Hash :
2c6b68e2
Author :
Date :
2018-09-25T18:20:25
Neon: Intrinsics impl. of fast integer Inverse DCT The previous AArch32 GAS implementation is retained by default when using GCC, in order to avoid a performance regression. The intrinsics implementation can be forced on or off using the new NEON_INTRINSICS CMake variable. The previous AArch64 GAS implementation has been removed, since the intrinsics implementation provides the same or better performance.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
/*
* jidctfst-neon.c - fast integer IDCT (Arm Neon)
*
* Copyright (C) 2020, Arm Limited. All Rights Reserved.
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
*
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
*
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
#define JPEG_INTERNALS
#include "../../jinclude.h"
#include "../../jpeglib.h"
#include "../../jsimd.h"
#include "../../jdct.h"
#include "../../jsimddct.h"
#include "../jsimd.h"
#include "align.h"
#include <arm_neon.h>
/* jsimd_idct_ifast_neon() performs dequantization and a fast, not so accurate
* inverse DCT (Discrete Cosine Transform) on one block of coefficients. It
* uses the same calculations and produces exactly the same output as IJG's
* original jpeg_idct_ifast() function, which can be found in jidctfst.c.
*
* Scaled integer constants are used to avoid floating-point arithmetic:
* 0.082392200 = 2688 * 2^-15
* 0.414213562 = 13568 * 2^-15
* 0.847759065 = 27776 * 2^-15
* 0.613125930 = 20096 * 2^-15
*
* See jidctfst.c for further details of the IDCT algorithm. Where possible,
* the variable names and comments here in jsimd_idct_ifast_neon() match up
* with those in jpeg_idct_ifast().
*/
#define PASS1_BITS 2
#define F_0_082 2688
#define F_0_414 13568
#define F_0_847 27776
#define F_0_613 20096
ALIGN(16) static const int16_t jsimd_idct_ifast_neon_consts[] = {
F_0_082, F_0_414, F_0_847, F_0_613
};
void jsimd_idct_ifast_neon(void *dct_table, JCOEFPTR coef_block,
JSAMPARRAY output_buf, JDIMENSION output_col)
{
IFAST_MULT_TYPE *quantptr = dct_table;
/* Load DCT coefficients. */
int16x8_t row0 = vld1q_s16(coef_block + 0 * DCTSIZE);
int16x8_t row1 = vld1q_s16(coef_block + 1 * DCTSIZE);
int16x8_t row2 = vld1q_s16(coef_block + 2 * DCTSIZE);
int16x8_t row3 = vld1q_s16(coef_block + 3 * DCTSIZE);
int16x8_t row4 = vld1q_s16(coef_block + 4 * DCTSIZE);
int16x8_t row5 = vld1q_s16(coef_block + 5 * DCTSIZE);
int16x8_t row6 = vld1q_s16(coef_block + 6 * DCTSIZE);
int16x8_t row7 = vld1q_s16(coef_block + 7 * DCTSIZE);
/* Load quantization table values for DC coefficients. */
int16x8_t quant_row0 = vld1q_s16(quantptr + 0 * DCTSIZE);
/* Dequantize DC coefficients. */
row0 = vmulq_s16(row0, quant_row0);
/* Construct bitmap to test if all AC coefficients are 0. */
int16x8_t bitmap = vorrq_s16(row1, row2);
bitmap = vorrq_s16(bitmap, row3);
bitmap = vorrq_s16(bitmap, row4);
bitmap = vorrq_s16(bitmap, row5);
bitmap = vorrq_s16(bitmap, row6);
bitmap = vorrq_s16(bitmap, row7);
int64_t left_ac_bitmap = vgetq_lane_s64(vreinterpretq_s64_s16(bitmap), 0);
int64_t right_ac_bitmap = vgetq_lane_s64(vreinterpretq_s64_s16(bitmap), 1);
/* Load IDCT conversion constants. */
const int16x4_t consts = vld1_s16(jsimd_idct_ifast_neon_consts);
if (left_ac_bitmap == 0 && right_ac_bitmap == 0) {
/* All AC coefficients are zero.
