Hash :
cc7150e2
Author :
Date :
1993-02-18T00:00:00
The Independent JPEG Group's JPEG software v4a
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
/*
* jmemmgr.c
*
* Copyright (C) 1991, 1992, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file provides the standard system-independent memory management
* routines. This code is usable across a wide variety of machines; most
* of the system dependencies have been isolated in a separate file.
* The major functions provided here are:
* * bookkeeping to allow all allocated memory to be freed upon exit;
* * policy decisions about how to divide available memory among the
* various large arrays;
* * control logic for swapping virtual arrays between main memory and
* backing storage.
* The separate system-dependent file provides the actual backing-storage
* access code, and it contains the policy decision about how much total
* main memory to use.
* This file is system-dependent in the sense that some of its functions
* are unnecessary in some systems. For example, if there is enough virtual
* memory so that backing storage will never be used, much of the big-array
* control logic could be removed. (Of course, if you have that much memory
* then you shouldn't care about a little bit of unused code...)
*
* These routines are invoked via the methods alloc_small, free_small,
* alloc_medium, free_medium, alloc_small_sarray, free_small_sarray,
* alloc_small_barray, free_small_barray, request_big_sarray,
* request_big_barray, alloc_big_arrays, access_big_sarray, access_big_barray,
* free_big_sarray, free_big_barray, and free_all.
*/
#define AM_MEMORY_MANAGER /* we define big_Xarray_control structs */
#include "jinclude.h"
#include "jmemsys.h" /* import the system-dependent declarations */
#ifndef NO_GETENV
#ifdef INCLUDES_ARE_ANSI
#include <stdlib.h> /* to declare getenv() */
#else
extern char * getenv PP((const char * name));
#endif
#endif
/*
* On many systems it is not necessary to distinguish alloc_small from
* alloc_medium; the main case where they must be distinguished is when
* FAR pointers are distinct from regular pointers. However, you might
* want to keep them separate if you have different system-dependent logic
* for small and large memory requests (i.e., jget_small and jget_large
* do different things).
*/
#ifdef NEED_FAR_POINTERS
#define NEED_ALLOC_MEDIUM /* flags alloc_medium really exists */
#endif
/*
* Many machines require storage alignment: longs must start on 4-byte
* boundaries, doubles on 8-byte boundaries, etc. On such machines, malloc()
* always returns pointers that are multiples of the worst-case alignment
* requirement, and we had better do so too. This means the headers that
* we tack onto allocated structures had better have length a multiple of
* the alignment requirement.
* There isn't any really portable way to determine the worst-case alignment
* requirement. In this code we assume that the alignment requirement is
* multiples of sizeof(align_type). Here we define align_type as double;
* with this definition, the code will run on all machines known to me.
* If your machine has lesser alignment needs, you can save a few bytes
* by making align_type smaller.
*/
typedef double align_type;
/*
* Some important notes:
* The allocation routines provided here must never return NULL.
* They should exit to error_exit if unsuccessful.
*
* It's not a good idea to try to merge the sarray and barray routines,
* even though they are textually almost the same, because samples are
* usually stored as bytes while coefficients are shorts. Thus, in machines
* where byte pointers have a different representation from word pointers,
* the resulting machine code could not be the same.
*/
static external_methods_ptr methods; /* saved for access to error_exit */
#ifdef MEM_STATS /* optional extra stuff for statistics */
/* These macros are the assumed overhead per block for malloc().
* They don't have to be accurate, but the printed statistics will be
* off a little bit if they are not.
*/
#define MALLOC_OVERHEAD (SIZEOF(void *)) /* overhead for jget_small() */
#define MALLOC_FAR_OVERHEAD (SIZEOF(void FAR *)) /* for jget_large() */
static long total_num_small = 0; /* total # of small objects alloced */
static long total_bytes_small = 0; /* total bytes requested */
static long cur_num_small = 0; /* # currently alloced */
static long max_num_small = 0; /* max simultaneously alloced */
#ifdef NEED_ALLOC_MEDIUM
static long total_num_medium = 0; /* total # of medium objects alloced */
static long total_bytes_medium = 0; /* total bytes requested */
static long cur_num_medium = 0; /* # currently alloced */
static long max_num_medium = 0; /* max simultaneously alloced */
#endif
static long total_num_sarray = 0; /* total # of sarray objects alloced */
static long total_bytes_sarray = 0; /* total bytes requested */
static long cur_num_sarray = 0; /* # currently alloced */
static long max_num_sarray = 0; /* max simultaneously alloced */
static long total_num_barray = 0; /* total # of barray objects alloced */
static long total_bytes_barray = 0; /* total bytes requested */
static long cur_num_barray = 0; /* # currently alloced */
static long max_num_barray = 0; /* max simultaneously alloced */
LOCAL void
print_mem_stats (void)
{
/* since this is only a debugging stub, we can cheat a little on the
* trace message mechanism... helpful 'cuz trace_message can't handle longs.
