Hash :
ff5685d5
Author :
Date :
2016-05-27T16:58:23
Reformat SSE/SSE2 SIMD code to improve readability
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
;
; jchuff-sse2.asm - Huffman entropy encoding (SSE2)
;
; Copyright (C) 2009-2011, 2014-2016, D. R. Commander.
; Copyright (C) 2015, Matthieu Darbois.
;
; Based on the x86 SIMD extension for IJG JPEG library
; Copyright (C) 1999-2006, MIYASAKA Masaru.
; For conditions of distribution and use, see copyright notice in jsimdext.inc
;
; This file should be assembled with NASM (Netwide Assembler),
; can *not* be assembled with Microsoft's MASM or any compatible
; assembler (including Borland's Turbo Assembler).
; NASM is available from http://nasm.sourceforge.net/ or
; http://sourceforge.net/project/showfiles.php?group_id=6208
;
; This file contains an SSE2 implementation for Huffman coding of one block.
; The following code is based directly on jchuff.c; see jchuff.c for more
; details.
;
; [TAB8]
%include "jsimdext.inc"
; --------------------------------------------------------------------------
SECTION SEG_CONST
alignz 16
global EXTN(jconst_huff_encode_one_block)
EXTN(jconst_huff_encode_one_block):
%include "jpeg_nbits_table.inc"
alignz 16
; --------------------------------------------------------------------------
SECTION SEG_TEXT
BITS 32
; These macros perform the same task as the emit_bits() function in the
; original libjpeg code. In addition to reducing overhead by explicitly
; inlining the code, additional performance is achieved by taking into
; account the size of the bit buffer and waiting until it is almost full
; before emptying it. This mostly benefits 64-bit platforms, since 6
; bytes can be stored in a 64-bit bit buffer before it has to be emptied.
%macro EMIT_BYTE 0
sub put_bits, 8 ; put_bits -= 8;
mov edx, put_buffer
mov ecx, put_bits
shr edx, cl ; c = (JOCTET)GETJOCTET(put_buffer >> put_bits);
mov byte [eax], dl ; *buffer++ = c;
add eax, 1
cmp dl, 0xFF ; need to stuff a zero byte?
jne %%.EMIT_BYTE_END
mov byte [eax], 0 ; *buffer++ = 0;
add eax, 1
%%.EMIT_BYTE_END:
%endmacro
%macro PUT_BITS 1
add put_bits, ecx ; put_bits += size;
shl put_buffer, cl ; put_buffer = (put_buffer << size);
or put_buffer, %1
%endmacro
%macro CHECKBUF15 0
cmp put_bits, 16 ; if (put_bits > 31) {
jl %%.CHECKBUF15_END
mov eax, POINTER [esp+buffer]
EMIT_BYTE
EMIT_BYTE
mov POINTER [esp+buffer], eax
%%.CHECKBUF15_END:
%endmacro
%macro EMIT_BITS 1
PUT_BITS %1
CHECKBUF15
%endmacro
%macro kloop_prepare 37 ;(ko, jno0, ..., jno31, xmm0, xmm1, xmm2, xmm3)
pxor xmm4, xmm4 ; __m128i neg = _mm_setzero_si128();
pxor xmm5, xmm5 ; __m128i neg = _mm_setzero_si128();
pxor xmm6, xmm6 ; __m128i neg = _mm_setzero_si128();
pxor xmm7, xmm7 ; __m128i neg = _mm_setzero_si128();
pinsrw %34, word [esi + %2 * SIZEOF_WORD], 0 ; xmm_shadow[0] = block[jno0];
pinsrw %35, word [esi + %10 * SIZEOF_WORD], 0 ; xmm_shadow[8] = block[jno8];
pinsrw %36, word [esi + %18 * SIZEOF_WORD], 0 ; xmm_shadow[16] = block[jno16];
pinsrw %37, word [esi + %26 * SIZEOF_WORD], 0 ; xmm_shadow[24] = block[jno24];
