Hash :
a2e6a9dd
Author :
Date :
2006-02-04T00:00:00
IJG R6b with x86SIMD V1.02 Independent JPEG Group's JPEG software release 6b with x86 SIMD extension for IJG JPEG library version 1.02
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
/*
* jcdctmgr.c
*
* Copyright (C) 1994-1996, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* ---------------------------------------------------------------------
* x86 SIMD extension for IJG JPEG library
* Copyright (C) 1999-2006, MIYASAKA Masaru.
* This file has been modified for SIMD extension.
* Last Modified : December 24, 2005
* ---------------------------------------------------------------------
*
* This file contains the forward-DCT management logic.
* This code selects a particular DCT implementation to be used,
* and it performs related housekeeping chores including coefficient
* quantization.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
#include "jdct.h" /* Private declarations for DCT subsystem */
/* Private subobject for this module */
typedef struct {
struct jpeg_forward_dct pub; /* public fields */
/* Pointer to the DCT routine actually in use */
forward_DCT_method_ptr do_dct;
convsamp_int_method_ptr convsamp;
quantize_int_method_ptr quantize;
/* The actual post-DCT divisors --- not identical to the quant table
* entries, because of scaling (especially for an unnormalized DCT).
* Each table is given in normal array order.
*/
DCTELEM * divisors[NUM_QUANT_TBLS];
#ifdef DCT_FLOAT_SUPPORTED
/* Same as above for the floating-point case. */
float_DCT_method_ptr do_float_dct;
convsamp_float_method_ptr float_convsamp;
quantize_float_method_ptr float_quantize;
FAST_FLOAT * float_divisors[NUM_QUANT_TBLS];
#endif
} my_fdct_controller;
typedef my_fdct_controller * my_fdct_ptr;
/*
* SIMD Ext: Most of SSE/SSE2 instructions require that the memory address
* is aligned to a 16-byte boundary; if not, a general-protection exception
* (#GP) is generated.
*/
#define ALIGN_SIZE 16 /* sizeof SSE/SSE2 register */
#define ALIGN_MEM(p,a) ((void *) (((size_t) (p) + (a) - 1) & -(a)))
#ifdef JFDCT_INT_QUANTIZE_WITH_DIVISION
#undef jpeg_quantize_int
#undef jpeg_quantize_int_mmx
#undef jpeg_quantize_int_sse2
#define jpeg_quantize_int jpeg_quantize_idiv
#define jpeg_quantize_int_mmx jpeg_quantize_idiv
#define jpeg_quantize_int_sse2 jpeg_quantize_idiv
#endif
#ifndef JFDCT_INT_QUANTIZE_WITH_DIVISION
/*
* SIMD Ext: compute the reciprocal of the divisor
*
* This implementation is based on an algorithm described in
* "How to optimize for the Pentium family of microprocessors"
* (http://www.agner.org/assem/).
*/
LOCAL(void)
compute_reciprocal (DCTELEM divisor, DCTELEM * dtbl)
{
unsigned long d = ((unsigned long) divisor) & 0x0000FFFF;
unsigned long fq, fr;
int b, r, c;
for (b = 0; (1UL << b) <= d; b++) ;
r = 16 + (--b);
fq = (1UL << r) / d;
fr = (1UL << r) % d;
r -= 16;
c = 0;
if (fr == 0) {
fq >>= 1;
r--;
} else if (fr <= (d / 2)) {
c++;
} else {
fq++;
}
dtbl[DCTSIZE2 * 0] = (DCTELEM) fq; /* reciprocal */
dtbl[DCTSIZE2 * 1] = (DCTELEM) (c + (d / 2)); /* correction + roundfactor */
dtbl[DCTSIZE2 * 2] = (DCTELEM) (1 << (16 - (r + 1 + 1))); /* scale */
dtbl[DCTSIZE2 * 3] = (DCTELEM) (r + 1); /* shift */
}
#endif /* JFDCT_INT_QUANTIZE_WITH_DIVISION */
/*
* Initialize for a processing pass.
* Verify that all referenced Q-tables are present, and set up
* the divisor table for each one.
* In the current implementation, DCT of all components is done during
* the first pass, even if only some components will be output in the
* first scan. Hence all components should be examined here.
*/
METHODDEF(void)
start_pass_fdctmgr (j_compress_ptr cinfo)
{
my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
int ci, qtblno, i;
jpeg_component_info *compptr;
JQUANT_TBL * qtbl;
DCTELEM * dtbl;
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
qtblno = compptr->quant_tbl_no;
/* Make sure specified quantization table is present */
if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS ||
cinfo->quant_tbl_ptrs[qtblno] == NULL)
ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno);
qtbl = cinfo->quant_tbl_ptrs[qtblno];
/* Compute divisors for this quant table */
/* We may do this more than once for same table, but it's not a big deal */
switch (cinfo->dct_method) {
#ifdef DCT_ISLOW_SUPPORTED
case JDCT_ISLOW:
/* For LL&M IDCT method, divisors are equal to raw quantization
* coefficients multiplied by 8 (to counteract scaling).