* Compute DC values and duplicate into vectors.
*/
int16x8_t dcval = row0;
row1 = dcval;
row2 = dcval;
row3 = dcval;
row4 = dcval;
row5 = dcval;
row6 = dcval;
row7 = dcval;
} else if (left_ac_bitmap == 0) {
/* AC coefficients are zero for columns 0, 1, 2, and 3.
* Use DC values for these columns.
*/
int16x4_t dcval = vget_low_s16(row0);
/* Commence regular fast IDCT computation for columns 4, 5, 6, and 7. */
/* Load quantization table. */
int16x4_t quant_row1 = vld1_s16(quantptr + 1 * DCTSIZE + 4);
int16x4_t quant_row2 = vld1_s16(quantptr + 2 * DCTSIZE + 4);
int16x4_t quant_row3 = vld1_s16(quantptr + 3 * DCTSIZE + 4);
int16x4_t quant_row4 = vld1_s16(quantptr + 4 * DCTSIZE + 4);
int16x4_t quant_row5 = vld1_s16(quantptr + 5 * DCTSIZE + 4);
int16x4_t quant_row6 = vld1_s16(quantptr + 6 * DCTSIZE + 4);
int16x4_t quant_row7 = vld1_s16(quantptr + 7 * DCTSIZE + 4);
/* Even part: dequantize DCT coefficients. */
int16x4_t tmp0 = vget_high_s16(row0);
int16x4_t tmp1 = vmul_s16(vget_high_s16(row2), quant_row2);
int16x4_t tmp2 = vmul_s16(vget_high_s16(row4), quant_row4);
int16x4_t tmp3 = vmul_s16(vget_high_s16(row6), quant_row6);
int16x4_t tmp10 = vadd_s16(tmp0, tmp2); /* phase 3 */
int16x4_t tmp11 = vsub_s16(tmp0, tmp2);
int16x4_t tmp13 = vadd_s16(tmp1, tmp3); /* phases 5-3 */
int16x4_t tmp1_sub_tmp3 = vsub_s16(tmp1, tmp3);
int16x4_t tmp12 = vqdmulh_lane_s16(tmp1_sub_tmp3, consts, 1);
tmp12 = vadd_s16(tmp12, tmp1_sub_tmp3);
tmp12 = vsub_s16(tmp12, tmp13);
tmp0 = vadd_s16(tmp10, tmp13); /* phase 2 */
tmp3 = vsub_s16(tmp10, tmp13);
tmp1 = vadd_s16(tmp11, tmp12);
tmp2 = vsub_s16(tmp11, tmp12);
/* Odd part: dequantize DCT coefficients. */
int16x4_t tmp4 = vmul_s16(vget_high_s16(row1), quant_row1);
int16x4_t tmp5 = vmul_s16(vget_high_s16(row3), quant_row3);
int16x4_t tmp6 = vmul_s16(vget_high_s16(row5), quant_row5);
int16x4_t tmp7 = vmul_s16(vget_high_s16(row7), quant_row7);
int16x4_t z13 = vadd_s16(tmp6, tmp5); /* phase 6 */
int16x4_t neg_z10 = vsub_s16(tmp5, tmp6);
int16x4_t z11 = vadd_s16(tmp4, tmp7);
int16x4_t z12 = vsub_s16(tmp4, tmp7);
tmp7 = vadd_s16(z11, z13); /* phase 5 */
int16x4_t z11_sub_z13 = vsub_s16(z11, z13);
tmp11 = vqdmulh_lane_s16(z11_sub_z13, consts, 1);
tmp11 = vadd_s16(tmp11, z11_sub_z13);
int16x4_t z10_add_z12 = vsub_s16(z12, neg_z10);
int16x4_t z5 = vqdmulh_lane_s16(z10_add_z12, consts, 2);
z5 = vadd_s16(z5, z10_add_z12);
tmp10 = vqdmulh_lane_s16(z12, consts, 0);