pinsrw %34, word [esi + %3 * SIZEOF_WORD], 1 ; xmm_shadow[1] = block[jno1];
pinsrw %35, word [esi + %11 * SIZEOF_WORD], 1 ; xmm_shadow[9] = block[jno9];
pinsrw %36, word [esi + %19 * SIZEOF_WORD], 1 ; xmm_shadow[17] = block[jno17];
pinsrw %37, word [esi + %27 * SIZEOF_WORD], 1 ; xmm_shadow[25] = block[jno25];
pinsrw %34, word [esi + %4 * SIZEOF_WORD], 2 ; xmm_shadow[2] = block[jno2];
pinsrw %35, word [esi + %12 * SIZEOF_WORD], 2 ; xmm_shadow[10] = block[jno10];
pinsrw %36, word [esi + %20 * SIZEOF_WORD], 2 ; xmm_shadow[18] = block[jno18];
pinsrw %37, word [esi + %28 * SIZEOF_WORD], 2 ; xmm_shadow[26] = block[jno26];
pinsrw %34, word [esi + %5 * SIZEOF_WORD], 3 ; xmm_shadow[3] = block[jno3];
pinsrw %35, word [esi + %13 * SIZEOF_WORD], 3 ; xmm_shadow[11] = block[jno11];
pinsrw %36, word [esi + %21 * SIZEOF_WORD], 3 ; xmm_shadow[19] = block[jno19];
pinsrw %37, word [esi + %29 * SIZEOF_WORD], 3 ; xmm_shadow[27] = block[jno27];
pinsrw %34, word [esi + %6 * SIZEOF_WORD], 4 ; xmm_shadow[4] = block[jno4];
pinsrw %35, word [esi + %14 * SIZEOF_WORD], 4 ; xmm_shadow[12] = block[jno12];
pinsrw %36, word [esi + %22 * SIZEOF_WORD], 4 ; xmm_shadow[20] = block[jno20];
pinsrw %37, word [esi + %30 * SIZEOF_WORD], 4 ; xmm_shadow[28] = block[jno28];
pinsrw %34, word [esi + %7 * SIZEOF_WORD], 5 ; xmm_shadow[5] = block[jno5];
pinsrw %35, word [esi + %15 * SIZEOF_WORD], 5 ; xmm_shadow[13] = block[jno13];
pinsrw %36, word [esi + %23 * SIZEOF_WORD], 5 ; xmm_shadow[21] = block[jno21];
pinsrw %37, word [esi + %31 * SIZEOF_WORD], 5 ; xmm_shadow[29] = block[jno29];
pinsrw %34, word [esi + %8 * SIZEOF_WORD], 6 ; xmm_shadow[6] = block[jno6];
pinsrw %35, word [esi + %16 * SIZEOF_WORD], 6 ; xmm_shadow[14] = block[jno14];
pinsrw %36, word [esi + %24 * SIZEOF_WORD], 6 ; xmm_shadow[22] = block[jno22];
pinsrw %37, word [esi + %32 * SIZEOF_WORD], 6 ; xmm_shadow[30] = block[jno30];
pinsrw %34, word [esi + %9 * SIZEOF_WORD], 7 ; xmm_shadow[7] = block[jno7];
pinsrw %35, word [esi + %17 * SIZEOF_WORD], 7 ; xmm_shadow[15] = block[jno15];
pinsrw %36, word [esi + %25 * SIZEOF_WORD], 7 ; xmm_shadow[23] = block[jno23];
%if %1 != 32
pinsrw %37, word [esi + %33 * SIZEOF_WORD], 7 ; xmm_shadow[31] = block[jno31];
%else
pinsrw %37, ecx, 7 ; xmm_shadow[31] = block[jno31];
%endif
pcmpgtw xmm4, %34 ; neg = _mm_cmpgt_epi16(neg, x1);
pcmpgtw xmm5, %35 ; neg = _mm_cmpgt_epi16(neg, x1);
pcmpgtw xmm6, %36 ; neg = _mm_cmpgt_epi16(neg, x1);
pcmpgtw xmm7, %37 ; neg = _mm_cmpgt_epi16(neg, x1);
paddw %34, xmm4 ; x1 = _mm_add_epi16(x1, neg);
paddw %35, xmm5 ; x1 = _mm_add_epi16(x1, neg);
paddw %36, xmm6 ; x1 = _mm_add_epi16(x1, neg);
paddw %37, xmm7 ; x1 = _mm_add_epi16(x1, neg);
pxor %34, xmm4 ; x1 = _mm_xor_si128(x1, neg);
pxor %35, xmm5 ; x1 = _mm_xor_si128(x1, neg);
pxor %36, xmm6 ; x1 = _mm_xor_si128(x1, neg);
pxor %37, xmm7 ; x1 = _mm_xor_si128(x1, neg);
pxor xmm4, %34 ; neg = _mm_xor_si128(neg, x1);
pxor xmm5, %35 ; neg = _mm_xor_si128(neg, x1);
pxor xmm6, %36 ; neg = _mm_xor_si128(neg, x1);