*/
#ifndef JFDCT_INT_QUANTIZE_WITH_DIVISION
if (fdct->divisors[qtblno] == NULL) {
fdct->divisors[qtblno] = (DCTELEM *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
(DCTSIZE2 * 4) * SIZEOF(DCTELEM));
}
dtbl = fdct->divisors[qtblno];
for (i = 0; i < DCTSIZE2; i++) {
compute_reciprocal ((DCTELEM) (qtbl->quantval[i] << 3), &dtbl[i]);
}
break;
#else /* JFDCT_INT_QUANTIZE_WITH_DIVISION */
if (fdct->divisors[qtblno] == NULL) {
fdct->divisors[qtblno] = (DCTELEM *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
DCTSIZE2 * SIZEOF(DCTELEM));
}
dtbl = fdct->divisors[qtblno];
for (i = 0; i < DCTSIZE2; i++) {
dtbl[i] = ((DCTELEM) qtbl->quantval[i]) << 3;
}
break;
#endif /* JFDCT_INT_QUANTIZE_WITH_DIVISION */
#endif /* DCT_ISLOW_SUPPORTED */
#ifdef DCT_IFAST_SUPPORTED
case JDCT_IFAST:
{
/* For AA&N IDCT method, divisors are equal to quantization
* coefficients scaled by scalefactor[row]*scalefactor[col], where
* scalefactor[0] = 1
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
* We apply a further scale factor of 8.
*/
#define CONST_BITS 14
static const INT16 aanscales[DCTSIZE2] = {
/* precomputed values scaled up by 14 bits */
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
};
SHIFT_TEMPS
#ifndef JFDCT_INT_QUANTIZE_WITH_DIVISION
if (fdct->divisors[qtblno] == NULL) {
fdct->divisors[qtblno] = (DCTELEM *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
(DCTSIZE2 * 4) * SIZEOF(DCTELEM));
}
dtbl = fdct->divisors[qtblno];
for (i = 0; i < DCTSIZE2; i++) {
compute_reciprocal ((DCTELEM)
DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i],
(INT32) aanscales[i]),
CONST_BITS-3),
&dtbl[i]);
}
#else /* JFDCT_INT_QUANTIZE_WITH_DIVISION */
if (fdct->divisors[qtblno] == NULL) {
fdct->divisors[qtblno] = (DCTELEM *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
DCTSIZE2 * SIZEOF(DCTELEM));
}
dtbl = fdct->divisors[qtblno];
for (i = 0; i < DCTSIZE2; i++) {
dtbl[i] = (DCTELEM)
DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i],
(INT32) aanscales[i]),
CONST_BITS-3);
}
#endif /* JFDCT_INT_QUANTIZE_WITH_DIVISION */
}
break;
#endif /* DCT_IFAST_SUPPORTED */
#ifdef DCT_FLOAT_SUPPORTED
case JDCT_FLOAT:
{
/* For float AA&N IDCT method, divisors are equal to quantization
* coefficients scaled by scalefactor[row]*scalefactor[col], where
* scalefactor[0] = 1
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
* We apply a further scale factor of 8.
* What's actually stored is 1/divisor so that the inner loop can
* use a multiplication rather than a division.
*/
FAST_FLOAT * fdtbl;
int row, col;
static const double aanscalefactor[DCTSIZE] = {
1.0, 1.387039845, 1.306562965, 1.175875602,
1.0, 0.785694958, 0.541196100, 0.275899379
};
if (fdct->float_divisors[qtblno] == NULL) {
fdct->float_divisors[qtblno] = (FAST_FLOAT *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
DCTSIZE2 * SIZEOF(FAST_FLOAT));
}
fdtbl = fdct->float_divisors[qtblno];
i = 0;
for (row = 0; row < DCTSIZE; row++) {
for (col = 0; col < DCTSIZE; col++) {
fdtbl[i] = (FAST_FLOAT)
(1.0 / (((double) qtbl->quantval[i] *
aanscalefactor[row] * aanscalefactor[col] * 8.0)));
i++;
}
}
}
break;
#endif
default:
ERREXIT(cinfo, JERR_NOT_COMPILED);
break;
}
}
}
/*
* Perform forward DCT on one or more blocks of a component.
*
* The input samples are taken from the sample_data[] array starting at
* position start_row/start_col, and moving to the right for any additional
* blocks. The quantized coefficients are returned in coef_blocks[].