*/
fprintf(stderr, "total_num_small = %ld\n", total_num_small);
fprintf(stderr, "total_bytes_small = %ld\n", total_bytes_small);
if (cur_num_small)
fprintf(stderr, "cur_num_small = %ld\n", cur_num_small);
fprintf(stderr, "max_num_small = %ld\n", max_num_small);
#ifdef NEED_ALLOC_MEDIUM
fprintf(stderr, "total_num_medium = %ld\n", total_num_medium);
fprintf(stderr, "total_bytes_medium = %ld\n", total_bytes_medium);
if (cur_num_medium)
fprintf(stderr, "cur_num_medium = %ld\n", cur_num_medium);
fprintf(stderr, "max_num_medium = %ld\n", max_num_medium);
#endif
fprintf(stderr, "total_num_sarray = %ld\n", total_num_sarray);
fprintf(stderr, "total_bytes_sarray = %ld\n", total_bytes_sarray);
if (cur_num_sarray)
fprintf(stderr, "cur_num_sarray = %ld\n", cur_num_sarray);
fprintf(stderr, "max_num_sarray = %ld\n", max_num_sarray);
fprintf(stderr, "total_num_barray = %ld\n", total_num_barray);
fprintf(stderr, "total_bytes_barray = %ld\n", total_bytes_barray);
if (cur_num_barray)
fprintf(stderr, "cur_num_barray = %ld\n", cur_num_barray);
fprintf(stderr, "max_num_barray = %ld\n", max_num_barray);
}
#endif /* MEM_STATS */
LOCAL void
out_of_memory (int which)
/* Report an out-of-memory error and stop execution */
/* If we compiled MEM_STATS support, report alloc requests before dying */
{
#ifdef MEM_STATS
if (methods->trace_level <= 0) /* don't do it if free_all() will */
print_mem_stats(); /* print optional memory usage statistics */
#endif
ERREXIT1(methods, "Insufficient memory (case %d)", which);
}
/*
* Management of "small" objects.
* These are all-in-memory, and are in near-heap space on an 80x86.
*/
typedef union small_struct * small_ptr;
typedef union small_struct {
small_ptr next; /* next in list of allocated objects */
align_type dummy; /* ensures alignment of following storage */
} small_hdr;
static small_ptr small_list; /* head of list */
METHODDEF void *
alloc_small (size_t sizeofobject)
/* Allocate a "small" object */
{
small_ptr result;
sizeofobject += SIZEOF(small_hdr); /* add space for header */
#ifdef MEM_STATS
total_num_small++;
total_bytes_small += sizeofobject + MALLOC_OVERHEAD;
cur_num_small++;
if (cur_num_small > max_num_small) max_num_small = cur_num_small;
#endif
result = (small_ptr) jget_small(sizeofobject);
if (result == NULL)
out_of_memory(1);
result->next = small_list;
small_list = result;
result++; /* advance past header */
return (void *) result;
}
METHODDEF void
free_small (void *ptr)
/* Free a "small" object */
{
small_ptr hdr;
small_ptr * llink;
hdr = (small_ptr) ptr;
hdr--; /* point back to header */
/* Remove item from list -- linear search is fast enough */
llink = &small_list;
while (*llink != hdr) {
if (*llink == NULL)
ERREXIT(methods, "Bogus free_small request");
llink = &( (*llink)->next );
}
*llink = hdr->next;
jfree_small((void *) hdr);
#ifdef MEM_STATS
cur_num_small--;
#endif
}
/*
* Management of "medium-size" objects.
* These are just like small objects except they are in the FAR heap.
*/
#ifdef NEED_ALLOC_MEDIUM
typedef union medium_struct FAR * medium_ptr;
typedef union medium_struct {
medium_ptr next; /* next in list of allocated objects */
align_type dummy; /* ensures alignment of following storage */
} medium_hdr;
static medium_ptr medium_list; /* head of list */
METHODDEF void FAR *
alloc_medium (size_t sizeofobject)
/* Allocate a "medium-size" object */
{
medium_ptr result;
sizeofobject += SIZEOF(medium_hdr); /* add space for header */
#ifdef MEM_STATS
total_num_medium++;
total_bytes_medium += sizeofobject + MALLOC_FAR_OVERHEAD;
cur_num_medium++;
if (cur_num_medium > max_num_medium) max_num_medium = cur_num_medium;
#endif
result = (medium_ptr) jget_large(sizeofobject);
if (result == NULL)
out_of_memory(2);
result->next = medium_list;
medium_list = result;
result++; /* advance past header */
return (void FAR *) result;
}
METHODDEF void
free_medium (void FAR *ptr)
/* Free a "medium-size" object */
{
medium_ptr hdr;
medium_ptr FAR * llink;
hdr = (medium_ptr) ptr;
hdr--; /* point back to header */
/* Remove item from list -- linear search is fast enough */
llink = (medium_ptr FAR *) &medium_list;
while (*llink != hdr) {
if (*llink == NULL)
ERREXIT(methods, "Bogus free_medium request");
llink = &( (*llink)->next );
}
*llink = hdr->next;
jfree_large((void FAR *) hdr);
#ifdef MEM_STATS
cur_num_medium--;
#endif
}
#endif /* NEED_ALLOC_MEDIUM */
/*
* Management of "small" (all-in-memory) 2-D sample arrays.