pxor xmm7, %37 ; neg = _mm_xor_si128(neg, x1);
movdqa XMMWORD [esp + t1 + %1 * SIZEOF_WORD], %34 ; _mm_storeu_si128((__m128i *)(t1 + ko), x1);
movdqa XMMWORD [esp + t1 + (%1 + 8) * SIZEOF_WORD], %35 ; _mm_storeu_si128((__m128i *)(t1 + ko + 8), x1);
movdqa XMMWORD [esp + t1 + (%1 + 16) * SIZEOF_WORD], %36 ; _mm_storeu_si128((__m128i *)(t1 + ko + 16), x1);
movdqa XMMWORD [esp + t1 + (%1 + 24) * SIZEOF_WORD], %37 ; _mm_storeu_si128((__m128i *)(t1 + ko + 24), x1);
movdqa XMMWORD [esp + t2 + %1 * SIZEOF_WORD], xmm4 ; _mm_storeu_si128((__m128i *)(t2 + ko), neg);
movdqa XMMWORD [esp + t2 + (%1 + 8) * SIZEOF_WORD], xmm5 ; _mm_storeu_si128((__m128i *)(t2 + ko + 8), neg);
movdqa XMMWORD [esp + t2 + (%1 + 16) * SIZEOF_WORD], xmm6 ; _mm_storeu_si128((__m128i *)(t2 + ko + 16), neg);
movdqa XMMWORD [esp + t2 + (%1 + 24) * SIZEOF_WORD], xmm7 ; _mm_storeu_si128((__m128i *)(t2 + ko + 24), neg);
%endmacro
;
; Encode a single block's worth of coefficients.
;
; GLOBAL(JOCTET*)
; jsimd_huff_encode_one_block_sse2 (working_state *state, JOCTET *buffer,
; JCOEFPTR block, int last_dc_val,
; c_derived_tbl *dctbl, c_derived_tbl *actbl)
;
; eax + 8 = working_state *state
; eax + 12 = JOCTET *buffer
; eax + 16 = JCOEFPTR block
; eax + 20 = int last_dc_val
; eax + 24 = c_derived_tbl *dctbl
; eax + 28 = c_derived_tbl *actbl
%define pad 6*SIZEOF_DWORD ; Align to 16 bytes
%define t1 pad
%define t2 t1+(DCTSIZE2*SIZEOF_WORD)
%define block t2+(DCTSIZE2*SIZEOF_WORD)
%define actbl block+SIZEOF_DWORD
%define buffer actbl+SIZEOF_DWORD
%define temp buffer+SIZEOF_DWORD
%define temp2 temp+SIZEOF_DWORD
%define temp3 temp2+SIZEOF_DWORD
%define temp4 temp3+SIZEOF_DWORD
%define temp5 temp4+SIZEOF_DWORD
%define gotptr temp5+SIZEOF_DWORD ; void *gotptr
%define put_buffer ebx
%define put_bits edi
align 16
global EXTN(jsimd_huff_encode_one_block_sse2)
EXTN(jsimd_huff_encode_one_block_sse2):
push ebp
mov eax,esp ; eax = original ebp
sub esp, byte 4
and esp, byte (-SIZEOF_XMMWORD) ; align to 128 bits
mov [esp],eax
mov ebp,esp ; ebp = aligned ebp
sub esp, temp5+9*SIZEOF_DWORD-pad
push ebx
push ecx
; push edx ; need not be preserved
push esi
push edi
push ebp
mov esi, POINTER [eax+8] ; (working_state *state)
mov put_buffer, DWORD [esi+8] ; put_buffer = state->cur.put_buffer;
mov put_bits, DWORD [esi+12] ; put_bits = state->cur.put_bits;
push esi ; esi is now scratch
get_GOT edx ; get GOT address
movpic POINTER [esp+gotptr], edx ; save GOT address
mov ecx, POINTER [eax+28]
mov edx, POINTER [eax+16]
mov esi, POINTER [eax+12]
mov POINTER [esp+actbl], ecx
mov POINTER [esp+block], edx
mov POINTER [esp+buffer], esi
; Encode the DC coefficient difference per section F.1.2.1
mov esi, POINTER [esp+block] ; block
movsx ecx, word [esi] ; temp = temp2 = block[0] - last_dc_val;
sub ecx, DWORD [eax+20]
mov esi, ecx
; This is a well-known technique for obtaining the absolute value
; with out a branch. It is derived from an assembly language technique
; presented in "How to Optimize for the Pentium Processors",
; Copyright (c) 1996, 1997 by Agner Fog.
