*
* jchuff-neon.c - Huffman entropy encoding (64-bit Arm Neon)
*
* Copyright (C) 2020-2021, Arm Limited. All Rights Reserved.
* Copyright (C) 2020, 2022, 2024, D. R. Commander. All Rights Reserved.
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
*
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
*
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*
* NOTE: All referenced figures are from
* Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
*/
#define JPEG_INTERNALS
#include "../../../src/jinclude.h"
#include "../../../src/jpeglib.h"
#include "../../../src/jsimd.h"
#include "../../../src/jdct.h"
#include "../../../src/jsimddct.h"
#include "../../jsimd.h"
#include "../align.h"
#include "../jchuff.h"
#include "neon-compat.h"
#include <limits.h>
#include <arm_neon.h>
ALIGN(16) static const uint8_t jsimd_huff_encode_one_block_consts[] = {
0, 1, 2, 3, 16, 17, 32, 33,
18, 19, 4, 5, 6, 7, 20, 21,
34, 35, 48, 49, 255, 255, 50, 51,
36, 37, 22, 23, 8, 9, 10, 11,
255, 255, 6, 7, 20, 21, 34, 35,
48, 49, 255, 255, 50, 51, 36, 37,
54, 55, 40, 41, 26, 27, 12, 13,
14, 15, 28, 29, 42, 43, 56, 57,
6, 7, 20, 21, 34, 35, 48, 49,
50, 51, 36, 37, 22, 23, 8, 9,
26, 27, 12, 13, 255, 255, 14, 15,
28, 29, 42, 43, 56, 57, 255, 255,
52, 53, 54, 55, 40, 41, 26, 27,
12, 13, 255, 255, 14, 15, 28, 29,
26, 27, 40, 41, 42, 43, 28, 29,
14, 15, 30, 31, 44, 45, 46, 47
};
/* The AArch64 implementation of the FLUSH() macro triggers a UBSan misaligned
* address warning because the macro sometimes writes a 64-bit value to a
* non-64-bit-aligned address. That behavior is technically undefined per
* the C specification, but it is supported by the AArch64 architecture and
* compilers.
*/
#if defined(__has_feature)
#if __has_feature(undefined_behavior_sanitizer)
__attribute__((no_sanitize("alignment")))
#endif
#endif
JOCTET *jsimd_huff_encode_one_block_neon(void *state, JOCTET *buffer,
JCOEFPTR block, int last_dc_val,
c_derived_tbl *dctbl,
c_derived_tbl *actbl)
{
uint16_t block_diff[DCTSIZE2];
/* Load lookup table indices for rows of zig-zag ordering. */
#ifdef HAVE_VLD1Q_U8_X4
const uint8x16x4_t idx_rows_0123 =
vld1q_u8_x4(jsimd_huff_encode_one_block_consts + 0 * DCTSIZE);
const uint8x16x4_t idx_rows_4567 =
vld1q_u8_x4(jsimd_huff_encode_one_block_consts + 8 * DCTSIZE);
#else
/* GCC does not currently support intrinsics vl1dq_<type>_x4(). */
const uint8x16x4_t idx_rows_0123 = { {
vld1q_u8(jsimd_huff_encode_one_block_consts + 0 * DCTSIZE),
vld1q_u8(jsimd_huff_encode_one_block_consts + 2 * DCTSIZE),
vld1q_u8(jsimd_huff_encode_one_block_consts + 4 * DCTSIZE),
vld1q_u8(jsimd_huff_encode_one_block_consts + 6 * DCTSIZE)
} };
const uint8x16x4_t idx_rows_4567 = { {
vld1q_u8(jsimd_huff_encode_one_block_consts + 8 * DCTSIZE),
vld1q_u8(jsimd_huff_encode_one_block_consts + 10 * DCTSIZE),
