Hash :
eb14189c
Author :
Date :
2020-11-17T12:48:49
Fix Neon SIMD build issues with Visual Studio - Use the _M_ARM and _M_ARM64 macros provided by Visual Studio for compile-time detection of Arm builds, since __arm__ and __aarch64__ are only present in GNU-compatible compilers. - Neon/intrinsics: Use the _CountLeadingZeros() and _CountLeadingZeros64() intrinsics provided by Visual Studio, since __builtin_clz() and __builtin_clzl() are only present in GNU-compatible compilers. - Neon/intrinsics: Since Visual Studio does not support static vector initialization, replace static initialization of Neon vectors with the appropriate intrinsics. Compared to the static initialization approach, this produces identical assembly code with both GCC and Clang. - Neon/intrinsics: Since Visual Studio does not support inline assembly code, provide alternative code paths for Visual Studio whenever inline assembly is used. - Build: Set FLOATTEST appropriately for AArch64 Visual Studio builds (Visual Studio does not emit fused multiply-add [FMA] instructions by default for such builds.) - Neon/intrinsics: Move temporary buffer allocation outside of nested loops. Since Visual Studio configures Arm builds with a relatively small amount of stack memory, attempting to allocate those buffers within the inner loops caused a stack overflow. Closes #461 Closes #475
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
/*
* jccolext-neon.c - colorspace conversion (64-bit Arm Neon)
*
* Copyright (C) 2020, Arm Limited. All Rights Reserved.
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
*
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
*
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
/* This file is included by jccolor-neon.c */
/* RGB -> YCbCr conversion is defined by the following equations:
* Y = 0.29900 * R + 0.58700 * G + 0.11400 * B
* Cb = -0.16874 * R - 0.33126 * G + 0.50000 * B + 128
* Cr = 0.50000 * R - 0.41869 * G - 0.08131 * B + 128
*
* Avoid floating point arithmetic by using shifted integer constants:
* 0.29899597 = 19595 * 2^-16
* 0.58700561 = 38470 * 2^-16
* 0.11399841 = 7471 * 2^-16
* 0.16874695 = 11059 * 2^-16
* 0.33125305 = 21709 * 2^-16
* 0.50000000 = 32768 * 2^-16
* 0.41868592 = 27439 * 2^-16
* 0.08131409 = 5329 * 2^-16
* These constants are defined in jccolor-neon.c
*
* We add the fixed-point equivalent of 0.5 to Cb and Cr, which effectively
* rounds up or down the result via integer truncation.
*/
void jsimd_rgb_ycc_convert_neon(JDIMENSION image_width, JSAMPARRAY input_buf,
JSAMPIMAGE output_buf, JDIMENSION output_row,
int num_rows)
{
/* Pointer to RGB(X/A) input data */
JSAMPROW inptr;
/* Pointers to Y, Cb, and Cr output data */
JSAMPROW outptr0, outptr1, outptr2;
/* Allocate temporary buffer for final (image_width % 16) pixels in row. */
ALIGN(16) uint8_t tmp_buf[16 * RGB_PIXELSIZE];
/* Set up conversion constants. */
const uint16x8_t consts = vld1q_u16(jsimd_rgb_ycc_neon_consts);
const uint32x4_t scaled_128_5 = vdupq_n_u32((128 << 16) + 32767);