mov edx, ecx
sar edx, 31 ; temp3 = temp >> (CHAR_BIT * sizeof(int) - 1);
xor ecx, edx ; temp ^= temp3;
sub ecx, edx ; temp -= temp3;
; For a negative input, want temp2 = bitwise complement of abs(input)
; This code assumes we are on a two's complement machine
add esi, edx ; temp2 += temp3;
mov DWORD [esp+temp], esi ; backup temp2 in temp
; Find the number of bits needed for the magnitude of the coefficient
movpic ebp, POINTER [esp+gotptr] ; load GOT address (ebp)
movzx edx, byte [GOTOFF(ebp, jpeg_nbits_table + ecx)] ; nbits = JPEG_NBITS(temp);
mov DWORD [esp+temp2], edx ; backup nbits in temp2
; Emit the Huffman-coded symbol for the number of bits
mov ebp, POINTER [eax+24] ; After this point, arguments are not accessible anymore
mov eax, INT [ebp + edx * 4] ; code = dctbl->ehufco[nbits];
movzx ecx, byte [ebp + edx + 1024] ; size = dctbl->ehufsi[nbits];
EMIT_BITS eax ; EMIT_BITS(code, size)
mov ecx, DWORD [esp+temp2] ; restore nbits
; Mask off any extra bits in code
mov eax, 1
shl eax, cl
dec eax
and eax, DWORD [esp+temp] ; temp2 &= (((JLONG) 1)<<nbits) - 1;
; Emit that number of bits of the value, if positive,
; or the complement of its magnitude, if negative.
EMIT_BITS eax ; EMIT_BITS(temp2, nbits)
; Prepare data
xor ecx, ecx
mov esi, POINTER [esp+block]
kloop_prepare 0, 1, 8, 16, 9, 2, 3, 10, 17, 24, 32, 25, \
18, 11, 4, 5, 12, 19, 26, 33, 40, 48, 41, 34, \
27, 20, 13, 6, 7, 14, 21, 28, 35, \
xmm0, xmm1, xmm2, xmm3
kloop_prepare 32, 42, 49, 56, 57, 50, 43, 36, 29, 22, 15, 23, \
30, 37, 44, 51, 58, 59, 52, 45, 38, 31, 39, 46, \
53, 60, 61, 54, 47, 55, 62, 63, 63, \
xmm0, xmm1, xmm2, xmm3
pxor xmm7, xmm7
movdqa xmm0, XMMWORD [esp + t1 + 0 * SIZEOF_WORD] ; __m128i tmp0 = _mm_loadu_si128((__m128i *)(t1 + 0));
movdqa xmm1, XMMWORD [esp + t1 + 8 * SIZEOF_WORD] ; __m128i tmp1 = _mm_loadu_si128((__m128i *)(t1 + 8));
movdqa xmm2, XMMWORD [esp + t1 + 16 * SIZEOF_WORD] ; __m128i tmp2 = _mm_loadu_si128((__m128i *)(t1 + 16));
movdqa xmm3, XMMWORD [esp + t1 + 24 * SIZEOF_WORD] ; __m128i tmp3 = _mm_loadu_si128((__m128i *)(t1 + 24));
pcmpeqw xmm0, xmm7 ; tmp0 = _mm_cmpeq_epi16(tmp0, zero);
pcmpeqw xmm1, xmm7 ; tmp1 = _mm_cmpeq_epi16(tmp1, zero);
pcmpeqw xmm2, xmm7 ; tmp2 = _mm_cmpeq_epi16(tmp2, zero);
pcmpeqw xmm3, xmm7 ; tmp3 = _mm_cmpeq_epi16(tmp3, zero);
packsswb xmm0, xmm1 ; tmp0 = _mm_packs_epi16(tmp0, tmp1);