vld1q_u8(jsimd_huff_encode_one_block_consts + 12 * DCTSIZE),
vld1q_u8(jsimd_huff_encode_one_block_consts + 14 * DCTSIZE)
} };
#endif
/* Load 8x8 block of DCT coefficients. */
#ifdef HAVE_VLD1Q_U8_X4
const int8x16x4_t tbl_rows_0123 =
vld1q_s8_x4((int8_t *)(block + 0 * DCTSIZE));
const int8x16x4_t tbl_rows_4567 =
vld1q_s8_x4((int8_t *)(block + 4 * DCTSIZE));
#else
const int8x16x4_t tbl_rows_0123 = { {
vld1q_s8((int8_t *)(block + 0 * DCTSIZE)),
vld1q_s8((int8_t *)(block + 1 * DCTSIZE)),
vld1q_s8((int8_t *)(block + 2 * DCTSIZE)),
vld1q_s8((int8_t *)(block + 3 * DCTSIZE))
} };
const int8x16x4_t tbl_rows_4567 = { {
vld1q_s8((int8_t *)(block + 4 * DCTSIZE)),
vld1q_s8((int8_t *)(block + 5 * DCTSIZE)),
vld1q_s8((int8_t *)(block + 6 * DCTSIZE)),
vld1q_s8((int8_t *)(block + 7 * DCTSIZE))
} };
#endif
/* Initialise extra lookup tables. */
const int8x16x4_t tbl_rows_2345 = { {
tbl_rows_0123.val[2], tbl_rows_0123.val[3],
tbl_rows_4567.val[0], tbl_rows_4567.val[1]
} };
const int8x16x3_t tbl_rows_567 =
{ { tbl_rows_4567.val[1], tbl_rows_4567.val[2], tbl_rows_4567.val[3] } };
/* Shuffle coefficients into zig-zag order. */
int16x8_t row0 =
vreinterpretq_s16_s8(vqtbl4q_s8(tbl_rows_0123, idx_rows_0123.val[0]));
int16x8_t row1 =
vreinterpretq_s16_s8(vqtbl4q_s8(tbl_rows_0123, idx_rows_0123.val[1]));
int16x8_t row2 =
vreinterpretq_s16_s8(vqtbl4q_s8(tbl_rows_2345, idx_rows_0123.val[2]));
int16x8_t row3 =
vreinterpretq_s16_s8(vqtbl4q_s8(tbl_rows_0123, idx_rows_0123.val[3]));
int16x8_t row4 =
vreinterpretq_s16_s8(vqtbl4q_s8(tbl_rows_4567, idx_rows_4567.val[0]));
int16x8_t row5 =
vreinterpretq_s16_s8(vqtbl4q_s8(tbl_rows_2345, idx_rows_4567.val[1]));
int16x8_t row6 =
vreinterpretq_s16_s8(vqtbl4q_s8(tbl_rows_4567, idx_rows_4567.val[2]));
int16x8_t row7 =
vreinterpretq_s16_s8(vqtbl3q_s8(tbl_rows_567, idx_rows_4567.val[3]));
/* Compute DC coefficient difference value (F.1.1.5.1). */
row0 = vsetq_lane_s16(block[0] - last_dc_val, row0, 0);
/* Initialize AC coefficient lanes not reachable by lookup tables. */
row1 =
vsetq_lane_s16(vgetq_lane_s16(vreinterpretq_s16_s8(tbl_rows_4567.val[0]),
0), row1, 2);
row2 =
vsetq_lane_s16(vgetq_lane_s16(vreinterpretq_s16_s8(tbl_rows_0123.val[1]),
4), row2, 0);
row2 =
vsetq_lane_s16(vgetq_lane_s16(vreinterpretq_s16_s8(tbl_rows_4567.val[2]),
0), row2, 5);
row5 =
vsetq_lane_s16(vgetq_lane_s16(vreinterpretq_s16_s8(tbl_rows_0123.val[1]),
7), row5, 2);
row5 =
vsetq_lane_s16(vgetq_lane_s16(vreinterpretq_s16_s8(tbl_rows_4567.val[2]),
3), row5, 7);
row6 =
vsetq_lane_s16(vgetq_lane_s16(vreinterpretq_s16_s8(tbl_rows_0123.val[3]),
7), row6, 5);
/* DCT block is now in zig-zag order; start Huffman encoding process. */
/* Construct bitmap to accelerate encoding of AC coefficients. A set bit
* means that the corresponding coefficient != 0.