tmp10 = vadd_s16(tmp10, z12);
tmp10 = vsub_s16(tmp10, z5);
tmp12 = vqdmulh_lane_s16(neg_z10, consts, 3);
tmp12 = vadd_s16(tmp12, vadd_s16(neg_z10, neg_z10));
tmp12 = vadd_s16(tmp12, z5);
tmp6 = vsub_s16(tmp12, tmp7); /* phase 2 */
tmp5 = vsub_s16(tmp11, tmp6);
tmp4 = vadd_s16(tmp10, tmp5);
row0 = vcombine_s16(dcval, vadd_s16(tmp0, tmp7));
row7 = vcombine_s16(dcval, vsub_s16(tmp0, tmp7));
row1 = vcombine_s16(dcval, vadd_s16(tmp1, tmp6));
row6 = vcombine_s16(dcval, vsub_s16(tmp1, tmp6));
row2 = vcombine_s16(dcval, vadd_s16(tmp2, tmp5));
row5 = vcombine_s16(dcval, vsub_s16(tmp2, tmp5));
row4 = vcombine_s16(dcval, vadd_s16(tmp3, tmp4));
row3 = vcombine_s16(dcval, vsub_s16(tmp3, tmp4));
} else if (right_ac_bitmap == 0) {
/* AC coefficients are zero for columns 4, 5, 6, and 7.
* Use DC values for these columns.
*/
int16x4_t dcval = vget_high_s16(row0);
/* Commence regular fast IDCT computation for columns 0, 1, 2, and 3. */
/* Load quantization table. */
int16x4_t quant_row1 = vld1_s16(quantptr + 1 * DCTSIZE);
int16x4_t quant_row2 = vld1_s16(quantptr + 2 * DCTSIZE);
int16x4_t quant_row3 = vld1_s16(quantptr + 3 * DCTSIZE);
int16x4_t quant_row4 = vld1_s16(quantptr + 4 * DCTSIZE);
int16x4_t quant_row5 = vld1_s16(quantptr + 5 * DCTSIZE);
int16x4_t quant_row6 = vld1_s16(quantptr + 6 * DCTSIZE);
int16x4_t quant_row7 = vld1_s16(quantptr + 7 * DCTSIZE);
/* Even part: dequantize DCT coefficients. */
int16x4_t tmp0 = vget_low_s16(row0);
int16x4_t tmp1 = vmul_s16(vget_low_s16(row2), quant_row2);
int16x4_t tmp2 = vmul_s16(vget_low_s16(row4), quant_row4);
int16x4_t tmp3 = vmul_s16(vget_low_s16(row6), quant_row6);
int16x4_t tmp10 = vadd_s16(tmp0, tmp2); /* phase 3 */
int16x4_t tmp11 = vsub_s16(tmp0, tmp2);
int16x4_t tmp13 = vadd_s16(tmp1, tmp3); /* phases 5-3 */
int16x4_t tmp1_sub_tmp3 = vsub_s16(tmp1, tmp3);
int16x4_t tmp12 = vqdmulh_lane_s16(tmp1_sub_tmp3, consts, 1);
tmp12 = vadd_s16(tmp12, tmp1_sub_tmp3);
tmp12 = vsub_s16(tmp12, tmp13);
tmp0 = vadd_s16(tmp10, tmp13); /* phase 2 */
tmp3 = vsub_s16(tmp10, tmp13);
tmp1 = vadd_s16(tmp11, tmp12);
tmp2 = vsub_s16(tmp11, tmp12);
/* Odd part: dequantize DCT coefficients. */
int16x4_t tmp4 = vmul_s16(vget_low_s16(row1), quant_row1);
int16x4_t tmp5 = vmul_s16(vget_low_s16(row3), quant_row3);
int16x4_t tmp6 = vmul_s16(vget_low_s16(row5), quant_row5);
int16x4_t tmp7 = vmul_s16(vget_low_s16(row7), quant_row7);
int16x4_t z13 = vadd_s16(tmp6, tmp5); /* phase 6 */