* The pointers are in near heap, the samples themselves in FAR heap.
* The header structure is adjacent to the row pointers.
* To minimize allocation overhead and to allow I/O of large contiguous
* blocks, we allocate the sample rows in groups of as many rows as possible
* without exceeding MAX_ALLOC_CHUNK total bytes per allocation request.
* Note that the big-array control routines, later in this file, know about
* this chunking of rows ... and also how to get the rowsperchunk value!
*/
typedef struct small_sarray_struct * small_sarray_ptr;
typedef struct small_sarray_struct {
small_sarray_ptr next; /* next in list of allocated sarrays */
long numrows; /* # of rows in this array */
long rowsperchunk; /* max # of rows per allocation chunk */
JSAMPROW dummy; /* ensures alignment of following storage */
} small_sarray_hdr;
static small_sarray_ptr small_sarray_list; /* head of list */
METHODDEF JSAMPARRAY
alloc_small_sarray (long samplesperrow, long numrows)
/* Allocate a "small" (all-in-memory) 2-D sample array */
{
small_sarray_ptr hdr;
JSAMPARRAY result;
JSAMPROW workspace;
long rowsperchunk, currow, i;
#ifdef MEM_STATS
total_num_sarray++;
cur_num_sarray++;
if (cur_num_sarray > max_num_sarray) max_num_sarray = cur_num_sarray;
#endif
/* Calculate max # of rows allowed in one allocation chunk */
rowsperchunk = MAX_ALLOC_CHUNK / (samplesperrow * SIZEOF(JSAMPLE));
if (rowsperchunk <= 0)
ERREXIT(methods, "Image too wide for this implementation");
/* Get space for header and row pointers; this is always "near" on 80x86 */
hdr = (small_sarray_ptr) alloc_small((size_t) (numrows * SIZEOF(JSAMPROW)
+ SIZEOF(small_sarray_hdr)));
result = (JSAMPARRAY) (hdr+1); /* advance past header */
/* Insert into list now so free_all does right thing if I fail */
/* after allocating only some of the rows... */
hdr->next = small_sarray_list;
hdr->numrows = 0;
hdr->rowsperchunk = rowsperchunk;
small_sarray_list = hdr;
/* Get the rows themselves; on 80x86 these are "far" */
currow = 0;
while (currow < numrows) {
rowsperchunk = MIN(rowsperchunk, numrows - currow);
#ifdef MEM_STATS
total_bytes_sarray += rowsperchunk * samplesperrow * SIZEOF(JSAMPLE)
+ MALLOC_FAR_OVERHEAD;
#endif
workspace = (JSAMPROW) jget_large((size_t) (rowsperchunk * samplesperrow
* SIZEOF(JSAMPLE)));
if (workspace == NULL)
out_of_memory(3);
for (i = rowsperchunk; i > 0; i--) {
result[currow++] = workspace;
workspace += samplesperrow;
}
hdr->numrows = currow;
}
return result;
}
METHODDEF void
free_small_sarray (JSAMPARRAY ptr)
/* Free a "small" (all-in-memory) 2-D sample array */
{
small_sarray_ptr hdr;
small_sarray_ptr * llink;
long i;
hdr = (small_sarray_ptr) ptr;
hdr--; /* point back to header */
/* Remove item from list -- linear search is fast enough */
llink = &small_sarray_list;
while (*llink != hdr) {
if (*llink == NULL)
ERREXIT(methods, "Bogus free_small_sarray request");
llink = &( (*llink)->next );
}
*llink = hdr->next;
/* Free the rows themselves; on 80x86 these are "far" */
/* Note we only free the row-group headers! */
for (i = 0; i < hdr->numrows; i += hdr->rowsperchunk) {
jfree_large((void FAR *) ptr[i]);
}
/* Free header and row pointers */
free_small((void *) hdr);
#ifdef MEM_STATS
cur_num_sarray--;
#endif
}
/*
* Management of "small" (all-in-memory) 2-D coefficient-block arrays.
* This is essentially the same as the code for sample arrays, above.