*/
uint16x8_t row0_ne_0 = vtstq_s16(row0, row0);
uint16x8_t row1_ne_0 = vtstq_s16(row1, row1);
uint16x8_t row2_ne_0 = vtstq_s16(row2, row2);
uint16x8_t row3_ne_0 = vtstq_s16(row3, row3);
uint16x8_t row4_ne_0 = vtstq_s16(row4, row4);
uint16x8_t row5_ne_0 = vtstq_s16(row5, row5);
uint16x8_t row6_ne_0 = vtstq_s16(row6, row6);
uint16x8_t row7_ne_0 = vtstq_s16(row7, row7);
uint8x16_t row10_ne_0 = vuzp1q_u8(vreinterpretq_u8_u16(row1_ne_0),
vreinterpretq_u8_u16(row0_ne_0));
uint8x16_t row32_ne_0 = vuzp1q_u8(vreinterpretq_u8_u16(row3_ne_0),
vreinterpretq_u8_u16(row2_ne_0));
uint8x16_t row54_ne_0 = vuzp1q_u8(vreinterpretq_u8_u16(row5_ne_0),
vreinterpretq_u8_u16(row4_ne_0));
uint8x16_t row76_ne_0 = vuzp1q_u8(vreinterpretq_u8_u16(row7_ne_0),
vreinterpretq_u8_u16(row6_ne_0));
/* { 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01 } */
const uint8x16_t bitmap_mask =
vreinterpretq_u8_u64(vdupq_n_u64(0x0102040810204080));
uint8x16_t bitmap_rows_10 = vandq_u8(row10_ne_0, bitmap_mask);
uint8x16_t bitmap_rows_32 = vandq_u8(row32_ne_0, bitmap_mask);
uint8x16_t bitmap_rows_54 = vandq_u8(row54_ne_0, bitmap_mask);
uint8x16_t bitmap_rows_76 = vandq_u8(row76_ne_0, bitmap_mask);
uint8x16_t bitmap_rows_3210 = vpaddq_u8(bitmap_rows_32, bitmap_rows_10);
uint8x16_t bitmap_rows_7654 = vpaddq_u8(bitmap_rows_76, bitmap_rows_54);
uint8x16_t bitmap_rows_76543210 = vpaddq_u8(bitmap_rows_7654,
bitmap_rows_3210);
uint8x8_t bitmap_all = vpadd_u8(vget_low_u8(bitmap_rows_76543210),
vget_high_u8(bitmap_rows_76543210));
/* Shift left to remove DC bit. */
bitmap_all =
vreinterpret_u8_u64(vshl_n_u64(vreinterpret_u64_u8(bitmap_all), 1));
/* Count bits set (number of non-zero coefficients) in bitmap. */
unsigned int non_zero_coefficients = vaddv_u8(vcnt_u8(bitmap_all));
/* Move bitmap to 64-bit scalar register. */
uint64_t bitmap = vget_lane_u64(vreinterpret_u64_u8(bitmap_all), 0);
/* Set up state and bit buffer for output bitstream. */
working_state *state_ptr = (working_state *)state;
int free_bits = state_ptr->cur.free_bits;
size_t put_buffer = state_ptr->cur.put_buffer;
/* Encode DC coefficient. */
/* For negative coeffs: diff = abs(coeff) -1 = ~abs(coeff) */
int16x8_t abs_row0 = vabsq_s16(row0);
int16x8_t row0_lz = vclzq_s16(abs_row0);
uint16x8_t row0_mask = vshlq_u16(vcltzq_s16(row0), vnegq_s16(row0_lz));
uint16x8_t row0_diff = veorq_u16(vreinterpretq_u16_s16(abs_row0), row0_mask);
/* Find nbits required to specify sign and amplitude of coefficient. */
unsigned int lz = vgetq_lane_u16(vreinterpretq_u16_s16(row0_lz), 0);
unsigned int nbits = 16 - lz;
/* Emit Huffman-coded symbol and additional diff bits. */
unsigned int diff = vgetq_lane_u16(row0_diff, 0);
PUT_CODE(dctbl->ehufco[nbits], dctbl->ehufsi[nbits], diff)
/* Encode AC coefficients. */
unsigned int r = 0; /* r = run length of zeros */
unsigned int i = 1; /* i = number of coefficients encoded */
/* Code and size information for a run length of 16 zero coefficients */
const unsigned int code_0xf0 = actbl->ehufco[0xf0];
const unsigned int size_0xf0 = actbl->ehufsi[0xf0];
/* The most efficient method of computing nbits and diff depends on the
* number of non-zero coefficients. If the bitmap is not too sparse (> 8
* non-zero AC coefficients), it is beneficial to do all of the work using
* Neon; else we do some of the work using Neon and the rest on demand using
* scalar code.