int16x4_t neg_z10 = vsub_s16(tmp5, tmp6);
int16x4_t z11 = vadd_s16(tmp4, tmp7);
int16x4_t z12 = vsub_s16(tmp4, tmp7);
tmp7 = vadd_s16(z11, z13); /* phase 5 */
int16x4_t z11_sub_z13 = vsub_s16(z11, z13);
tmp11 = vqdmulh_lane_s16(z11_sub_z13, consts, 1);
tmp11 = vadd_s16(tmp11, z11_sub_z13);
int16x4_t z10_add_z12 = vsub_s16(z12, neg_z10);
int16x4_t z5 = vqdmulh_lane_s16(z10_add_z12, consts, 2);
z5 = vadd_s16(z5, z10_add_z12);
tmp10 = vqdmulh_lane_s16(z12, consts, 0);
tmp10 = vadd_s16(tmp10, z12);
tmp10 = vsub_s16(tmp10, z5);
tmp12 = vqdmulh_lane_s16(neg_z10, consts, 3);
tmp12 = vadd_s16(tmp12, vadd_s16(neg_z10, neg_z10));
tmp12 = vadd_s16(tmp12, z5);
tmp6 = vsub_s16(tmp12, tmp7); /* phase 2 */
tmp5 = vsub_s16(tmp11, tmp6);
tmp4 = vadd_s16(tmp10, tmp5);
row0 = vcombine_s16(vadd_s16(tmp0, tmp7), dcval);
row7 = vcombine_s16(vsub_s16(tmp0, tmp7), dcval);
row1 = vcombine_s16(vadd_s16(tmp1, tmp6), dcval);
row6 = vcombine_s16(vsub_s16(tmp1, tmp6), dcval);
row2 = vcombine_s16(vadd_s16(tmp2, tmp5), dcval);
row5 = vcombine_s16(vsub_s16(tmp2, tmp5), dcval);
row4 = vcombine_s16(vadd_s16(tmp3, tmp4), dcval);
row3 = vcombine_s16(vsub_s16(tmp3, tmp4), dcval);
} else {
/* Some AC coefficients are non-zero; full IDCT calculation required. */
/* Load quantization table. */
int16x8_t quant_row1 = vld1q_s16(quantptr + 1 * DCTSIZE);
int16x8_t quant_row2 = vld1q_s16(quantptr + 2 * DCTSIZE);
int16x8_t quant_row3 = vld1q_s16(quantptr + 3 * DCTSIZE);
int16x8_t quant_row4 = vld1q_s16(quantptr + 4 * DCTSIZE);
int16x8_t quant_row5 = vld1q_s16(quantptr + 5 * DCTSIZE);
int16x8_t quant_row6 = vld1q_s16(quantptr + 6 * DCTSIZE);
int16x8_t quant_row7 = vld1q_s16(quantptr + 7 * DCTSIZE);
/* Even part: dequantize DCT coefficients. */
int16x8_t tmp0 = row0;
int16x8_t tmp1 = vmulq_s16(row2, quant_row2);
int16x8_t tmp2 = vmulq_s16(row4, quant_row4);
int16x8_t tmp3 = vmulq_s16(row6, quant_row6);
int16x8_t tmp10 = vaddq_s16(tmp0, tmp2); /* phase 3 */
int16x8_t tmp11 = vsubq_s16(tmp0, tmp2);
int16x8_t tmp13 = vaddq_s16(tmp1, tmp3); /* phases 5-3 */
int16x8_t tmp1_sub_tmp3 = vsubq_s16(tmp1, tmp3);
int16x8_t tmp12 = vqdmulhq_lane_s16(tmp1_sub_tmp3, consts, 1);
tmp12 = vaddq_s16(tmp12, tmp1_sub_tmp3);
tmp12 = vsubq_s16(tmp12, tmp13);
tmp0 = vaddq_s16(tmp10, tmp13); /* phase 2 */
tmp3 = vsubq_s16(tmp10, tmp13);
tmp1 = vaddq_s16(tmp11, tmp12);
tmp2 = vsubq_s16(tmp11, tmp12);
/* Odd part: dequantize DCT coefficients. */