*/
typedef struct small_barray_struct * small_barray_ptr;
typedef struct small_barray_struct {
small_barray_ptr next; /* next in list of allocated barrays */
long numrows; /* # of rows in this array */
long rowsperchunk; /* max # of rows per allocation chunk */
JBLOCKROW dummy; /* ensures alignment of following storage */
} small_barray_hdr;
static small_barray_ptr small_barray_list; /* head of list */
METHODDEF JBLOCKARRAY
alloc_small_barray (long blocksperrow, long numrows)
/* Allocate a "small" (all-in-memory) 2-D coefficient-block array */
{
small_barray_ptr hdr;
JBLOCKARRAY result;
JBLOCKROW workspace;
long rowsperchunk, currow, i;
#ifdef MEM_STATS
total_num_barray++;
cur_num_barray++;
if (cur_num_barray > max_num_barray) max_num_barray = cur_num_barray;
#endif
/* Calculate max # of rows allowed in one allocation chunk */
rowsperchunk = MAX_ALLOC_CHUNK / (blocksperrow * SIZEOF(JBLOCK));
if (rowsperchunk <= 0)
ERREXIT(methods, "Image too wide for this implementation");
/* Get space for header and row pointers; this is always "near" on 80x86 */
hdr = (small_barray_ptr) alloc_small((size_t) (numrows * SIZEOF(JBLOCKROW)
+ SIZEOF(small_barray_hdr)));
result = (JBLOCKARRAY) (hdr+1); /* advance past header */
/* Insert into list now so free_all does right thing if I fail */
/* after allocating only some of the rows... */
hdr->next = small_barray_list;
hdr->numrows = 0;
hdr->rowsperchunk = rowsperchunk;
small_barray_list = hdr;
/* Get the rows themselves; on 80x86 these are "far" */
currow = 0;
while (currow < numrows) {
rowsperchunk = MIN(rowsperchunk, numrows - currow);
#ifdef MEM_STATS
total_bytes_barray += rowsperchunk * blocksperrow * SIZEOF(JBLOCK)
+ MALLOC_FAR_OVERHEAD;
#endif
workspace = (JBLOCKROW) jget_large((size_t) (rowsperchunk * blocksperrow
* SIZEOF(JBLOCK)));
if (workspace == NULL)
out_of_memory(4);
for (i = rowsperchunk; i > 0; i--) {
result[currow++] = workspace;
workspace += blocksperrow;
}
hdr->numrows = currow;
}
return result;
}
METHODDEF void
free_small_barray (JBLOCKARRAY ptr)
/* Free a "small" (all-in-memory) 2-D coefficient-block array */
{
small_barray_ptr hdr;
small_barray_ptr * llink;
long i;
hdr = (small_barray_ptr) ptr;
hdr--; /* point back to header */
/* Remove item from list -- linear search is fast enough */
llink = &small_barray_list;
while (*llink != hdr) {
if (*llink == NULL)
ERREXIT(methods, "Bogus free_small_barray request");
llink = &( (*llink)->next );
}
*llink = hdr->next;
/* Free the rows themselves; on 80x86 these are "far" */
/* Note we only free the row-group headers! */
for (i = 0; i < hdr->numrows; i += hdr->rowsperchunk) {
jfree_large((void FAR *) ptr[i]);
}
/* Free header and row pointers */
free_small((void *) hdr);
#ifdef MEM_STATS
cur_num_barray--;
#endif
}
/*
* About "big" array management:
*
* To allow machines with limited memory to handle large images,
* all processing in the JPEG system is done a few pixel or block rows
* at a time. The above "small" array routines are only used to allocate
* strip buffers (as wide as the image, but just a few rows high).
* In some cases multiple passes must be made over the data. In these
* cases the "big" array routines are used. The array is still accessed
* a strip at a time, but the memory manager must save the whole array
* for repeated accesses. The intended implementation is that there is
* a strip buffer in memory (as high as is possible given the desired memory
* limit), plus a backing file that holds the rest of the array.
*
* The request_big_array routines are told the total size of the image (in case
* it is useful to know the total file size that will be needed). They are
* also given the unit height, which is the number of rows that will be
* accessed at once; the in-memory buffer should be made a multiple of
* this height for best efficiency.
*
* The request routines create control blocks (and may open backing files),
* but they don't create the in-memory buffers. This is postponed until
* alloc_big_arrays is called. At that time the total amount of space needed
* is known (approximately, anyway), so free memory can be divided up fairly.
*
* The access_big_array routines are responsible for making a specific strip
* area accessible (after reading or writing the backing file, if necessary).
* Note that the access routines are told whether the caller intends to modify
* the accessed strip; during a read-only pass this saves having to rewrite
* data to disk.
*
* The typical access pattern is one top-to-bottom pass to write the data,
* followed by one or more read-only top-to-bottom passes. However, other
* access patterns may occur while reading. For example, translation of image
* formats that use bottom-to-top scan order will require bottom-to-top read
* passes. The memory manager need not support multiple write passes nor
* funny write orders (meaning that rearranging rows must be handled while
* reading data out of the big array, not while putting it in).
