added libtommath-0.15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882
diff --git a/bn.pdf b/bn.pdf
index 59de4e3..596c440 100644
Binary files a/bn.pdf and b/bn.pdf differ
diff --git a/bn.tex b/bn.tex
index d5a34db..79547f3 100644
--- a/bn.tex
+++ b/bn.tex
@@ -1,7 +1,7 @@
\documentclass{article}
\begin{document}
-\title{LibTomMath v0.14 \\ A Free Multiple Precision Integer Library \\ http://math.libtomcrypt.org }
+\title{LibTomMath v0.15 \\ A Free Multiple Precision Integer Library \\ http://math.libtomcrypt.org }
\author{Tom St Denis \\ tomstdenis@iahu.ca}
\maketitle
\newpage
@@ -100,6 +100,22 @@ in the order $x, y, z$. For example:
mp_div_2(&x, &y); /* y = x / 2 */
\end{verbatim}
+\subsection{Various Optimizations}
+Various routines come in several ``flavours'' which are optimized for particular cases of inputs. For instance
+the multiplicative inverse function ``mp\_invmod()'' has a routine for odd and even moduli. Similarly the
+``mp\_exptmod()'' function has several variants depending on the modulus as well. Several lower level
+functions such as multiplication, squaring and reductions come in ``comba'' and ``baseline'' variants.
+
+The design of LibTomMath is such that the end user does not have to concern themselves too much with these
+details. This is why the functions provided will determine \textit{automatically} when an appropriate
+optimal function can be used. For example, when you call ``mp\_mul()'' the routines will first determine
+if the Karatsuba multiplier should be used. If not it will determine if the ``comba'' method can be used
+and finally call the standard catch-all ``baseline'' method.
+
+Throughout the rest of this manual several variants for various functions will be referenced to as
+the ``comba'', ``baseline'', etc... method. Keep in mind you call one function to use any of the optimal
+variants.
+
\subsection{Return Values}
All functions that return errors will return \textbf{MP\_OKAY} if the function was succesful. It will return
\textbf{MP\_MEM} if it ran out of heap memory or \textbf{MP\_VAL} if one of the arguements is out of range.
@@ -326,10 +342,53 @@ int mp_montgomery_setup(mp_int *a, mp_digit *mp);
/* computes xR^-1 == x (mod N) via Montgomery Reduction */
int mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp);
+/* returns 1 if a is a valid DR modulus */
+int mp_dr_is_modulus(mp_int *a);
+
+/* sets the value of "d" required for mp_dr_reduce */
+void mp_dr_setup(mp_int *a, mp_digit *d);
+
+/* reduces a modulo b using the Diminished Radix method */
+int mp_dr_reduce(mp_int *a, mp_int *b, mp_digit mp);
+
/* d = a^b (mod c) */
int mp_exptmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
\end{verbatim}
+\subsection{Primality Routines}
+\begin{verbatim}
+/* ---> Primes <--- */
+/* table of first 256 primes */
+extern const mp_digit __prime_tab[];
+
+/* result=1 if a is divisible by one of the first 256 primes */
+int mp_prime_is_divisible(mp_int *a, int *result);
+
+/* performs one Fermat test of "a" using base "b".
+ * Sets result to 0 if composite or 1 if probable prime
+ */
+int mp_prime_fermat(mp_int *a, mp_int *b, int *result);
+
+/* performs one Miller-Rabin test of "a" using base "b".
+ * Sets result to 0 if composite or 1 if probable prime
+ */
+int mp_prime_miller_rabin(mp_int *a, mp_int *b, int *result);
+
+/* performs t rounds of Miller-Rabin on "a" using the first
+ * t prime bases. Also performs an initial sieve of trial
+ * division. Determines if "a" is prime with probability
+ * of error no more than (1/4)^t.
+ *
+ * Sets result to 1 if probably prime, 0 otherwise
+ */
+int mp_prime_is_prime(mp_int *a, int t, int *result);
+
+/* finds the next prime after the number "a" using "t" trials
+ * of Miller-Rabin.
+ */
+int mp_prime_next_prime(mp_int *a, int t);
+\end{verbatim}
+
\subsection{Radix Conversions}
To read or store integers in other formats there are the following functions.
@@ -533,23 +592,131 @@ $n$ is prime then $\left ( {a \over n} \right )$ is equal to $1$ if $a$ is a qua
it is not.
\subsubsection{mp\_exptmod(mp\_int *a, mp\_int *b, mp\_int *c, mp\_int *d)}
-Computes $d = a^b \mbox{ (mod }c\mbox{)}$ using a sliding window $k$-ary exponentiation algorithm. For an $\alpha$-bit
+Computes $d \equiv a^b \mbox{ (mod }c\mbox{)}$ using a sliding window $k$-ary exponentiation algorithm. For an $\alpha$-bit
exponent it performs $\alpha$ squarings and at most $\lfloor \alpha/k \rfloor + 2^{k-1}$ multiplications. The value of $k$ is
-chosen to minimize the number of multiplications required for a given value of $\alpha$. Barrett or Montgomery
-reductions are used to reduce the squared or multiplied temporary results modulo $c$.