int16x8_t tmp4 = vmulq_s16(row1, quant_row1);
int16x8_t tmp5 = vmulq_s16(row3, quant_row3);
int16x8_t tmp6 = vmulq_s16(row5, quant_row5);
int16x8_t tmp7 = vmulq_s16(row7, quant_row7);
int16x8_t z13 = vaddq_s16(tmp6, tmp5); /* phase 6 */
int16x8_t neg_z10 = vsubq_s16(tmp5, tmp6);
int16x8_t z11 = vaddq_s16(tmp4, tmp7);
int16x8_t z12 = vsubq_s16(tmp4, tmp7);
tmp7 = vaddq_s16(z11, z13); /* phase 5 */
int16x8_t z11_sub_z13 = vsubq_s16(z11, z13);
tmp11 = vqdmulhq_lane_s16(z11_sub_z13, consts, 1);
tmp11 = vaddq_s16(tmp11, z11_sub_z13);
int16x8_t z10_add_z12 = vsubq_s16(z12, neg_z10);
int16x8_t z5 = vqdmulhq_lane_s16(z10_add_z12, consts, 2);
z5 = vaddq_s16(z5, z10_add_z12);
tmp10 = vqdmulhq_lane_s16(z12, consts, 0);
tmp10 = vaddq_s16(tmp10, z12);
tmp10 = vsubq_s16(tmp10, z5);
tmp12 = vqdmulhq_lane_s16(neg_z10, consts, 3);
tmp12 = vaddq_s16(tmp12, vaddq_s16(neg_z10, neg_z10));
tmp12 = vaddq_s16(tmp12, z5);
tmp6 = vsubq_s16(tmp12, tmp7); /* phase 2 */
tmp5 = vsubq_s16(tmp11, tmp6);
tmp4 = vaddq_s16(tmp10, tmp5);
row0 = vaddq_s16(tmp0, tmp7);
row7 = vsubq_s16(tmp0, tmp7);
row1 = vaddq_s16(tmp1, tmp6);
row6 = vsubq_s16(tmp1, tmp6);
row2 = vaddq_s16(tmp2, tmp5);
row5 = vsubq_s16(tmp2, tmp5);
row4 = vaddq_s16(tmp3, tmp4);
row3 = vsubq_s16(tmp3, tmp4);
}
/* Transpose rows to work on columns in pass 2. */
int16x8x2_t rows_01 = vtrnq_s16(row0, row1);
int16x8x2_t rows_23 = vtrnq_s16(row2, row3);
int16x8x2_t rows_45 = vtrnq_s16(row4, row5);
int16x8x2_t rows_67 = vtrnq_s16(row6, row7);
int32x4x2_t rows_0145_l = vtrnq_s32(vreinterpretq_s32_s16(rows_01.val[0]),
vreinterpretq_s32_s16(rows_45.val[0]));
int32x4x2_t rows_0145_h = vtrnq_s32(vreinterpretq_s32_s16(rows_01.val[1]),
vreinterpretq_s32_s16(rows_45.val[1]));
int32x4x2_t rows_2367_l = vtrnq_s32(vreinterpretq_s32_s16(rows_23.val[0]),
vreinterpretq_s32_s16(rows_67.val[0]));
int32x4x2_t rows_2367_h = vtrnq_s32(vreinterpretq_s32_s16(rows_23.val[1]),
vreinterpretq_s32_s16(rows_67.val[1]));
int32x4x2_t cols_04 = vzipq_s32(rows_0145_l.val[0], rows_2367_l.val[0]);
int32x4x2_t cols_15 = vzipq_s32(rows_0145_h.val[0], rows_2367_h.val[0]);
int32x4x2_t cols_26 = vzipq_s32(rows_0145_l.val[1], rows_2367_l.val[1]);
int32x4x2_t cols_37 = vzipq_s32(rows_0145_h.val[1], rows_2367_h.val[1]);
int16x8_t col0 = vreinterpretq_s16_s32(cols_04.val[0]);
int16x8_t col1 = vreinterpretq_s16_s32(cols_15.val[0]);
int16x8_t col2 = vreinterpretq_s16_s32(cols_26.val[0]);