*
* In current usage, the access requests are always for nonoverlapping strips;
* that is, successive access start_row numbers always differ by exactly the
* unitheight. This allows fairly simple buffer dump/reload logic if the
* in-memory buffer is made a multiple of the unitheight. It would be
* possible to keep downsampled rather than fullsize data in the "big" arrays,
* thus reducing temp file size, if we supported overlapping strip access
* (access requests differing by less than the unitheight). At the moment
* I don't believe this is worth the extra complexity.
*/
/* The control blocks for virtual arrays.
* System-dependent info for the associated backing store is hidden inside
* the backing_store_info struct.
*/
struct big_sarray_control {
long rows_in_array; /* total virtual array height */
long samplesperrow; /* width of array (and of memory buffer) */
long unitheight; /* # of rows accessed by access_big_sarray() */
JSAMPARRAY mem_buffer; /* the in-memory buffer */
long rows_in_mem; /* height of memory buffer */
long rowsperchunk; /* allocation chunk size in mem_buffer */
long cur_start_row; /* first logical row # in the buffer */
boolean dirty; /* do current buffer contents need written? */
boolean b_s_open; /* is backing-store data valid? */
big_sarray_ptr next; /* link to next big sarray control block */
backing_store_info b_s_info; /* System-dependent control info */
};
static big_sarray_ptr big_sarray_list; /* head of list */
struct big_barray_control {
long rows_in_array; /* total virtual array height */
long blocksperrow; /* width of array (and of memory buffer) */
long unitheight; /* # of rows accessed by access_big_barray() */
JBLOCKARRAY mem_buffer; /* the in-memory buffer */
long rows_in_mem; /* height of memory buffer */
long rowsperchunk; /* allocation chunk size in mem_buffer */
long cur_start_row; /* first logical row # in the buffer */
boolean dirty; /* do current buffer contents need written? */
boolean b_s_open; /* is backing-store data valid? */
big_barray_ptr next; /* link to next big barray control block */
backing_store_info b_s_info; /* System-dependent control info */
};
static big_barray_ptr big_barray_list; /* head of list */
METHODDEF big_sarray_ptr
request_big_sarray (long samplesperrow, long numrows, long unitheight)
/* Request a "big" (virtual-memory) 2-D sample array */
{
big_sarray_ptr result;
/* get control block */
result = (big_sarray_ptr) alloc_small(SIZEOF(struct big_sarray_control));
result->rows_in_array = numrows;
result->samplesperrow = samplesperrow;
result->unitheight = unitheight;
result->mem_buffer = NULL; /* marks array not yet realized */
result->b_s_open = FALSE; /* no associated backing-store object */
result->next = big_sarray_list; /* add to list of big arrays */
big_sarray_list = result;
return result;
}
METHODDEF big_barray_ptr
request_big_barray (long blocksperrow, long numrows, long unitheight)
/* Request a "big" (virtual-memory) 2-D coefficient-block array */
{
big_barray_ptr result;
/* get control block */
result = (big_barray_ptr) alloc_small(SIZEOF(struct big_barray_control));
result->rows_in_array = numrows;
result->blocksperrow = blocksperrow;
result->unitheight = unitheight;
result->mem_buffer = NULL; /* marks array not yet realized */
result->b_s_open = FALSE; /* no associated backing-store object */
result->next = big_barray_list; /* add to list of big arrays */
big_barray_list = result;
return result;
}
METHODDEF void
alloc_big_arrays (long extra_small_samples, long extra_small_blocks,
long extra_medium_space)
/* Allocate the in-memory buffers for any unrealized "big" arrays */
/* 'extra' values are upper bounds for total future small-array requests */
/* and far-heap requests */
{
long total_extra_space = extra_small_samples * SIZEOF(JSAMPLE)
+ extra_small_blocks * SIZEOF(JBLOCK)
+ extra_medium_space;
long space_per_unitheight, maximum_space, avail_mem;
long unitheights, max_unitheights;
big_sarray_ptr sptr;
big_barray_ptr bptr;
/* Compute the minimum space needed (unitheight rows in each buffer)
* and the maximum space needed (full image height in each buffer).
* These may be of use to the system-dependent jmem_available routine.
*/
space_per_unitheight = 0;
maximum_space = total_extra_space;
for (sptr = big_sarray_list; sptr != NULL; sptr = sptr->next) {
if (sptr->mem_buffer == NULL) { /* if not realized yet */
space_per_unitheight += sptr->unitheight *
sptr->samplesperrow * SIZEOF(JSAMPLE);
maximum_space += sptr->rows_in_array *
sptr->samplesperrow * SIZEOF(JSAMPLE);
}
}
for (bptr = big_barray_list; bptr != NULL; bptr = bptr->next) {
if (bptr->mem_buffer == NULL) { /* if not realized yet */
space_per_unitheight += bptr->unitheight *
bptr->blocksperrow * SIZEOF(JBLOCK);
maximum_space += bptr->rows_in_array *
bptr->blocksperrow * SIZEOF(JBLOCK);
}
}
if (space_per_unitheight <= 0)
return; /* no unrealized arrays, no work */
/* Determine amount of memory to actually use; this is system-dependent. */
avail_mem = jmem_available(space_per_unitheight + total_extra_space,
maximum_space);
/* If the maximum space needed is available, make all the buffers full
* height; otherwise parcel it out with the same number of unitheights
* in each buffer.
