Branch
Hash :
4e151a4a
Author :
Date :
2025-08-26T21:11:07
Remove vestigial filenames from SIMD code headers These were a relic of libjpeg/SIMD, which attempted to follow the conventions of the libjpeg source code, but they are no longer relevant (or even accurate in some cases.)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
/*
* Huffman entropy encoding (32-bit Arm Neon)
*
* Copyright (C) 2020, Arm Limited. All Rights Reserved.
* Copyright (C) 2024, D. R. Commander. All Rights Reserved.
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
*
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
*
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*
* NOTE: All referenced figures are from
* Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
*/
#define JPEG_INTERNALS
#include "../../../src/jinclude.h"
#include "../../../src/jpeglib.h"
#include "../../../src/jsimd.h"
#include "../../../src/jdct.h"
#include "../../../src/jsimddct.h"
#include "../../jsimd.h"
#include "../jchuff.h"
#include "neon-compat.h"
#include <limits.h>
#include <arm_neon.h>
JOCTET *jsimd_huff_encode_one_block_neon(void *state, JOCTET *buffer,
JCOEFPTR block, int last_dc_val,
c_derived_tbl *dctbl,
c_derived_tbl *actbl)
{
uint8_t block_nbits[DCTSIZE2];
uint16_t block_diff[DCTSIZE2];
/* Load rows of coefficients from DCT block in zig-zag order. */
/* Compute DC coefficient difference value. (F.1.1.5.1) */
int16x8_t row0 = vdupq_n_s16(block[0] - last_dc_val);
row0 = vld1q_lane_s16(block + 1, row0, 1);
row0 = vld1q_lane_s16(block + 8, row0, 2);
row0 = vld1q_lane_s16(block + 16, row0, 3);
row0 = vld1q_lane_s16(block + 9, row0, 4);
row0 = vld1q_lane_s16(block + 2, row0, 5);
row0 = vld1q_lane_s16(block + 3, row0, 6);
row0 = vld1q_lane_s16(block + 10, row0, 7);
int16x8_t row1 = vld1q_dup_s16(block + 17);
row1 = vld1q_lane_s16(block + 24, row1, 1);
row1 = vld1q_lane_s16(block + 32, row1, 2);
row1 = vld1q_lane_s16(block + 25, row1, 3);
row1 = vld1q_lane_s16(block + 18, row1, 4);
row1 = vld1q_lane_s16(block + 11, row1, 5);
row1 = vld1q_lane_s16(block + 4, row1, 6);
row1 = vld1q_lane_s16(block + 5, row1, 7);
int16x8_t row2 = vld1q_dup_s16(block + 12);
row2 = vld1q_lane_s16(block + 19, row2, 1);
row2 = vld1q_lane_s16(block + 26, row2, 2);
row2 = vld1q_lane_s16(block + 33, row2, 3);
row2 = vld1q_lane_s16(block + 40, row2, 4);
row2 = vld1q_lane_s16(block + 48, row2, 5);
row2 = vld1q_lane_s16(block + 41, row2, 6);
row2 = vld1q_lane_s16(block + 34, row2, 7);
int16x8_t row3 = vld1q_dup_s16(block + 27);
row3 = vld1q_lane_s16(block + 20, row3, 1);
row3 = vld1q_lane_s16(block + 13, row3, 2);
row3 = vld1q_lane_s16(block + 6, row3, 3);
row3 = vld1q_lane_s16(block + 7, row3, 4);
row3 = vld1q_lane_s16(block + 14, row3, 5);