while (--num_rows >= 0) {
inptr = *input_buf++;
outptr0 = output_buf[0][output_row];
outptr1 = output_buf[1][output_row];
outptr2 = output_buf[2][output_row];
output_row++;
int cols_remaining = image_width;
for (; cols_remaining >= 16; cols_remaining -= 16) {
#if RGB_PIXELSIZE == 4
uint8x16x4_t input_pixels = vld4q_u8(inptr);
#else
uint8x16x3_t input_pixels = vld3q_u8(inptr);
#endif
uint16x8_t r_l = vmovl_u8(vget_low_u8(input_pixels.val[RGB_RED]));
uint16x8_t g_l = vmovl_u8(vget_low_u8(input_pixels.val[RGB_GREEN]));
uint16x8_t b_l = vmovl_u8(vget_low_u8(input_pixels.val[RGB_BLUE]));
uint16x8_t r_h = vmovl_u8(vget_high_u8(input_pixels.val[RGB_RED]));
uint16x8_t g_h = vmovl_u8(vget_high_u8(input_pixels.val[RGB_GREEN]));
uint16x8_t b_h = vmovl_u8(vget_high_u8(input_pixels.val[RGB_BLUE]));
/* Compute Y = 0.29900 * R + 0.58700 * G + 0.11400 * B */
uint32x4_t y_ll = vmull_laneq_u16(vget_low_u16(r_l), consts, 0);
y_ll = vmlal_laneq_u16(y_ll, vget_low_u16(g_l), consts, 1);
y_ll = vmlal_laneq_u16(y_ll, vget_low_u16(b_l), consts, 2);
uint32x4_t y_lh = vmull_laneq_u16(vget_high_u16(r_l), consts, 0);
y_lh = vmlal_laneq_u16(y_lh, vget_high_u16(g_l), consts, 1);
y_lh = vmlal_laneq_u16(y_lh, vget_high_u16(b_l), consts, 2);
uint32x4_t y_hl = vmull_laneq_u16(vget_low_u16(r_h), consts, 0);
y_hl = vmlal_laneq_u16(y_hl, vget_low_u16(g_h), consts, 1);
y_hl = vmlal_laneq_u16(y_hl, vget_low_u16(b_h), consts, 2);
uint32x4_t y_hh = vmull_laneq_u16(vget_high_u16(r_h), consts, 0);
y_hh = vmlal_laneq_u16(y_hh, vget_high_u16(g_h), consts, 1);
y_hh = vmlal_laneq_u16(y_hh, vget_high_u16(b_h), consts, 2);
/* Compute Cb = -0.16874 * R - 0.33126 * G + 0.50000 * B + 128 */
uint32x4_t cb_ll = scaled_128_5;
cb_ll = vmlsl_laneq_u16(cb_ll, vget_low_u16(r_l), consts, 3);
cb_ll = vmlsl_laneq_u16(cb_ll, vget_low_u16(g_l), consts, 4);
cb_ll = vmlal_laneq_u16(cb_ll, vget_low_u16(b_l), consts, 5);
uint32x4_t cb_lh = scaled_128_5;
cb_lh = vmlsl_laneq_u16(cb_lh, vget_high_u16(r_l), consts, 3);
cb_lh = vmlsl_laneq_u16(cb_lh, vget_high_u16(g_l), consts, 4);
cb_lh = vmlal_laneq_u16(cb_lh, vget_high_u16(b_l), consts, 5);
uint32x4_t cb_hl = scaled_128_5;
cb_hl = vmlsl_laneq_u16(cb_hl, vget_low_u16(r_h), consts, 3);
cb_hl = vmlsl_laneq_u16(cb_hl, vget_low_u16(g_h), consts, 4);
cb_hl = vmlal_laneq_u16(cb_hl, vget_low_u16(b_h), consts, 5);
uint32x4_t cb_hh = scaled_128_5;
cb_hh = vmlsl_laneq_u16(cb_hh, vget_high_u16(r_h), consts, 3);
cb_hh = vmlsl_laneq_u16(cb_hh, vget_high_u16(g_h), consts, 4);
cb_hh = vmlal_laneq_u16(cb_hh, vget_high_u16(b_h), consts, 5);
/* Compute Cr = 0.50000 * R - 0.41869 * G - 0.08131 * B + 128 */
uint32x4_t cr_ll = scaled_128_5;
cr_ll = vmlal_laneq_u16(cr_ll, vget_low_u16(r_l), consts, 5);
cr_ll = vmlsl_laneq_u16(cr_ll, vget_low_u16(g_l), consts, 6);
cr_ll = vmlsl_laneq_u16(cr_ll, vget_low_u16(b_l), consts, 7);
uint32x4_t cr_lh = scaled_128_5;
cr_lh = vmlal_laneq_u16(cr_lh, vget_high_u16(r_l), consts, 5);
cr_lh = vmlsl_laneq_u16(cr_lh, vget_high_u16(g_l), consts, 6);