packsswb xmm2, xmm3 ; tmp2 = _mm_packs_epi16(tmp2, tmp3);
pmovmskb edx, xmm0 ; index = ((uint64_t)_mm_movemask_epi8(tmp0)) << 0;
pmovmskb ecx, xmm2 ; index = ((uint64_t)_mm_movemask_epi8(tmp2)) << 16;
shl ecx, 16
or edx, ecx
not edx ; index = ~index;
lea esi, [esp+t1]
mov ebp, POINTER [esp+actbl] ; ebp = actbl
.BLOOP:
bsf ecx, edx ; r = __builtin_ctzl(index);
jz .ELOOP
lea esi, [esi+ecx*2] ; k += r;
shr edx, cl ; index >>= r;
mov DWORD [esp+temp3], edx
.BRLOOP:
cmp ecx, 16 ; while (r > 15) {
jl .ERLOOP
sub ecx, 16 ; r -= 16;
mov DWORD [esp+temp], ecx
mov eax, INT [ebp + 240 * 4] ; code_0xf0 = actbl->ehufco[0xf0];
movzx ecx, byte [ebp + 1024 + 240] ; size_0xf0 = actbl->ehufsi[0xf0];
EMIT_BITS eax ; EMIT_BITS(code_0xf0, size_0xf0)
mov ecx, DWORD [esp+temp]
jmp .BRLOOP
.ERLOOP:
movsx eax, word [esi] ; temp = t1[k];
movpic edx, POINTER [esp+gotptr] ; load GOT address (edx)
movzx eax, byte [GOTOFF(edx, jpeg_nbits_table + eax)] ; nbits = JPEG_NBITS(temp);
mov DWORD [esp+temp2], eax
; Emit Huffman symbol for run length / number of bits
shl ecx, 4 ; temp3 = (r << 4) + nbits;
add ecx, eax
mov eax, INT [ebp + ecx * 4] ; code = actbl->ehufco[temp3];
movzx ecx, byte [ebp + ecx + 1024] ; size = actbl->ehufsi[temp3];
EMIT_BITS eax
movsx edx, word [esi+DCTSIZE2*2] ; temp2 = t2[k];
; Mask off any extra bits in code
mov ecx, DWORD [esp+temp2]
mov eax, 1
shl eax, cl
dec eax
and eax, edx ; temp2 &= (((JLONG) 1)<<nbits) - 1;
EMIT_BITS eax ; PUT_BITS(temp2, nbits)
mov edx, DWORD [esp+temp3]
add esi, 2 ; ++k;
shr edx, 1 ; index >>= 1;
jmp .BLOOP
.ELOOP:
movdqa xmm0, XMMWORD [esp + t1 + 32 * SIZEOF_WORD] ; __m128i tmp0 = _mm_loadu_si128((__m128i *)(t1 + 0));
movdqa xmm1, XMMWORD [esp + t1 + 40 * SIZEOF_WORD] ; __m128i tmp1 = _mm_loadu_si128((__m128i *)(t1 + 8));
movdqa xmm2, XMMWORD [esp + t1 + 48 * SIZEOF_WORD] ; __m128i tmp2 = _mm_loadu_si128((__m128i *)(t1 + 16));
movdqa xmm3, XMMWORD [esp + t1 + 56 * SIZEOF_WORD] ; __m128i tmp3 = _mm_loadu_si128((__m128i *)(t1 + 24));
pcmpeqw xmm0, xmm7 ; tmp0 = _mm_cmpeq_epi16(tmp0, zero);
pcmpeqw xmm1, xmm7 ; tmp1 = _mm_cmpeq_epi16(tmp1, zero);
pcmpeqw xmm2, xmm7 ; tmp2 = _mm_cmpeq_epi16(tmp2, zero);
pcmpeqw xmm3, xmm7 ; tmp3 = _mm_cmpeq_epi16(tmp3, zero);
packsswb xmm0, xmm1 ; tmp0 = _mm_packs_epi16(tmp0, tmp1);
packsswb xmm2, xmm3 ; tmp2 = _mm_packs_epi16(tmp2, tmp3);