row3 = vld1q_lane_s16(block + 21, row3, 6);
row3 = vld1q_lane_s16(block + 28, row3, 7);
int16x8_t abs_row0 = vabsq_s16(row0);
int16x8_t abs_row1 = vabsq_s16(row1);
int16x8_t abs_row2 = vabsq_s16(row2);
int16x8_t abs_row3 = vabsq_s16(row3);
int16x8_t row0_lz = vclzq_s16(abs_row0);
int16x8_t row1_lz = vclzq_s16(abs_row1);
int16x8_t row2_lz = vclzq_s16(abs_row2);
int16x8_t row3_lz = vclzq_s16(abs_row3);
/* Compute number of bits required to represent each coefficient. */
uint8x8_t row0_nbits = vsub_u8(vdup_n_u8(16),
vmovn_u16(vreinterpretq_u16_s16(row0_lz)));
uint8x8_t row1_nbits = vsub_u8(vdup_n_u8(16),
vmovn_u16(vreinterpretq_u16_s16(row1_lz)));
uint8x8_t row2_nbits = vsub_u8(vdup_n_u8(16),
vmovn_u16(vreinterpretq_u16_s16(row2_lz)));
uint8x8_t row3_nbits = vsub_u8(vdup_n_u8(16),
vmovn_u16(vreinterpretq_u16_s16(row3_lz)));
vst1_u8(block_nbits + 0 * DCTSIZE, row0_nbits);
vst1_u8(block_nbits + 1 * DCTSIZE, row1_nbits);
vst1_u8(block_nbits + 2 * DCTSIZE, row2_nbits);
vst1_u8(block_nbits + 3 * DCTSIZE, row3_nbits);
uint16x8_t row0_mask =
vshlq_u16(vreinterpretq_u16_s16(vshrq_n_s16(row0, 15)),
vnegq_s16(row0_lz));
uint16x8_t row1_mask =
vshlq_u16(vreinterpretq_u16_s16(vshrq_n_s16(row1, 15)),
vnegq_s16(row1_lz));
uint16x8_t row2_mask =
vshlq_u16(vreinterpretq_u16_s16(vshrq_n_s16(row2, 15)),
vnegq_s16(row2_lz));
uint16x8_t row3_mask =
vshlq_u16(vreinterpretq_u16_s16(vshrq_n_s16(row3, 15)),
vnegq_s16(row3_lz));
uint16x8_t row0_diff = veorq_u16(vreinterpretq_u16_s16(abs_row0), row0_mask);
uint16x8_t row1_diff = veorq_u16(vreinterpretq_u16_s16(abs_row1), row1_mask);
uint16x8_t row2_diff = veorq_u16(vreinterpretq_u16_s16(abs_row2), row2_mask);
uint16x8_t row3_diff = veorq_u16(vreinterpretq_u16_s16(abs_row3), row3_mask);
/* Store diff values for rows 0, 1, 2, and 3. */
vst1q_u16(block_diff + 0 * DCTSIZE, row0_diff);
vst1q_u16(block_diff + 1 * DCTSIZE, row1_diff);
vst1q_u16(block_diff + 2 * DCTSIZE, row2_diff);
vst1q_u16(block_diff + 3 * DCTSIZE, row3_diff);
/* Load last four rows of coefficients from DCT block in zig-zag order. */
int16x8_t row4 = vld1q_dup_s16(block + 35);
row4 = vld1q_lane_s16(block + 42, row4, 1);
row4 = vld1q_lane_s16(block + 49, row4, 2);
row4 = vld1q_lane_s16(block + 56, row4, 3);
row4 = vld1q_lane_s16(block + 57, row4, 4);
row4 = vld1q_lane_s16(block + 50, row4, 5);
row4 = vld1q_lane_s16(block + 43, row4, 6);
row4 = vld1q_lane_s16(block + 36, row4, 7);
int16x8_t row5 = vld1q_dup_s16(block + 29);
row5 = vld1q_lane_s16(block + 22, row5, 1);
row5 = vld1q_lane_s16(block + 15, row5, 2);
row5 = vld1q_lane_s16(block + 23, row5, 3);
row5 = vld1q_lane_s16(block + 30, row5, 4);
row5 = vld1q_lane_s16(block + 37, row5, 5);
row5 = vld1q_lane_s16(block + 44, row5, 6);
row5 = vld1q_lane_s16(block + 51, row5, 7);