+chosen to minimize the number of multiplications required for a given value of $\alpha$. Barrett, Montgomery or
+Dimminished-Radix reductions are used to reduce the squared or multiplied temporary results modulo $c$.
\subsection{Fast Modular Reductions}
+A modular reduction of $a \mbox{ (mod }b\mbox{)}$ means to divide $a$ by $b$ and obtain the remainder.
+Typically modular reductions are popular in public key cryptography algorithms such as RSA,
+Diffie-Hellman and Elliptic Curve. Modular reductions are also a large portion of modular exponentiation
+(e.g. $a^b \mbox{ (mod }c\mbox{)}$).
+
+In a simplistic sense a normal integer division could be used to compute reduction. Division is by far
+the most complicated of routines in terms of the work required. As a result it is desirable to avoid
+division as much as possible. This is evident in quite a few fields in computing. For example, often in
+signal analysis uses multiplication by the reciprocal to approximate divisions. Number theory is no
+different.
+
+In most cases for the reduction of $a$ modulo $b$ the integer $a$ will be limited to the range
+$0 \le a \le b^2$ which led to the invention of specialized algorithms to do the work.
+
+The first algorithm is the most generic and is called the Barrett reduction. When the input is of the
+limited form (e.g. $0 \le a \le b^2$) Barrett reduction is numerically equivalent to a full integer
+division with remainder. For a $n$-digit value $b$ the Barrett reduction requires approximately $2n^2$
+multiplications.
+
+The second algorithm is the Montgomery reduction. It is slightly different since the result is not
+numerically equivalent to a standard integer division with remainder. Also this algorithm only works for
+odd moduli. The final result can be converted easily back to the desired for which makes the reduction
+technique useful for algorithms where only the final output is desired. For a $n$-digit value $b$ the
+Montgomery reduction requires approximately $n^2 + n$ multiplications, about half as many as the
+Barrett algorithm.
+
+The third algorithm is the Diminished Radix ``DR'' reduction. It is a highly optimized reduction algorithm
+suitable only for a limited set of moduli. For the specific moduli it is numerically equivalent to
+integer division with remainder. For a $n$-digit value $b$ the DR reduction rquires exactly $n$
+multiplications which is considerably faster than either of the two previous algorithms.
+
+All three algorithms are automatically used in the modular exponentiation function mp\_exptmod() when
+appropriate moduli are detected.
+
+\begin{figure}[here]
+\begin{small}
+\begin{center}
+\begin{tabular}{|c|c|l|}
+\hline \textbf{Algorithm} & \textbf{Multiplications} & \textbf{Limitations} \\
+ Barrett Reduction & $2n^2$ & Any modulus. \\
+ Montgomery Reduction & $n^2 + n$ & Any odd modulus. \\
+ DR Reduction & $n$ & Moduli of the form $p = \beta^k - p'$.\\
+\hline
+\end{tabular}
+\caption{Summary of reduction techniques.}
+\end{center}
+\end{small}
+\end{figure}
+
\subsubsection{mp\_reduce(mp\_int *a, mp\_int *b, mp\_int *c)}
Computes a Barrett reduction in-place of $a$ modulo $b$ with respect to $c$. In essence it computes
-$a \equiv a \mbox{ (mod }b\mbox{)}$ provided $0 \le a \le b^2$. The value of $c$ is precomputed with the
+$a \mbox{ (mod }b\mbox{)}$ provided $0 \le a \le b^2$. The value of $c$ is precomputed with the
function mp\_reduce\_setup(). The modulus $b$ must be larger than zero.
+This reduction function is much faster than simply calling mp\_mod() (\textit{Which simply uses mp\_div() anyways}) and is
+desirable where ever an appropriate reduction is desired.
+
The Barrett reduction function has been optimized to use partial multipliers which means compared to MPI it performs
have the number of single precision multipliers (\textit{provided they have the same size digits}). The partial
multipliers (\textit{one of which is shared with mp\_mul}) both have baseline and comba variants. Barrett reduction
can reduce a number modulo a $n-$digit modulus with approximately $2n^2$ single precision multiplications.