*/
METHODDEF(void)
forward_DCT (j_compress_ptr cinfo, jpeg_component_info * compptr,
JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
JDIMENSION start_row, JDIMENSION start_col,
JDIMENSION num_blocks)
/* This version is used for integer DCT implementations. */
{
my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
DCTELEM * divisors = fdct->divisors[compptr->quant_tbl_no];
DCTELEM workspace[DCTSIZE2 + ALIGN_SIZE/sizeof(DCTELEM)];
DCTELEM * wkptr = (DCTELEM *) ALIGN_MEM(workspace, ALIGN_SIZE);
JDIMENSION bi;
sample_data += start_row; /* fold in the vertical offset once */
for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) {
/* Load data into workspace, applying unsigned->signed conversion */
(*fdct->convsamp) (sample_data, start_col, wkptr);
/* Perform the DCT */
(*fdct->do_dct) (wkptr);
/* Quantize/descale the coefficients, and store into coef_blocks[] */
(*fdct->quantize) (coef_blocks[bi], divisors, wkptr);
}
}
#ifdef DCT_FLOAT_SUPPORTED
METHODDEF(void)
forward_DCT_float (j_compress_ptr cinfo, jpeg_component_info * compptr,
JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
JDIMENSION start_row, JDIMENSION start_col,
JDIMENSION num_blocks)
/* This version is used for floating-point DCT implementations. */
{
my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
FAST_FLOAT * divisors = fdct->float_divisors[compptr->quant_tbl_no];
FAST_FLOAT workspace[DCTSIZE2 + ALIGN_SIZE/sizeof(FAST_FLOAT)];
FAST_FLOAT * wkptr = (FAST_FLOAT *) ALIGN_MEM(workspace, ALIGN_SIZE);
JDIMENSION bi;
sample_data += start_row; /* fold in the vertical offset once */
for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) {
/* Load data into workspace, applying unsigned->signed conversion */
(*fdct->float_convsamp) (sample_data, start_col, wkptr);
/* Perform the DCT */
(*fdct->do_float_dct) (wkptr);
/* Quantize/descale the coefficients, and store into coef_blocks[] */
(*fdct->float_quantize) (coef_blocks[bi], divisors, wkptr);
}
}
#endif /* DCT_FLOAT_SUPPORTED */
/*
* Initialize FDCT manager.
*/
GLOBAL(void)
jinit_forward_dct (j_compress_ptr cinfo)
{
my_fdct_ptr fdct;
int i;
unsigned int simd = jpeg_simd_support((j_common_ptr) cinfo);
fdct = (my_fdct_ptr)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
SIZEOF(my_fdct_controller));
cinfo->fdct = (struct jpeg_forward_dct *) fdct;
fdct->pub.start_pass = start_pass_fdctmgr;
switch (cinfo->dct_method) {
#ifdef DCT_ISLOW_SUPPORTED
case JDCT_ISLOW:
fdct->pub.forward_DCT = forward_DCT;
#ifdef JFDCT_INT_SSE2_SUPPORTED
if (simd & JSIMD_SSE2 &&
IS_CONST_ALIGNED_16(jconst_fdct_islow_sse2)) {
fdct->do_dct = jpeg_fdct_islow_sse2;
fdct->convsamp = jpeg_convsamp_int_sse2;
fdct->quantize = jpeg_quantize_int_sse2;
} else
#endif
#ifdef JFDCT_INT_MMX_SUPPORTED
if (simd & JSIMD_MMX) {
fdct->do_dct = jpeg_fdct_islow_mmx;
fdct->convsamp = jpeg_convsamp_int_mmx;
fdct->quantize = jpeg_quantize_int_mmx;
} else
#endif
{
fdct->do_dct = jpeg_fdct_islow;
fdct->convsamp = jpeg_convsamp_int;
fdct->quantize = jpeg_quantize_int;
}
break;
#endif /* DCT_ISLOW_SUPPORTED */
#ifdef DCT_IFAST_SUPPORTED
case JDCT_IFAST:
fdct->pub.forward_DCT = forward_DCT;
#ifdef JFDCT_INT_SSE2_SUPPORTED
if (simd & JSIMD_SSE2 &&