*/
if (avail_mem >= maximum_space)
max_unitheights = 1000000000L;
else {
max_unitheights = (avail_mem - total_extra_space) / space_per_unitheight;
/* If there doesn't seem to be enough space, try to get the minimum
* anyway. This allows a "stub" implementation of jmem_available().
*/
if (max_unitheights <= 0)
max_unitheights = 1;
}
/* Allocate the in-memory buffers and initialize backing store as needed. */
for (sptr = big_sarray_list; sptr != NULL; sptr = sptr->next) {
if (sptr->mem_buffer == NULL) { /* if not realized yet */
unitheights = (sptr->rows_in_array + sptr->unitheight - 1L)
/ sptr->unitheight;
if (unitheights <= max_unitheights) {
/* This buffer fits in memory */
sptr->rows_in_mem = sptr->rows_in_array;
} else {
/* It doesn't fit in memory, create backing store. */
sptr->rows_in_mem = max_unitheights * sptr->unitheight;
jopen_backing_store(& sptr->b_s_info,
(long) (sptr->rows_in_array *
sptr->samplesperrow * SIZEOF(JSAMPLE)));
sptr->b_s_open = TRUE;
}
sptr->mem_buffer = alloc_small_sarray(sptr->samplesperrow,
sptr->rows_in_mem);
/* Reach into the small_sarray header and get the rowsperchunk field.
* Yes, I know, this is horrible coding practice.
*/
sptr->rowsperchunk =
((small_sarray_ptr) sptr->mem_buffer)[-1].rowsperchunk;
sptr->cur_start_row = 0;
sptr->dirty = FALSE;
}
}
for (bptr = big_barray_list; bptr != NULL; bptr = bptr->next) {
if (bptr->mem_buffer == NULL) { /* if not realized yet */
unitheights = (bptr->rows_in_array + bptr->unitheight - 1L)
/ bptr->unitheight;
if (unitheights <= max_unitheights) {
/* This buffer fits in memory */
bptr->rows_in_mem = bptr->rows_in_array;
} else {
/* It doesn't fit in memory, create backing store. */
bptr->rows_in_mem = max_unitheights * bptr->unitheight;
jopen_backing_store(& bptr->b_s_info,
(long) (bptr->rows_in_array *
bptr->blocksperrow * SIZEOF(JBLOCK)));
bptr->b_s_open = TRUE;
}
bptr->mem_buffer = alloc_small_barray(bptr->blocksperrow,
bptr->rows_in_mem);
/* Reach into the small_barray header and get the rowsperchunk field. */
bptr->rowsperchunk =
((small_barray_ptr) bptr->mem_buffer)[-1].rowsperchunk;
bptr->cur_start_row = 0;
bptr->dirty = FALSE;
}
}
}
LOCAL void
do_sarray_io (big_sarray_ptr ptr, boolean writing)
/* Do backing store read or write of a "big" sample array */
{
long bytesperrow, file_offset, byte_count, rows, i;
bytesperrow = ptr->samplesperrow * SIZEOF(JSAMPLE);
file_offset = ptr->cur_start_row * bytesperrow;
/* Loop to read or write each allocation chunk in mem_buffer */
for (i = 0; i < ptr->rows_in_mem; i += ptr->rowsperchunk) {
/* One chunk, but check for short chunk at end of buffer */
rows = MIN(ptr->rowsperchunk, ptr->rows_in_mem - i);
/* Transfer no more than fits in file */
rows = MIN(rows, ptr->rows_in_array - (ptr->cur_start_row + i));
if (rows <= 0) /* this chunk might be past end of file! */
break;
byte_count = rows * bytesperrow;
if (writing)
(*ptr->b_s_info.write_backing_store) (& ptr->b_s_info,
(void FAR *) ptr->mem_buffer[i],
file_offset, byte_count);
else
(*ptr->b_s_info.read_backing_store) (& ptr->b_s_info,
(void FAR *) ptr->mem_buffer[i],
file_offset, byte_count);
file_offset += byte_count;
}
}
LOCAL void
do_barray_io (big_barray_ptr ptr, boolean writing)
/* Do backing store read or write of a "big" coefficient-block array */
{
long bytesperrow, file_offset, byte_count, rows, i;
bytesperrow = ptr->blocksperrow * SIZEOF(JBLOCK);
file_offset = ptr->cur_start_row * bytesperrow;
/* Loop to read or write each allocation chunk in mem_buffer */
for (i = 0; i < ptr->rows_in_mem; i += ptr->rowsperchunk) {
/* One chunk, but check for short chunk at end of buffer */
rows = MIN(ptr->rowsperchunk, ptr->rows_in_mem - i);
/* Transfer no more than fits in file */
rows = MIN(rows, ptr->rows_in_array - (ptr->cur_start_row + i));
if (rows <= 0) /* this chunk might be past end of file! */
break;