int16x8_t col3 = vreinterpretq_s16_s32(cols_37.val[0]);
int16x8_t col4 = vreinterpretq_s16_s32(cols_04.val[1]);
int16x8_t col5 = vreinterpretq_s16_s32(cols_15.val[1]);
int16x8_t col6 = vreinterpretq_s16_s32(cols_26.val[1]);
int16x8_t col7 = vreinterpretq_s16_s32(cols_37.val[1]);
/* 1-D IDCT, pass 2 */
/* Even part */
int16x8_t tmp10 = vaddq_s16(col0, col4);
int16x8_t tmp11 = vsubq_s16(col0, col4);
int16x8_t tmp13 = vaddq_s16(col2, col6);
int16x8_t col2_sub_col6 = vsubq_s16(col2, col6);
int16x8_t tmp12 = vqdmulhq_lane_s16(col2_sub_col6, consts, 1);
tmp12 = vaddq_s16(tmp12, col2_sub_col6);
tmp12 = vsubq_s16(tmp12, tmp13);
int16x8_t tmp0 = vaddq_s16(tmp10, tmp13);
int16x8_t tmp3 = vsubq_s16(tmp10, tmp13);
int16x8_t tmp1 = vaddq_s16(tmp11, tmp12);
int16x8_t tmp2 = vsubq_s16(tmp11, tmp12);
/* Odd part */
int16x8_t z13 = vaddq_s16(col5, col3);
int16x8_t neg_z10 = vsubq_s16(col3, col5);
int16x8_t z11 = vaddq_s16(col1, col7);
int16x8_t z12 = vsubq_s16(col1, col7);
int16x8_t tmp7 = vaddq_s16(z11, z13); /* phase 5 */
int16x8_t z11_sub_z13 = vsubq_s16(z11, z13);
tmp11 = vqdmulhq_lane_s16(z11_sub_z13, consts, 1);
tmp11 = vaddq_s16(tmp11, z11_sub_z13);
int16x8_t z10_add_z12 = vsubq_s16(z12, neg_z10);
int16x8_t z5 = vqdmulhq_lane_s16(z10_add_z12, consts, 2);
z5 = vaddq_s16(z5, z10_add_z12);
tmp10 = vqdmulhq_lane_s16(z12, consts, 0);
tmp10 = vaddq_s16(tmp10, z12);
tmp10 = vsubq_s16(tmp10, z5);
tmp12 = vqdmulhq_lane_s16(neg_z10, consts, 3);
tmp12 = vaddq_s16(tmp12, vaddq_s16(neg_z10, neg_z10));
tmp12 = vaddq_s16(tmp12, z5);
int16x8_t tmp6 = vsubq_s16(tmp12, tmp7); /* phase 2 */
int16x8_t tmp5 = vsubq_s16(tmp11, tmp6);
int16x8_t tmp4 = vaddq_s16(tmp10, tmp5);
col0 = vaddq_s16(tmp0, tmp7);
col7 = vsubq_s16(tmp0, tmp7);
col1 = vaddq_s16(tmp1, tmp6);
col6 = vsubq_s16(tmp1, tmp6);
col2 = vaddq_s16(tmp2, tmp5);
col5 = vsubq_s16(tmp2, tmp5);
col4 = vaddq_s16(tmp3, tmp4);
col3 = vsubq_s16(tmp3, tmp4);
/* Scale down by a factor of 8, narrowing to 8-bit. */
int8x16_t cols_01_s8 = vcombine_s8(vqshrn_n_s16(col0, PASS1_BITS + 3),
vqshrn_n_s16(col1, PASS1_BITS + 3));
int8x16_t cols_45_s8 = vcombine_s8(vqshrn_n_s16(col4, PASS1_BITS + 3),
vqshrn_n_s16(col5, PASS1_BITS + 3));
int8x16_t cols_23_s8 = vcombine_s8(vqshrn_n_s16(col2, PASS1_BITS + 3),
vqshrn_n_s16(col3, PASS1_BITS + 3));
int8x16_t cols_67_s8 = vcombine_s8(vqshrn_n_s16(col6, PASS1_BITS + 3),
vqshrn_n_s16(col7, PASS1_BITS + 3));