pmovmskb edx, xmm0 ; index = ((uint64_t)_mm_movemask_epi8(tmp0)) << 0;
pmovmskb ecx, xmm2 ; index = ((uint64_t)_mm_movemask_epi8(tmp2)) << 16;
shl ecx, 16
or edx, ecx
not edx ; index = ~index;
lea eax, [esp + t1 + (DCTSIZE2/2) * 2]
sub eax, esi
shr eax, 1
bsf ecx, edx ; r = __builtin_ctzl(index);
jz .ELOOP2
shr edx, cl ; index >>= r;
add ecx, eax
lea esi, [esi+ecx*2] ; k += r;
mov DWORD [esp+temp3], edx
jmp .BRLOOP2
.BLOOP2:
bsf ecx, edx ; r = __builtin_ctzl(index);
jz .ELOOP2
lea esi, [esi+ecx*2] ; k += r;
shr edx, cl ; index >>= r;
mov DWORD [esp+temp3], edx
.BRLOOP2:
cmp ecx, 16 ; while (r > 15) {
jl .ERLOOP2
sub ecx, 16 ; r -= 16;
mov DWORD [esp+temp], ecx
mov eax, INT [ebp + 240 * 4] ; code_0xf0 = actbl->ehufco[0xf0];
movzx ecx, byte [ebp + 1024 + 240] ; size_0xf0 = actbl->ehufsi[0xf0];
EMIT_BITS eax ; EMIT_BITS(code_0xf0, size_0xf0)
mov ecx, DWORD [esp+temp]
jmp .BRLOOP2
.ERLOOP2:
movsx eax, word [esi] ; temp = t1[k];
bsr eax, eax ; nbits = 32 - __builtin_clz(temp);
inc eax
mov DWORD [esp+temp2], eax
; Emit Huffman symbol for run length / number of bits
shl ecx, 4 ; temp3 = (r << 4) + nbits;
add ecx, eax
mov eax, INT [ebp + ecx * 4] ; code = actbl->ehufco[temp3];
movzx ecx, byte [ebp + ecx + 1024] ; size = actbl->ehufsi[temp3];
EMIT_BITS eax
movsx edx, word [esi+DCTSIZE2*2] ; temp2 = t2[k];
; Mask off any extra bits in code
mov ecx, DWORD [esp+temp2]
mov eax, 1
shl eax, cl
dec eax
and eax, edx ; temp2 &= (((JLONG) 1)<<nbits) - 1;
EMIT_BITS eax ; PUT_BITS(temp2, nbits)
mov edx, DWORD [esp+temp3]
add esi, 2 ; ++k;
shr edx, 1 ; index >>= 1;
jmp .BLOOP2
.ELOOP2:
; If the last coef(s) were zero, emit an end-of-block code
lea edx, [esp + t1 + (DCTSIZE2-1) * 2] ; r = DCTSIZE2-1-k;
cmp edx, esi ; if (r > 0) {
je .EFN
mov eax, INT [ebp] ; code = actbl->ehufco[0];
movzx ecx, byte [ebp + 1024] ; size = actbl->ehufsi[0];
EMIT_BITS eax
.EFN:
mov eax, [esp+buffer]
pop esi
; Save put_buffer & put_bits
mov DWORD [esi+8], put_buffer ; state->cur.put_buffer = put_buffer;
mov DWORD [esi+12], put_bits ; state->cur.put_bits = put_bits;
pop ebp
pop edi
pop esi
; pop edx ; need not be preserved
pop ecx
pop ebx
mov esp,ebp ; esp <- aligned ebp
pop esp ; esp <- original ebp
pop ebp
ret
; For some reason, the OS X linker does not honor the request to align the
; segment unless we do this.
align 16