byte_count = rows * bytesperrow;
if (writing)
(*ptr->b_s_info.write_backing_store) (& ptr->b_s_info,
(void FAR *) ptr->mem_buffer[i],
file_offset, byte_count);
else
(*ptr->b_s_info.read_backing_store) (& ptr->b_s_info,
(void FAR *) ptr->mem_buffer[i],
file_offset, byte_count);
file_offset += byte_count;
}
}
METHODDEF JSAMPARRAY
access_big_sarray (big_sarray_ptr ptr, long start_row, boolean writable)
/* Access the part of a "big" sample array starting at start_row */
/* and extending for ptr->unitheight rows. writable is true if */
/* caller intends to modify the accessed area. */
{
/* debugging check */
if (start_row < 0 || start_row+ptr->unitheight > ptr->rows_in_array ||
ptr->mem_buffer == NULL)
ERREXIT(methods, "Bogus access_big_sarray request");
/* Make the desired part of the virtual array accessible */
if (start_row < ptr->cur_start_row ||
start_row+ptr->unitheight > ptr->cur_start_row+ptr->rows_in_mem) {
if (! ptr->b_s_open)
ERREXIT(methods, "Virtual array controller messed up");
/* Flush old buffer contents if necessary */
if (ptr->dirty) {
do_sarray_io(ptr, TRUE);
ptr->dirty = FALSE;
}
/* Decide what part of virtual array to access.
* Algorithm: if target address > current window, assume forward scan,
* load starting at target address. If target address < current window,
* assume backward scan, load so that target address is top of window.
* Note that when switching from forward write to forward read, will have
* start_row = 0, so the limiting case applies and we load from 0 anyway.
*/
if (start_row > ptr->cur_start_row) {
ptr->cur_start_row = start_row;
} else {
ptr->cur_start_row = start_row + ptr->unitheight - ptr->rows_in_mem;
if (ptr->cur_start_row < 0)
ptr->cur_start_row = 0; /* don't fall off front end of file */
}
/* If reading, read in the selected part of the array.
* If we are writing, we need not pre-read the selected portion,
* since the access sequence constraints ensure it would be garbage.
*/
if (! writable) {
do_sarray_io(ptr, FALSE);
}
}
/* Flag the buffer dirty if caller will write in it */
if (writable)
ptr->dirty = TRUE;
/* Return address of proper part of the buffer */
return ptr->mem_buffer + (start_row - ptr->cur_start_row);
}
METHODDEF JBLOCKARRAY
access_big_barray (big_barray_ptr ptr, long start_row, boolean writable)
/* Access the part of a "big" coefficient-block array starting at start_row */
/* and extending for ptr->unitheight rows. writable is true if */
/* caller intends to modify the accessed area. */
{
/* debugging check */
if (start_row < 0 || start_row+ptr->unitheight > ptr->rows_in_array ||
ptr->mem_buffer == NULL)
ERREXIT(methods, "Bogus access_big_barray request");
/* Make the desired part of the virtual array accessible */
if (start_row < ptr->cur_start_row ||
start_row+ptr->unitheight > ptr->cur_start_row+ptr->rows_in_mem) {
if (! ptr->b_s_open)
ERREXIT(methods, "Virtual array controller messed up");
/* Flush old buffer contents if necessary */
if (ptr->dirty) {
do_barray_io(ptr, TRUE);
ptr->dirty = FALSE;
}
/* Decide what part of virtual array to access.
* Algorithm: if target address > current window, assume forward scan,
* load starting at target address. If target address < current window,
* assume backward scan, load so that target address is top of window.
* Note that when switching from forward write to forward read, will have
* start_row = 0, so the limiting case applies and we load from 0 anyway.
*/
if (start_row > ptr->cur_start_row) {
ptr->cur_start_row = start_row;
} else {
ptr->cur_start_row = start_row + ptr->unitheight - ptr->rows_in_mem;
if (ptr->cur_start_row < 0)
ptr->cur_start_row = 0; /* don't fall off front end of file */
}
/* If reading, read in the selected part of the array.
* If we are writing, we need not pre-read the selected portion,
* since the access sequence constraints ensure it would be garbage.