cr_lh = vmlsl_laneq_u16(cr_lh, vget_high_u16(b_l), consts, 7);
uint32x4_t cr_hl = scaled_128_5;
cr_hl = vmlal_laneq_u16(cr_hl, vget_low_u16(r_h), consts, 5);
cr_hl = vmlsl_laneq_u16(cr_hl, vget_low_u16(g_h), consts, 6);
cr_hl = vmlsl_laneq_u16(cr_hl, vget_low_u16(b_h), consts, 7);
uint32x4_t cr_hh = scaled_128_5;
cr_hh = vmlal_laneq_u16(cr_hh, vget_high_u16(r_h), consts, 5);
cr_hh = vmlsl_laneq_u16(cr_hh, vget_high_u16(g_h), consts, 6);
cr_hh = vmlsl_laneq_u16(cr_hh, vget_high_u16(b_h), consts, 7);
/* Descale Y values (rounding right shift) and narrow to 16-bit. */
uint16x8_t y_l = vcombine_u16(vrshrn_n_u32(y_ll, 16),
vrshrn_n_u32(y_lh, 16));
uint16x8_t y_h = vcombine_u16(vrshrn_n_u32(y_hl, 16),
vrshrn_n_u32(y_hh, 16));
/* Descale Cb values (right shift) and narrow to 16-bit. */
uint16x8_t cb_l = vcombine_u16(vshrn_n_u32(cb_ll, 16),
vshrn_n_u32(cb_lh, 16));
uint16x8_t cb_h = vcombine_u16(vshrn_n_u32(cb_hl, 16),
vshrn_n_u32(cb_hh, 16));
/* Descale Cr values (right shift) and narrow to 16-bit. */
uint16x8_t cr_l = vcombine_u16(vshrn_n_u32(cr_ll, 16),
vshrn_n_u32(cr_lh, 16));
uint16x8_t cr_h = vcombine_u16(vshrn_n_u32(cr_hl, 16),
vshrn_n_u32(cr_hh, 16));
/* Narrow Y, Cb, and Cr values to 8-bit and store to memory. Buffer
* overwrite is permitted up to the next multiple of ALIGN_SIZE bytes.
*/
vst1q_u8(outptr0, vcombine_u8(vmovn_u16(y_l), vmovn_u16(y_h)));
vst1q_u8(outptr1, vcombine_u8(vmovn_u16(cb_l), vmovn_u16(cb_h)));
vst1q_u8(outptr2, vcombine_u8(vmovn_u16(cr_l), vmovn_u16(cr_h)));
/* Increment pointers. */
inptr += (16 * RGB_PIXELSIZE);
outptr0 += 16;
outptr1 += 16;
outptr2 += 16;
}
if (cols_remaining > 8) {
/* To prevent buffer overread by the vector load instructions, the last
* (image_width % 16) columns of data are first memcopied to a temporary
* buffer large enough to accommodate the vector load.
*/
memcpy(tmp_buf, inptr, cols_remaining * RGB_PIXELSIZE);
inptr = tmp_buf;
#if RGB_PIXELSIZE == 4
uint8x16x4_t input_pixels = vld4q_u8(inptr);
#else
uint8x16x3_t input_pixels = vld3q_u8(inptr);
#endif
uint16x8_t r_l = vmovl_u8(vget_low_u8(input_pixels.val[RGB_RED]));
uint16x8_t g_l = vmovl_u8(vget_low_u8(input_pixels.val[RGB_GREEN]));
uint16x8_t b_l = vmovl_u8(vget_low_u8(input_pixels.val[RGB_BLUE]));
uint16x8_t r_h = vmovl_u8(vget_high_u8(input_pixels.val[RGB_RED]));
uint16x8_t g_h = vmovl_u8(vget_high_u8(input_pixels.val[RGB_GREEN]));
uint16x8_t b_h = vmovl_u8(vget_high_u8(input_pixels.val[RGB_BLUE]));
/* Compute Y = 0.29900 * R + 0.58700 * G + 0.11400 * B */
uint32x4_t y_ll = vmull_laneq_u16(vget_low_u16(r_l), consts, 0);
y_ll = vmlal_laneq_u16(y_ll, vget_low_u16(g_l), consts, 1);
y_ll = vmlal_laneq_u16(y_ll, vget_low_u16(b_l), consts, 2);
uint32x4_t y_lh = vmull_laneq_u16(vget_high_u16(r_l), consts, 0);
y_lh = vmlal_laneq_u16(y_lh, vget_high_u16(g_l), consts, 1);
y_lh = vmlal_laneq_u16(y_lh, vget_high_u16(b_l), consts, 2);
uint32x4_t y_hl = vmull_laneq_u16(vget_low_u16(r_h), consts, 0);
