Hash :
555d5074
Author :
Date :
2017-04-10T13:10:45
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
/* $OpenBSD: md4.c,v 1.6 2004/05/28 15:10:27 millert Exp $ */
/*
* This code implements the MD4 message-digest algorithm.
* The algorithm is due to Ron Rivest. This code was
* written by Colin Plumb in 1993, no copyright is claimed.
* This code is in the public domain; do with it what you wish.
* Todd C. Miller modified the MD5 code to do MD4 based on RFC 1186.
*
* Equivalent code is available from RSA Data Security, Inc.
* This code has been tested against that, and is equivalent,
* except that you don't need to include two pages of legalese
* with every copy.
*
* To compute the message digest of a chunk of bytes, declare an
* MD4Context structure, pass it to MD4Init, call MD4Update as
* needed on buffers full of bytes, and then call MD4Final, which
* will fill a supplied 16-byte array with the digest.
*/
#include <config.h>
#include <sys/types.h>
#include <string.h>
#include <md4.h>
#define PUT_64BIT_LE(cp, value) do { \
(cp)[7] = (value) >> 56; \
(cp)[6] = (value) >> 48; \
(cp)[5] = (value) >> 40; \
(cp)[4] = (value) >> 32; \
(cp)[3] = (value) >> 24; \
(cp)[2] = (value) >> 16; \
(cp)[1] = (value) >> 8; \
(cp)[0] = (value); } while (0)
#define PUT_32BIT_LE(cp, value) do { \
(cp)[3] = (value) >> 24; \
(cp)[2] = (value) >> 16; \
(cp)[1] = (value) >> 8; \
(cp)[0] = (value); } while (0)
static uint8_t PADDING[MD4_BLOCK_LENGTH] = {
0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
/*
* Start MD4 accumulation.
* Set bit count to 0 and buffer to mysterious initialization constants.
*/
void
MD4Init(MD4_CTX *ctx)
{
ctx->count = 0;
ctx->state[0] = 0x67452301;
ctx->state[1] = 0xefcdab89;
ctx->state[2] = 0x98badcfe;
ctx->state[3] = 0x10325476;
}
/*
* Update context to reflect the concatenation of another buffer full
* of bytes.
*/
void
MD4Update(MD4_CTX *ctx, const unsigned char *input, size_t len)
{
size_t have, need;
/* Check how many bytes we already have and how many more we need. */
have = (size_t)((ctx->count >> 3) & (MD4_BLOCK_LENGTH - 1));
need = MD4_BLOCK_LENGTH - have;
/* Update bitcount */
ctx->count += (uint64_t)len << 3;
if (len >= need) {
if (have != 0) {
memcpy(ctx->buffer + have, input, need);
MD4Transform(ctx->state, ctx->buffer);
input += need;
len -= need;
have = 0;
}
/* Process data in MD4_BLOCK_LENGTH-byte chunks. */
while (len >= MD4_BLOCK_LENGTH) {
MD4Transform(ctx->state, input);
input += MD4_BLOCK_LENGTH;
len -= MD4_BLOCK_LENGTH;
}
}
/* Handle any remaining bytes of data. */
if (len != 0)
memcpy(ctx->buffer + have, input, len);
}
/*
* Pad pad to 64-byte boundary with the bit pattern
* 1 0* (64-bit count of bits processed, MSB-first)
*/
void
MD4Pad(MD4_CTX *ctx)
{
uint8_t count[8];
size_t padlen;
/* Convert count to 8 bytes in little endian order. */
PUT_64BIT_LE(count, ctx->count);
/* Pad out to 56 mod 64. */
padlen = MD4_BLOCK_LENGTH -
((ctx->count >> 3) & (MD4_BLOCK_LENGTH - 1));
if (padlen < 1 + 8)
padlen += MD4_BLOCK_LENGTH;
MD4Update(ctx, PADDING, padlen - 8); /* padlen - 8 <= 64 */
MD4Update(ctx, count, 8);
}
/*
* Final wrapup--call MD4Pad, fill in digest and zero out ctx.
*/
void
MD4Final(unsigned char digest[MD4_DIGEST_LENGTH], MD4_CTX *ctx)
{
int i;
MD4Pad(ctx);
if (digest != NULL) {
for (i = 0; i < 4; i++)
PUT_32BIT_LE(digest + i * 4, ctx->state[i]);
memset(ctx, 0, sizeof(*ctx));
}
}
/* The three core functions - F1 is optimized somewhat */
/* #define F1(x, y, z) (x & y | ~x & z) */
#define F1(x, y, z) (z ^ (x & (y ^ z)))
#define F2(x, y, z) ((x & y) | (x & z) | (y & z))
#define F3(x, y, z) (x ^ y ^ z)
/* This is the central step in the MD4 algorithm. */
#define MD4STEP(f, w, x, y, z, data, s) \
( w += f(x, y, z) + data, w = w<<s | w>>(32-s) )
/*
* The core of the MD4 algorithm, this alters an existing MD4 hash to
* reflect the addition of 16 longwords of new data. MD4Update blocks
* the data and converts bytes into longwords for this routine.