*/
if (non_zero_coefficients > 8) {
uint8_t block_nbits[DCTSIZE2];
int16x8_t abs_row1 = vabsq_s16(row1);
int16x8_t abs_row2 = vabsq_s16(row2);
int16x8_t abs_row3 = vabsq_s16(row3);
int16x8_t abs_row4 = vabsq_s16(row4);
int16x8_t abs_row5 = vabsq_s16(row5);
int16x8_t abs_row6 = vabsq_s16(row6);
int16x8_t abs_row7 = vabsq_s16(row7);
int16x8_t row1_lz = vclzq_s16(abs_row1);
int16x8_t row2_lz = vclzq_s16(abs_row2);
int16x8_t row3_lz = vclzq_s16(abs_row3);
int16x8_t row4_lz = vclzq_s16(abs_row4);
int16x8_t row5_lz = vclzq_s16(abs_row5);
int16x8_t row6_lz = vclzq_s16(abs_row6);
int16x8_t row7_lz = vclzq_s16(abs_row7);
/* Narrow leading zero count to 8 bits. */
uint8x16_t row01_lz = vuzp1q_u8(vreinterpretq_u8_s16(row0_lz),
vreinterpretq_u8_s16(row1_lz));
uint8x16_t row23_lz = vuzp1q_u8(vreinterpretq_u8_s16(row2_lz),
vreinterpretq_u8_s16(row3_lz));
uint8x16_t row45_lz = vuzp1q_u8(vreinterpretq_u8_s16(row4_lz),
vreinterpretq_u8_s16(row5_lz));
uint8x16_t row67_lz = vuzp1q_u8(vreinterpretq_u8_s16(row6_lz),
vreinterpretq_u8_s16(row7_lz));
/* Compute nbits needed to specify magnitude of each coefficient. */
uint8x16_t row01_nbits = vsubq_u8(vdupq_n_u8(16), row01_lz);
uint8x16_t row23_nbits = vsubq_u8(vdupq_n_u8(16), row23_lz);
uint8x16_t row45_nbits = vsubq_u8(vdupq_n_u8(16), row45_lz);
uint8x16_t row67_nbits = vsubq_u8(vdupq_n_u8(16), row67_lz);
/* Store nbits. */
vst1q_u8(block_nbits + 0 * DCTSIZE, row01_nbits);
vst1q_u8(block_nbits + 2 * DCTSIZE, row23_nbits);
vst1q_u8(block_nbits + 4 * DCTSIZE, row45_nbits);
vst1q_u8(block_nbits + 6 * DCTSIZE, row67_nbits);
/* Mask bits not required to specify sign and amplitude of diff. */
uint16x8_t row1_mask = vshlq_u16(vcltzq_s16(row1), vnegq_s16(row1_lz));
uint16x8_t row2_mask = vshlq_u16(vcltzq_s16(row2), vnegq_s16(row2_lz));
uint16x8_t row3_mask = vshlq_u16(vcltzq_s16(row3), vnegq_s16(row3_lz));
uint16x8_t row4_mask = vshlq_u16(vcltzq_s16(row4), vnegq_s16(row4_lz));
uint16x8_t row5_mask = vshlq_u16(vcltzq_s16(row5), vnegq_s16(row5_lz));
uint16x8_t row6_mask = vshlq_u16(vcltzq_s16(row6), vnegq_s16(row6_lz));
uint16x8_t row7_mask = vshlq_u16(vcltzq_s16(row7), vnegq_s16(row7_lz));
/* diff = abs(coeff) ^ sign(coeff) [no-op for positive coefficients] */
uint16x8_t row1_diff = veorq_u16(vreinterpretq_u16_s16(abs_row1),
row1_mask);
uint16x8_t row2_diff = veorq_u16(vreinterpretq_u16_s16(abs_row2),
row2_mask);
uint16x8_t row3_diff = veorq_u16(vreinterpretq_u16_s16(abs_row3),
row3_mask);
uint16x8_t row4_diff = veorq_u16(vreinterpretq_u16_s16(abs_row4),
row4_mask);
uint16x8_t row5_diff = veorq_u16(vreinterpretq_u16_s16(abs_row5),
row5_mask);
uint16x8_t row6_diff = veorq_u16(vreinterpretq_u16_s16(abs_row6),
row6_mask);
uint16x8_t row7_diff = veorq_u16(vreinterpretq_u16_s16(abs_row7),
row7_mask);
/* Store diff bits. */
vst1q_u16(block_diff + 0 * DCTSIZE, row0_diff);
vst1q_u16(block_diff + 1 * DCTSIZE, row1_diff);
vst1q_u16(block_diff + 2 * DCTSIZE, row2_diff);
vst1q_u16(block_diff + 3 * DCTSIZE, row3_diff);
vst1q_u16(block_diff + 4 * DCTSIZE, row4_diff);
vst1q_u16(block_diff + 5 * DCTSIZE, row5_diff);
vst1q_u16(block_diff + 6 * DCTSIZE, row6_diff);
vst1q_u16(block_diff + 7 * DCTSIZE, row7_diff);
while (bitmap != 0) {