y_hl = vmlal_laneq_u16(y_hl, vget_low_u16(g_h), consts, 1);
y_hl = vmlal_laneq_u16(y_hl, vget_low_u16(b_h), consts, 2);
uint32x4_t y_hh = vmull_laneq_u16(vget_high_u16(r_h), consts, 0);
y_hh = vmlal_laneq_u16(y_hh, vget_high_u16(g_h), consts, 1);
y_hh = vmlal_laneq_u16(y_hh, vget_high_u16(b_h), consts, 2);
/* Compute Cb = -0.16874 * R - 0.33126 * G + 0.50000 * B + 128 */
uint32x4_t cb_ll = scaled_128_5;
cb_ll = vmlsl_laneq_u16(cb_ll, vget_low_u16(r_l), consts, 3);
cb_ll = vmlsl_laneq_u16(cb_ll, vget_low_u16(g_l), consts, 4);
cb_ll = vmlal_laneq_u16(cb_ll, vget_low_u16(b_l), consts, 5);
uint32x4_t cb_lh = scaled_128_5;
cb_lh = vmlsl_laneq_u16(cb_lh, vget_high_u16(r_l), consts, 3);
cb_lh = vmlsl_laneq_u16(cb_lh, vget_high_u16(g_l), consts, 4);
cb_lh = vmlal_laneq_u16(cb_lh, vget_high_u16(b_l), consts, 5);
uint32x4_t cb_hl = scaled_128_5;
cb_hl = vmlsl_laneq_u16(cb_hl, vget_low_u16(r_h), consts, 3);
cb_hl = vmlsl_laneq_u16(cb_hl, vget_low_u16(g_h), consts, 4);
cb_hl = vmlal_laneq_u16(cb_hl, vget_low_u16(b_h), consts, 5);
uint32x4_t cb_hh = scaled_128_5;
cb_hh = vmlsl_laneq_u16(cb_hh, vget_high_u16(r_h), consts, 3);
cb_hh = vmlsl_laneq_u16(cb_hh, vget_high_u16(g_h), consts, 4);
cb_hh = vmlal_laneq_u16(cb_hh, vget_high_u16(b_h), consts, 5);
/* Compute Cr = 0.50000 * R - 0.41869 * G - 0.08131 * B + 128 */
uint32x4_t cr_ll = scaled_128_5;
cr_ll = vmlal_laneq_u16(cr_ll, vget_low_u16(r_l), consts, 5);
cr_ll = vmlsl_laneq_u16(cr_ll, vget_low_u16(g_l), consts, 6);
cr_ll = vmlsl_laneq_u16(cr_ll, vget_low_u16(b_l), consts, 7);
uint32x4_t cr_lh = scaled_128_5;
cr_lh = vmlal_laneq_u16(cr_lh, vget_high_u16(r_l), consts, 5);
cr_lh = vmlsl_laneq_u16(cr_lh, vget_high_u16(g_l), consts, 6);
cr_lh = vmlsl_laneq_u16(cr_lh, vget_high_u16(b_l), consts, 7);
uint32x4_t cr_hl = scaled_128_5;
cr_hl = vmlal_laneq_u16(cr_hl, vget_low_u16(r_h), consts, 5);
cr_hl = vmlsl_laneq_u16(cr_hl, vget_low_u16(g_h), consts, 6);
cr_hl = vmlsl_laneq_u16(cr_hl, vget_low_u16(b_h), consts, 7);
uint32x4_t cr_hh = scaled_128_5;
cr_hh = vmlal_laneq_u16(cr_hh, vget_high_u16(r_h), consts, 5);
cr_hh = vmlsl_laneq_u16(cr_hh, vget_high_u16(g_h), consts, 6);
cr_hh = vmlsl_laneq_u16(cr_hh, vget_high_u16(b_h), consts, 7);
/* Descale Y values (rounding right shift) and narrow to 16-bit. */
uint16x8_t y_l = vcombine_u16(vrshrn_n_u32(y_ll, 16),
vrshrn_n_u32(y_lh, 16));
uint16x8_t y_h = vcombine_u16(vrshrn_n_u32(y_hl, 16),
vrshrn_n_u32(y_hh, 16));
/* Descale Cb values (right shift) and narrow to 16-bit. */
uint16x8_t cb_l = vcombine_u16(vshrn_n_u32(cb_ll, 16),
vshrn_n_u32(cb_lh, 16));
uint16x8_t cb_h = vcombine_u16(vshrn_n_u32(cb_hl, 16),
vshrn_n_u32(cb_hh, 16));
/* Descale Cr values (right shift) and narrow to 16-bit. */
uint16x8_t cr_l = vcombine_u16(vshrn_n_u32(cr_ll, 16),
vshrn_n_u32(cr_lh, 16));
uint16x8_t cr_h = vcombine_u16(vshrn_n_u32(cr_hl, 16),
vshrn_n_u32(cr_hh, 16));
/* Narrow Y, Cb, and Cr values to 8-bit and store to memory. Buffer
* overwrite is permitted up to the next multiple of ALIGN_SIZE bytes.