/* Clamp to range [0-255]. */
uint8x16_t cols_01 =
vreinterpretq_u8_s8
(vaddq_s8(cols_01_s8, vreinterpretq_s8_u8(vdupq_n_u8(CENTERJSAMPLE))));
uint8x16_t cols_45 =
vreinterpretq_u8_s8
(vaddq_s8(cols_45_s8, vreinterpretq_s8_u8(vdupq_n_u8(CENTERJSAMPLE))));
uint8x16_t cols_23 =
vreinterpretq_u8_s8
(vaddq_s8(cols_23_s8, vreinterpretq_s8_u8(vdupq_n_u8(CENTERJSAMPLE))));
uint8x16_t cols_67 =
vreinterpretq_u8_s8
(vaddq_s8(cols_67_s8, vreinterpretq_s8_u8(vdupq_n_u8(CENTERJSAMPLE))));
/* Transpose block to prepare for store. */
uint32x4x2_t cols_0415 = vzipq_u32(vreinterpretq_u32_u8(cols_01),
vreinterpretq_u32_u8(cols_45));
uint32x4x2_t cols_2637 = vzipq_u32(vreinterpretq_u32_u8(cols_23),
vreinterpretq_u32_u8(cols_67));
uint8x16x2_t cols_0145 = vtrnq_u8(vreinterpretq_u8_u32(cols_0415.val[0]),
vreinterpretq_u8_u32(cols_0415.val[1]));
uint8x16x2_t cols_2367 = vtrnq_u8(vreinterpretq_u8_u32(cols_2637.val[0]),
vreinterpretq_u8_u32(cols_2637.val[1]));
uint16x8x2_t rows_0426 = vtrnq_u16(vreinterpretq_u16_u8(cols_0145.val[0]),
vreinterpretq_u16_u8(cols_2367.val[0]));
uint16x8x2_t rows_1537 = vtrnq_u16(vreinterpretq_u16_u8(cols_0145.val[1]),
vreinterpretq_u16_u8(cols_2367.val[1]));
uint8x16_t rows_04 = vreinterpretq_u8_u16(rows_0426.val[0]);
uint8x16_t rows_15 = vreinterpretq_u8_u16(rows_1537.val[0]);
uint8x16_t rows_26 = vreinterpretq_u8_u16(rows_0426.val[1]);
uint8x16_t rows_37 = vreinterpretq_u8_u16(rows_1537.val[1]);
JSAMPROW outptr0 = output_buf[0] + output_col;
JSAMPROW outptr1 = output_buf[1] + output_col;
JSAMPROW outptr2 = output_buf[2] + output_col;
JSAMPROW outptr3 = output_buf[3] + output_col;
JSAMPROW outptr4 = output_buf[4] + output_col;
JSAMPROW outptr5 = output_buf[5] + output_col;
JSAMPROW outptr6 = output_buf[6] + output_col;
JSAMPROW outptr7 = output_buf[7] + output_col;
/* Store DCT block to memory. */
vst1q_lane_u64((uint64_t *)outptr0, vreinterpretq_u64_u8(rows_04), 0);
vst1q_lane_u64((uint64_t *)outptr1, vreinterpretq_u64_u8(rows_15), 0);
vst1q_lane_u64((uint64_t *)outptr2, vreinterpretq_u64_u8(rows_26), 0);
vst1q_lane_u64((uint64_t *)outptr3, vreinterpretq_u64_u8(rows_37), 0);
vst1q_lane_u64((uint64_t *)outptr4, vreinterpretq_u64_u8(rows_04), 1);
vst1q_lane_u64((uint64_t *)outptr5, vreinterpretq_u64_u8(rows_15), 1);
vst1q_lane_u64((uint64_t *)outptr6, vreinterpretq_u64_u8(rows_26), 1);
vst1q_lane_u64((uint64_t *)outptr7, vreinterpretq_u64_u8(rows_37), 1);
}