*/
void
MD4Transform(uint32_t state[4], const uint8_t block[MD4_BLOCK_LENGTH])
{
uint32_t a, b, c, d, in[MD4_BLOCK_LENGTH / 4];
#ifndef WORDS_BIGENDIAN
memcpy(in, block, sizeof(in));
#else
for (a = 0; a < MD4_BLOCK_LENGTH / 4; a++) {
in[a] = (uint32_t)(
(uint32_t)(block[a * 4 + 0]) |
(uint32_t)(block[a * 4 + 1]) << 8 |
(uint32_t)(block[a * 4 + 2]) << 16 |
(uint32_t)(block[a * 4 + 3]) << 24);
}
#endif
a = state[0];
b = state[1];
c = state[2];
d = state[3];
MD4STEP(F1, a, b, c, d, in[ 0], 3);
MD4STEP(F1, d, a, b, c, in[ 1], 7);
MD4STEP(F1, c, d, a, b, in[ 2], 11);
MD4STEP(F1, b, c, d, a, in[ 3], 19);
MD4STEP(F1, a, b, c, d, in[ 4], 3);
MD4STEP(F1, d, a, b, c, in[ 5], 7);
MD4STEP(F1, c, d, a, b, in[ 6], 11);
MD4STEP(F1, b, c, d, a, in[ 7], 19);
MD4STEP(F1, a, b, c, d, in[ 8], 3);
MD4STEP(F1, d, a, b, c, in[ 9], 7);
MD4STEP(F1, c, d, a, b, in[10], 11);
MD4STEP(F1, b, c, d, a, in[11], 19);
MD4STEP(F1, a, b, c, d, in[12], 3);
MD4STEP(F1, d, a, b, c, in[13], 7);
MD4STEP(F1, c, d, a, b, in[14], 11);
MD4STEP(F1, b, c, d, a, in[15], 19);
MD4STEP(F2, a, b, c, d, in[ 0] + 0x5a827999, 3);
MD4STEP(F2, d, a, b, c, in[ 4] + 0x5a827999, 5);
MD4STEP(F2, c, d, a, b, in[ 8] + 0x5a827999, 9);
MD4STEP(F2, b, c, d, a, in[12] + 0x5a827999, 13);
MD4STEP(F2, a, b, c, d, in[ 1] + 0x5a827999, 3);
MD4STEP(F2, d, a, b, c, in[ 5] + 0x5a827999, 5);
MD4STEP(F2, c, d, a, b, in[ 9] + 0x5a827999, 9);
MD4STEP(F2, b, c, d, a, in[13] + 0x5a827999, 13);
MD4STEP(F2, a, b, c, d, in[ 2] + 0x5a827999, 3);
MD4STEP(F2, d, a, b, c, in[ 6] + 0x5a827999, 5);
MD4STEP(F2, c, d, a, b, in[10] + 0x5a827999, 9);
MD4STEP(F2, b, c, d, a, in[14] + 0x5a827999, 13);
MD4STEP(F2, a, b, c, d, in[ 3] + 0x5a827999, 3);
MD4STEP(F2, d, a, b, c, in[ 7] + 0x5a827999, 5);
MD4STEP(F2, c, d, a, b, in[11] + 0x5a827999, 9);
MD4STEP(F2, b, c, d, a, in[15] + 0x5a827999, 13);
MD4STEP(F3, a, b, c, d, in[ 0] + 0x6ed9eba1, 3);
MD4STEP(F3, d, a, b, c, in[ 8] + 0x6ed9eba1, 9);
MD4STEP(F3, c, d, a, b, in[ 4] + 0x6ed9eba1, 11);
MD4STEP(F3, b, c, d, a, in[12] + 0x6ed9eba1, 15);
MD4STEP(F3, a, b, c, d, in[ 2] + 0x6ed9eba1, 3);
MD4STEP(F3, d, a, b, c, in[10] + 0x6ed9eba1, 9);
MD4STEP(F3, c, d, a, b, in[ 6] + 0x6ed9eba1, 11);
MD4STEP(F3, b, c, d, a, in[14] + 0x6ed9eba1, 15);
MD4STEP(F3, a, b, c, d, in[ 1] + 0x6ed9eba1, 3);
MD4STEP(F3, d, a, b, c, in[ 9] + 0x6ed9eba1, 9);
MD4STEP(F3, c, d, a, b, in[ 5] + 0x6ed9eba1, 11);
MD4STEP(F3, b, c, d, a, in[13] + 0x6ed9eba1, 15);
MD4STEP(F3, a, b, c, d, in[ 3] + 0x6ed9eba1, 3);
MD4STEP(F3, d, a, b, c, in[11] + 0x6ed9eba1, 9);
MD4STEP(F3, c, d, a, b, in[ 7] + 0x6ed9eba1, 11);
MD4STEP(F3, b, c, d, a, in[15] + 0x6ed9eba1, 15);
state[0] += a;
state[1] += b;
state[2] += c;
state[3] += d;
}