*/
vst1q_u8(outptr0, vcombine_u8(vmovn_u16(y_l), vmovn_u16(y_h)));
vst1q_u8(outptr1, vcombine_u8(vmovn_u16(cb_l), vmovn_u16(cb_h)));
vst1q_u8(outptr2, vcombine_u8(vmovn_u16(cr_l), vmovn_u16(cr_h)));
} else if (cols_remaining > 0) {
/* To prevent buffer overread by the vector load instructions, the last
* (image_width % 8) columns of data are first memcopied to a temporary
* buffer large enough to accommodate the vector load.
*/
memcpy(tmp_buf, inptr, cols_remaining * RGB_PIXELSIZE);
inptr = tmp_buf;
#if RGB_PIXELSIZE == 4
uint8x8x4_t input_pixels = vld4_u8(inptr);
#else
uint8x8x3_t input_pixels = vld3_u8(inptr);
#endif
uint16x8_t r = vmovl_u8(input_pixels.val[RGB_RED]);
uint16x8_t g = vmovl_u8(input_pixels.val[RGB_GREEN]);
uint16x8_t b = vmovl_u8(input_pixels.val[RGB_BLUE]);
/* Compute Y = 0.29900 * R + 0.58700 * G + 0.11400 * B */
uint32x4_t y_l = vmull_laneq_u16(vget_low_u16(r), consts, 0);
y_l = vmlal_laneq_u16(y_l, vget_low_u16(g), consts, 1);
y_l = vmlal_laneq_u16(y_l, vget_low_u16(b), consts, 2);
uint32x4_t y_h = vmull_laneq_u16(vget_high_u16(r), consts, 0);
y_h = vmlal_laneq_u16(y_h, vget_high_u16(g), consts, 1);
y_h = vmlal_laneq_u16(y_h, vget_high_u16(b), consts, 2);
/* Compute Cb = -0.16874 * R - 0.33126 * G + 0.50000 * B + 128 */
uint32x4_t cb_l = scaled_128_5;
cb_l = vmlsl_laneq_u16(cb_l, vget_low_u16(r), consts, 3);
cb_l = vmlsl_laneq_u16(cb_l, vget_low_u16(g), consts, 4);
cb_l = vmlal_laneq_u16(cb_l, vget_low_u16(b), consts, 5);
uint32x4_t cb_h = scaled_128_5;
cb_h = vmlsl_laneq_u16(cb_h, vget_high_u16(r), consts, 3);
cb_h = vmlsl_laneq_u16(cb_h, vget_high_u16(g), consts, 4);
cb_h = vmlal_laneq_u16(cb_h, vget_high_u16(b), consts, 5);
/* Compute Cr = 0.50000 * R - 0.41869 * G - 0.08131 * B + 128 */
uint32x4_t cr_l = scaled_128_5;
cr_l = vmlal_laneq_u16(cr_l, vget_low_u16(r), consts, 5);
cr_l = vmlsl_laneq_u16(cr_l, vget_low_u16(g), consts, 6);
cr_l = vmlsl_laneq_u16(cr_l, vget_low_u16(b), consts, 7);
uint32x4_t cr_h = scaled_128_5;
cr_h = vmlal_laneq_u16(cr_h, vget_high_u16(r), consts, 5);
cr_h = vmlsl_laneq_u16(cr_h, vget_high_u16(g), consts, 6);
cr_h = vmlsl_laneq_u16(cr_h, vget_high_u16(b), consts, 7);
/* Descale Y values (rounding right shift) and narrow to 16-bit. */
uint16x8_t y_u16 = vcombine_u16(vrshrn_n_u32(y_l, 16),
vrshrn_n_u32(y_h, 16));
/* Descale Cb values (right shift) and narrow to 16-bit. */
uint16x8_t cb_u16 = vcombine_u16(vshrn_n_u32(cb_l, 16),
vshrn_n_u32(cb_h, 16));
/* Descale Cr values (right shift) and narrow to 16-bit. */
uint16x8_t cr_u16 = vcombine_u16(vshrn_n_u32(cr_l, 16),
vshrn_n_u32(cr_h, 16));
/* Narrow Y, Cb, and Cr values to 8-bit and store to memory. Buffer
* overwrite is permitted up to the next multiple of ALIGN_SIZE bytes.
*/
vst1_u8(outptr0, vmovn_u16(y_u16));
vst1_u8(outptr1, vmovn_u16(cb_u16));
vst1_u8(outptr2, vmovn_u16(cr_u16));
}
}
}