int16x8_t row6 = vld1q_dup_s16(block + 58);
row6 = vld1q_lane_s16(block + 59, row6, 1);
row6 = vld1q_lane_s16(block + 52, row6, 2);
row6 = vld1q_lane_s16(block + 45, row6, 3);
row6 = vld1q_lane_s16(block + 38, row6, 4);
row6 = vld1q_lane_s16(block + 31, row6, 5);
row6 = vld1q_lane_s16(block + 39, row6, 6);
row6 = vld1q_lane_s16(block + 46, row6, 7);
int16x8_t row7 = vld1q_dup_s16(block + 53);
row7 = vld1q_lane_s16(block + 60, row7, 1);
row7 = vld1q_lane_s16(block + 61, row7, 2);
row7 = vld1q_lane_s16(block + 54, row7, 3);
row7 = vld1q_lane_s16(block + 47, row7, 4);
row7 = vld1q_lane_s16(block + 55, row7, 5);
row7 = vld1q_lane_s16(block + 62, row7, 6);
row7 = vld1q_lane_s16(block + 63, row7, 7);
int16x8_t abs_row4 = vabsq_s16(row4);
int16x8_t abs_row5 = vabsq_s16(row5);
int16x8_t abs_row6 = vabsq_s16(row6);
int16x8_t abs_row7 = vabsq_s16(row7);
int16x8_t row4_lz = vclzq_s16(abs_row4);
int16x8_t row5_lz = vclzq_s16(abs_row5);
int16x8_t row6_lz = vclzq_s16(abs_row6);
int16x8_t row7_lz = vclzq_s16(abs_row7);
/* Compute number of bits required to represent each coefficient. */
uint8x8_t row4_nbits = vsub_u8(vdup_n_u8(16),
vmovn_u16(vreinterpretq_u16_s16(row4_lz)));
uint8x8_t row5_nbits = vsub_u8(vdup_n_u8(16),
vmovn_u16(vreinterpretq_u16_s16(row5_lz)));
uint8x8_t row6_nbits = vsub_u8(vdup_n_u8(16),
vmovn_u16(vreinterpretq_u16_s16(row6_lz)));
uint8x8_t row7_nbits = vsub_u8(vdup_n_u8(16),
vmovn_u16(vreinterpretq_u16_s16(row7_lz)));
vst1_u8(block_nbits + 4 * DCTSIZE, row4_nbits);
vst1_u8(block_nbits + 5 * DCTSIZE, row5_nbits);
vst1_u8(block_nbits + 6 * DCTSIZE, row6_nbits);
vst1_u8(block_nbits + 7 * DCTSIZE, row7_nbits);
uint16x8_t row4_mask =
vshlq_u16(vreinterpretq_u16_s16(vshrq_n_s16(row4, 15)),
vnegq_s16(row4_lz));
uint16x8_t row5_mask =
vshlq_u16(vreinterpretq_u16_s16(vshrq_n_s16(row5, 15)),
vnegq_s16(row5_lz));
uint16x8_t row6_mask =
vshlq_u16(vreinterpretq_u16_s16(vshrq_n_s16(row6, 15)),
vnegq_s16(row6_lz));
uint16x8_t row7_mask =
vshlq_u16(vreinterpretq_u16_s16(vshrq_n_s16(row7, 15)),
vnegq_s16(row7_lz));
uint16x8_t row4_diff = veorq_u16(vreinterpretq_u16_s16(abs_row4), row4_mask);
uint16x8_t row5_diff = veorq_u16(vreinterpretq_u16_s16(abs_row5), row5_mask);
uint16x8_t row6_diff = veorq_u16(vreinterpretq_u16_s16(abs_row6), row6_mask);
uint16x8_t row7_diff = veorq_u16(vreinterpretq_u16_s16(abs_row7), row7_mask);
/* Store diff values for rows 4, 5, 6, and 7. */
vst1q_u16(block_diff + 4 * DCTSIZE, row4_diff);
vst1q_u16(block_diff + 5 * DCTSIZE, row5_diff);
vst1q_u16(block_diff + 6 * DCTSIZE, row6_diff);
vst1q_u16(block_diff + 7 * DCTSIZE, row7_diff);
/* Construct bitmap to accelerate encoding of AC coefficients. A set bit
* means that the corresponding coefficient != 0.