r = BUILTIN_CLZLL(bitmap);
i += r;
bitmap <<= r;
nbits = block_nbits[i];
diff = block_diff[i];
while (r > 15) {
/* If run length > 15, emit special run-length-16 codes. */
PUT_BITS(code_0xf0, size_0xf0)
r -= 16;
}
/* Emit Huffman symbol for run length / number of bits. (F.1.2.2.1) */
unsigned int rs = (r << 4) + nbits;
PUT_CODE(actbl->ehufco[rs], actbl->ehufsi[rs], diff)
i++;
bitmap <<= 1;
}
} else if (bitmap != 0) {
uint16_t block_abs[DCTSIZE2];
/* Compute and store absolute value of coefficients. */
int16x8_t abs_row1 = vabsq_s16(row1);
int16x8_t abs_row2 = vabsq_s16(row2);
int16x8_t abs_row3 = vabsq_s16(row3);
int16x8_t abs_row4 = vabsq_s16(row4);
int16x8_t abs_row5 = vabsq_s16(row5);
int16x8_t abs_row6 = vabsq_s16(row6);
int16x8_t abs_row7 = vabsq_s16(row7);
vst1q_u16(block_abs + 0 * DCTSIZE, vreinterpretq_u16_s16(abs_row0));
vst1q_u16(block_abs + 1 * DCTSIZE, vreinterpretq_u16_s16(abs_row1));
vst1q_u16(block_abs + 2 * DCTSIZE, vreinterpretq_u16_s16(abs_row2));
vst1q_u16(block_abs + 3 * DCTSIZE, vreinterpretq_u16_s16(abs_row3));
vst1q_u16(block_abs + 4 * DCTSIZE, vreinterpretq_u16_s16(abs_row4));
vst1q_u16(block_abs + 5 * DCTSIZE, vreinterpretq_u16_s16(abs_row5));
vst1q_u16(block_abs + 6 * DCTSIZE, vreinterpretq_u16_s16(abs_row6));
vst1q_u16(block_abs + 7 * DCTSIZE, vreinterpretq_u16_s16(abs_row7));
/* Compute diff bits (without nbits mask) and store. */
uint16x8_t row1_diff = veorq_u16(vreinterpretq_u16_s16(abs_row1),
vcltzq_s16(row1));
uint16x8_t row2_diff = veorq_u16(vreinterpretq_u16_s16(abs_row2),
vcltzq_s16(row2));
uint16x8_t row3_diff = veorq_u16(vreinterpretq_u16_s16(abs_row3),
vcltzq_s16(row3));
uint16x8_t row4_diff = veorq_u16(vreinterpretq_u16_s16(abs_row4),
vcltzq_s16(row4));
uint16x8_t row5_diff = veorq_u16(vreinterpretq_u16_s16(abs_row5),
vcltzq_s16(row5));
uint16x8_t row6_diff = veorq_u16(vreinterpretq_u16_s16(abs_row6),
vcltzq_s16(row6));
uint16x8_t row7_diff = veorq_u16(vreinterpretq_u16_s16(abs_row7),
vcltzq_s16(row7));
vst1q_u16(block_diff + 0 * DCTSIZE, row0_diff);
vst1q_u16(block_diff + 1 * DCTSIZE, row1_diff);
vst1q_u16(block_diff + 2 * DCTSIZE, row2_diff);
vst1q_u16(block_diff + 3 * DCTSIZE, row3_diff);
vst1q_u16(block_diff + 4 * DCTSIZE, row4_diff);
vst1q_u16(block_diff + 5 * DCTSIZE, row5_diff);
vst1q_u16(block_diff + 6 * DCTSIZE, row6_diff);
vst1q_u16(block_diff + 7 * DCTSIZE, row7_diff);
/* Same as above but must mask diff bits and compute nbits on demand. */
while (bitmap != 0) {
r = BUILTIN_CLZLL(bitmap);
i += r;
bitmap <<= r;
lz = BUILTIN_CLZ(block_abs[i]);
nbits = 32 - lz;
diff = ((unsigned int)block_diff[i] << lz) >> lz;
while (r > 15) {
/* If run length > 15, emit special run-length-16 codes. */
PUT_BITS(code_0xf0, size_0xf0)
r -= 16;
}
/* Emit Huffman symbol for run length / number of bits. (F.1.2.2.1) */
unsigned int rs = (r << 4) + nbits;
PUT_CODE(actbl->ehufco[rs], actbl->ehufsi[rs], diff)
i++;
bitmap <<= 1;
}
}
/* If the last coefficient(s) were zero, emit an end-of-block (EOB) code.
* The value of RS for the EOB code is 0.
*/
if (i != 64) {
PUT_BITS(actbl->ehufco[0], actbl->ehufsi[0])
}
state_ptr->cur.put_buffer = put_buffer;
state_ptr->cur.free_bits = free_bits;
return buffer;
}