*/
if (! writable) {
do_barray_io(ptr, FALSE);
}
}
/* Flag the buffer dirty if caller will write in it */
if (writable)
ptr->dirty = TRUE;
/* Return address of proper part of the buffer */
return ptr->mem_buffer + (start_row - ptr->cur_start_row);
}
METHODDEF void
free_big_sarray (big_sarray_ptr ptr)
/* Free a "big" (virtual-memory) 2-D sample array */
{
big_sarray_ptr * llink;
/* Remove item from list -- linear search is fast enough */
llink = &big_sarray_list;
while (*llink != ptr) {
if (*llink == NULL)
ERREXIT(methods, "Bogus free_big_sarray request");
llink = &( (*llink)->next );
}
*llink = ptr->next;
if (ptr->b_s_open) /* there may be no backing store */
(*ptr->b_s_info.close_backing_store) (& ptr->b_s_info);
if (ptr->mem_buffer != NULL) /* just in case never realized */
free_small_sarray(ptr->mem_buffer);
free_small((void *) ptr); /* free the control block too */
}
METHODDEF void
free_big_barray (big_barray_ptr ptr)
/* Free a "big" (virtual-memory) 2-D coefficient-block array */
{
big_barray_ptr * llink;
/* Remove item from list -- linear search is fast enough */
llink = &big_barray_list;
while (*llink != ptr) {
if (*llink == NULL)
ERREXIT(methods, "Bogus free_big_barray request");
llink = &( (*llink)->next );
}
*llink = ptr->next;
if (ptr->b_s_open) /* there may be no backing store */
(*ptr->b_s_info.close_backing_store) (& ptr->b_s_info);
if (ptr->mem_buffer != NULL) /* just in case never realized */
free_small_barray(ptr->mem_buffer);
free_small((void *) ptr); /* free the control block too */
}
/*
* Cleanup: free anything that's been allocated since jselmemmgr().
*/
METHODDEF void
free_all (void)
{
/* First free any open "big" arrays -- these may release small arrays */
while (big_sarray_list != NULL)
free_big_sarray(big_sarray_list);
while (big_barray_list != NULL)
free_big_barray(big_barray_list);
/* Free any open small arrays -- these may release small objects */
/* +1's are because we must pass a pointer to the data, not the header */
while (small_sarray_list != NULL)
free_small_sarray((JSAMPARRAY) (small_sarray_list + 1));
while (small_barray_list != NULL)
free_small_barray((JBLOCKARRAY) (small_barray_list + 1));
/* Free any remaining small objects */
while (small_list != NULL)
free_small((void *) (small_list + 1));
#ifdef NEED_ALLOC_MEDIUM
while (medium_list != NULL)
free_medium((void FAR *) (medium_list + 1));
#endif
jmem_term(); /* system-dependent cleanup */
#ifdef MEM_STATS
if (methods->trace_level > 0)
print_mem_stats(); /* print optional memory usage statistics */
#endif
}
/*
* The method selection routine for virtual memory systems.
* The system-dependent setup routine should call this routine
* to install the necessary method pointers in the supplied struct.
*/
GLOBAL void
jselmemmgr (external_methods_ptr emethods)
{
methods = emethods; /* save struct addr for error exit access */
emethods->alloc_small = alloc_small;
emethods->free_small = free_small;
#ifdef NEED_ALLOC_MEDIUM
emethods->alloc_medium = alloc_medium;
emethods->free_medium = free_medium;
#else
emethods->alloc_medium = alloc_small;
emethods->free_medium = free_small;
#endif
emethods->alloc_small_sarray = alloc_small_sarray;
emethods->free_small_sarray = free_small_sarray;
emethods->alloc_small_barray = alloc_small_barray;
emethods->free_small_barray = free_small_barray;
emethods->request_big_sarray = request_big_sarray;
emethods->request_big_barray = request_big_barray;
emethods->alloc_big_arrays = alloc_big_arrays;
emethods->access_big_sarray = access_big_sarray;
emethods->access_big_barray = access_big_barray;
emethods->free_big_sarray = free_big_sarray;
emethods->free_big_barray = free_big_barray;
emethods->free_all = free_all;
/* Initialize list headers to empty */
small_list = NULL;
#ifdef NEED_ALLOC_MEDIUM
medium_list = NULL;
#endif
small_sarray_list = NULL;
small_barray_list = NULL;
big_sarray_list = NULL;
big_barray_list = NULL;
jmem_init(emethods); /* system-dependent initialization */
/* Check for an environment variable JPEGMEM; if found, override the
* default max_memory setting from jmem_init. Note that a command line
* -m argument may again override this value.
* If your system doesn't support getenv(), define NO_GETENV to disable
* this feature.
*/
#ifndef NO_GETENV
{ char * memenv;
if ((memenv = getenv("JPEGMEM")) != NULL) {
long lval;
char ch = 'x';
if (sscanf(memenv, "%ld%c", &lval, &ch) > 0) {
if (ch == 'm' || ch == 'M')
lval *= 1000L;
emethods->max_memory_to_use = lval * 1000L;
}
}
}
#endif
}