*/
uint8x8_t row0_nbits_gt0 = vcgt_u8(row0_nbits, vdup_n_u8(0));
uint8x8_t row1_nbits_gt0 = vcgt_u8(row1_nbits, vdup_n_u8(0));
uint8x8_t row2_nbits_gt0 = vcgt_u8(row2_nbits, vdup_n_u8(0));
uint8x8_t row3_nbits_gt0 = vcgt_u8(row3_nbits, vdup_n_u8(0));
uint8x8_t row4_nbits_gt0 = vcgt_u8(row4_nbits, vdup_n_u8(0));
uint8x8_t row5_nbits_gt0 = vcgt_u8(row5_nbits, vdup_n_u8(0));
uint8x8_t row6_nbits_gt0 = vcgt_u8(row6_nbits, vdup_n_u8(0));
uint8x8_t row7_nbits_gt0 = vcgt_u8(row7_nbits, vdup_n_u8(0));
/* { 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01 } */
const uint8x8_t bitmap_mask =
vreinterpret_u8_u64(vmov_n_u64(0x0102040810204080));
row0_nbits_gt0 = vand_u8(row0_nbits_gt0, bitmap_mask);
row1_nbits_gt0 = vand_u8(row1_nbits_gt0, bitmap_mask);
row2_nbits_gt0 = vand_u8(row2_nbits_gt0, bitmap_mask);
row3_nbits_gt0 = vand_u8(row3_nbits_gt0, bitmap_mask);
row4_nbits_gt0 = vand_u8(row4_nbits_gt0, bitmap_mask);
row5_nbits_gt0 = vand_u8(row5_nbits_gt0, bitmap_mask);
row6_nbits_gt0 = vand_u8(row6_nbits_gt0, bitmap_mask);
row7_nbits_gt0 = vand_u8(row7_nbits_gt0, bitmap_mask);
uint8x8_t bitmap_rows_10 = vpadd_u8(row1_nbits_gt0, row0_nbits_gt0);
uint8x8_t bitmap_rows_32 = vpadd_u8(row3_nbits_gt0, row2_nbits_gt0);
uint8x8_t bitmap_rows_54 = vpadd_u8(row5_nbits_gt0, row4_nbits_gt0);
uint8x8_t bitmap_rows_76 = vpadd_u8(row7_nbits_gt0, row6_nbits_gt0);
uint8x8_t bitmap_rows_3210 = vpadd_u8(bitmap_rows_32, bitmap_rows_10);
uint8x8_t bitmap_rows_7654 = vpadd_u8(bitmap_rows_76, bitmap_rows_54);
uint8x8_t bitmap = vpadd_u8(bitmap_rows_7654, bitmap_rows_3210);
/* Shift left to remove DC bit. */
bitmap = vreinterpret_u8_u64(vshl_n_u64(vreinterpret_u64_u8(bitmap), 1));
/* Move bitmap to 32-bit scalar registers. */
uint32_t bitmap_1_32 = vget_lane_u32(vreinterpret_u32_u8(bitmap), 1);
uint32_t bitmap_33_63 = vget_lane_u32(vreinterpret_u32_u8(bitmap), 0);
/* Set up state and bit buffer for output bitstream. */
working_state *state_ptr = (working_state *)state;
int free_bits = state_ptr->cur.free_bits;
size_t put_buffer = state_ptr->cur.put_buffer;
/* Encode DC coefficient. */
unsigned int nbits = block_nbits[0];
/* Emit Huffman-coded symbol and additional diff bits. */
unsigned int diff = block_diff[0];
PUT_CODE(dctbl->ehufco[nbits], dctbl->ehufsi[nbits], diff)
/* Encode AC coefficients. */
unsigned int r = 0; /* r = run length of zeros */
unsigned int i = 1; /* i = number of coefficients encoded */
/* Code and size information for a run length of 16 zero coefficients */
const unsigned int code_0xf0 = actbl->ehufco[0xf0];
const unsigned int size_0xf0 = actbl->ehufsi[0xf0];
while (bitmap_1_32 != 0) {
r = BUILTIN_CLZ(bitmap_1_32);
i += r;
bitmap_1_32 <<= r;
nbits = block_nbits[i];
diff = block_diff[i];
while (r > 15) {
/* If run length > 15, emit special run-length-16 codes. */
PUT_BITS(code_0xf0, size_0xf0)
r -= 16;
}
/* Emit Huffman symbol for run length / number of bits. (F.1.2.2.1) */
unsigned int rs = (r << 4) + nbits;
PUT_CODE(actbl->ehufco[rs], actbl->ehufsi[rs], diff)
i++;
bitmap_1_32 <<= 1;
}
r = 33 - i;
i = 33;
while (bitmap_33_63 != 0) {
unsigned int leading_zeros = BUILTIN_CLZ(bitmap_33_63);
r += leading_zeros;
i += leading_zeros;
bitmap_33_63 <<= leading_zeros;
nbits = block_nbits[i];
diff = block_diff[i];
while (r > 15) {
/* If run length > 15, emit special run-length-16 codes. */
PUT_BITS(code_0xf0, size_0xf0)
r -= 16;
}
/* Emit Huffman symbol for run length / number of bits. (F.1.2.2.1) */
unsigned int rs = (r << 4) + nbits;
PUT_CODE(actbl->ehufco[rs], actbl->ehufsi[rs], diff)
r = 0;
i++;
bitmap_33_63 <<= 1;
}
/* If the last coefficient(s) were zero, emit an end-of-block (EOB) code.
* The value of RS for the EOB code is 0.
*/
if (i != 64) {
PUT_BITS(actbl->ehufco[0], actbl->ehufsi[0])
}
state_ptr->cur.put_buffer = put_buffer;
state_ptr->cur.free_bits = free_bits;
return buffer;
}