IS_CONST_ALIGNED_16(jconst_fdct_ifast_sse2)) {
fdct->do_dct = jpeg_fdct_ifast_sse2;
fdct->convsamp = jpeg_convsamp_int_sse2;
fdct->quantize = jpeg_quantize_int_sse2;
} else
#endif
#ifdef JFDCT_INT_MMX_SUPPORTED
if (simd & JSIMD_MMX) {
fdct->do_dct = jpeg_fdct_ifast_mmx;
fdct->convsamp = jpeg_convsamp_int_mmx;
fdct->quantize = jpeg_quantize_int_mmx;
} else
#endif
{
fdct->do_dct = jpeg_fdct_ifast;
fdct->convsamp = jpeg_convsamp_int;
fdct->quantize = jpeg_quantize_int;
}
break;
#endif /* DCT_IFAST_SUPPORTED */
#ifdef DCT_FLOAT_SUPPORTED
case JDCT_FLOAT:
fdct->pub.forward_DCT = forward_DCT_float;
#ifdef JFDCT_FLT_SSE_SSE2_SUPPORTED
if (simd & JSIMD_SSE && simd & JSIMD_SSE2 &&
IS_CONST_ALIGNED_16(jconst_fdct_float_sse)) {
fdct->do_float_dct = jpeg_fdct_float_sse;
fdct->float_convsamp = jpeg_convsamp_flt_sse2;
fdct->float_quantize = jpeg_quantize_flt_sse2;
} else
#endif
#ifdef JFDCT_FLT_SSE_MMX_SUPPORTED
if (simd & JSIMD_SSE &&
IS_CONST_ALIGNED_16(jconst_fdct_float_sse)) {
fdct->do_float_dct = jpeg_fdct_float_sse;
fdct->float_convsamp = jpeg_convsamp_flt_sse;
fdct->float_quantize = jpeg_quantize_flt_sse;
} else
#endif
#ifdef JFDCT_FLT_3DNOW_MMX_SUPPORTED
if (simd & JSIMD_3DNOW) {
fdct->do_float_dct = jpeg_fdct_float_3dnow;
fdct->float_convsamp = jpeg_convsamp_flt_3dnow;
fdct->float_quantize = jpeg_quantize_flt_3dnow;
} else
#endif
{
fdct->do_float_dct = jpeg_fdct_float;
fdct->float_convsamp = jpeg_convsamp_float;
fdct->float_quantize = jpeg_quantize_float;
}
break;
#endif /* DCT_FLOAT_SUPPORTED */
default:
ERREXIT(cinfo, JERR_NOT_COMPILED);
break;
}
/* Mark divisor tables unallocated */
for (i = 0; i < NUM_QUANT_TBLS; i++) {
fdct->divisors[i] = NULL;
#ifdef DCT_FLOAT_SUPPORTED
fdct->float_divisors[i] = NULL;
#endif
}
}
#ifndef JSIMD_MODEINFO_NOT_SUPPORTED
GLOBAL(unsigned int)
jpeg_simd_forward_dct (j_compress_ptr cinfo, int method)
{
unsigned int simd = jpeg_simd_support((j_common_ptr) cinfo);
switch (method) {
#ifdef DCT_ISLOW_SUPPORTED
case JDCT_ISLOW:
#ifdef JFDCT_INT_SSE2_SUPPORTED
if (simd & JSIMD_SSE2 &&
IS_CONST_ALIGNED_16(jconst_fdct_islow_sse2))
return JSIMD_SSE2;
#endif
#ifdef JFDCT_INT_MMX_SUPPORTED
if (simd & JSIMD_MMX)
return JSIMD_MMX;
#endif
return JSIMD_NONE;
#endif /* DCT_ISLOW_SUPPORTED */
#ifdef DCT_IFAST_SUPPORTED
case JDCT_IFAST:
#ifdef JFDCT_INT_SSE2_SUPPORTED
if (simd & JSIMD_SSE2 &&
IS_CONST_ALIGNED_16(jconst_fdct_ifast_sse2))
return JSIMD_SSE2;
#endif
#ifdef JFDCT_INT_MMX_SUPPORTED
if (simd & JSIMD_MMX)
return JSIMD_MMX;
#endif
return JSIMD_NONE;
#endif /* DCT_IFAST_SUPPORTED */
#ifdef DCT_FLOAT_SUPPORTED
case JDCT_FLOAT:
#ifdef JFDCT_FLT_SSE_SSE2_SUPPORTED
if (simd & JSIMD_SSE && simd & JSIMD_SSE2 &&
IS_CONST_ALIGNED_16(jconst_fdct_float_sse))
return JSIMD_SSE; /* (JSIMD_SSE | JSIMD_SSE2); */
#endif
#ifdef JFDCT_FLT_SSE_MMX_SUPPORTED
if (simd & JSIMD_SSE &&
IS_CONST_ALIGNED_16(jconst_fdct_float_sse))
return JSIMD_SSE; /* (JSIMD_SSE | JSIMD_MMX); */
#endif
#ifdef JFDCT_FLT_3DNOW_MMX_SUPPORTED
if (simd & JSIMD_3DNOW)
return JSIMD_3DNOW; /* (JSIMD_3DNOW | JSIMD_MMX); */
#endif
return JSIMD_NONE;
#endif /* DCT_FLOAT_SUPPORTED */
default:
;
}
return JSIMD_NONE; /* not compiled */
}
#endif /* !JSIMD_MODEINFO_NOT_SUPPORTED */