+Consider the following snippet (from a BBS generator) using the more traditional approach:
+
+\begin{small}
+\begin{verbatim}
+ mp_int modulus, n;
+ unsigned char buf[128];
+ int ix, err;
+
+ /* ... init code ..., e.g. init modulus and n */
+ /* now output 128 bytes */
+ for (ix = 0; ix < 128; ix++) {
+ if ((err = mp_sqrmod(&n, &modulus, &n)) != MP_OKAY) {
+ printf("Err: %d\n", err);
+ exit(EXIT_FAILURE);
+ }
+ buf[ix] = n->dp[0] & 255;
+ }
+\end{verbatim}
+\end{small}
+
+And now consider the same function using Barrett reductions:
+
+\begin{small}
+\begin{verbatim}
+ mp_int modulus, n, mp;
+ unsigned char buf[128];
+ int ix, err;
+
+ /* ... init code ... e.g. modulus and n */
+
+ /* now setup mp which is the Barrett param */
+ if ((err = mp_reduce_setup(&mp, &modulus)) != MP_OKAY) {
+ printf("Err: %d\n", err);
+ exit(EXIT_FAILURE);
+ }
+ /* now output 128 bytes */
+ for (ix = 0; ix < 128; ix++) {
+ /* square n */
+ if ((err = mp_sqr(&n, &n)) != MP_OKAY) {
+ printf("Err: %d\n", err);
+ exit(EXIT_FAILURE);
+ }
+ /* now reduce the square modulo modulus */
+ if ((err = mp_reduce(&n, &modulus, &mp)) != MP_OKAY) {
+ printf("Err: %d\n", err);
+ exit(EXIT_FAILURE);
+ }
+ buf[ix] = n->dp[0] & 255;
+ }
+\end{verbatim}
+\end{small}
+
+Both routines will produce the same output provided the same initial values of $modulus$ and $n$. The Barrett
+method seems like more work but the optimization stems from the use of the Barrett reduction instead of the normal
+integer division.
+
\subsubsection{mp\_montgomery\_reduce(mp\_int *a, mp\_int *m, mp\_digit mp)}
Computes a Montgomery reduction in-place of $a$ modulo $b$ with respect to $mp$. If $b$ is some $n-$digit modulus then
$R = \beta^{n+1}$. The result of this function is $aR^{-1} \mbox{ (mod }b\mbox{)}$ provided that $0 \le a \le b^2$.
@@ -576,7 +743,95 @@ Now all the variables in the system can be multiplied by $\hat x$ and reduced wi
two long divisions would be required to setup $\hat x$ and a multiplication followed by reduction for each variable.
A very useful observation is that multiplying by $R = \beta^n$ amounts to performing a left shift by $n$ positions which
-requires no single precision multiplications.
+requires no single precision multiplications.
+
+\subsubsection{mp\_dr\_reduce(mp\_int *a, mp\_int *b, mp\_digit mp)}
+Computes the Diminished-Radix reduction of $a$ in place modulo $b$ with respect to $mp$. $a$ must be in the range
+$0 \le a \le b^2$ and $mp$ must be precomputed with the function mp\_dr\_setup().
+
+This reduction technique performs the reduction with $n$ multiplications and is much faster than either of the previous
+reduction methods. Essentially it is very much like the Montgomery reduction except it is particularly optimized for
+specific types of moduli. The moduli must be of the form $p = \beta^k - p'$ where $0 \le p' < \beta$ for $k \ge 2$.
+This algorithm is suitable for several applications such as Diffie-Hellman public key cryptsystems where the prime $p$ is
+of this form.
+
+In appendix A several ``safe'' primes of various sizes are provided. These primes are DR moduli and of the form
+$p = 2q + 1$ where both $p$ and $q$ are prime. A trivial observation is that $g = 4$ will be a generator for all of them
+since the order of the multiplicative sub-group is at most $2q$. Since $2^2 \ne 1$ that means $4^q \equiv 2^{2q} \equiv 1$
+and that $g = 4$ is a generator of order $q$.
+
+These moduli can be used to construct a Diffie-Hellman public key cryptosystem. Since the moduli are of the
+DR form the modular exponentiation steps will be efficient.
+
+\subsection{Primality Testing and Generation}
+
+\subsubsection{mp\_prime\_is\_divisible(mp\_int *a, int *result)}
+Determines if $a$ is divisible by any of the first 256 primes. Sets $result$ to $1$ if true or $0$
+otherwise. Also will set $result$ to $1$ if $a$ is equal to one of the first 256 primes.
+
+\subsubsection{mp\_prime\_fermat(mp\_int *a, mp\_int *b, int *result)}
+Determines if $b$ is a witness to the compositeness of $a$ using the Fermat test. Essentially this
+computes $b^a \mbox{ (mod }a\mbox{)}$ and compares it to $b$. If they match $result$ is set
+to $1$ otherwise it is set to $0$. If $a$ is prime and $1 < b < a$ then this function will set
+$result$ to $1$ with a probability of one. If $a$ is composite then this function will set
+$result$ to $1$ with a probability of no more than $1 \over 2$.
+
+If this function is repeated $t$ times with different bases $b$ then the probability of a false positive
+is no more than $2^{-t}$.
+
+\subsubsection{mp\_prime\_miller\_rabin(mp\_int *a, mp\_int *b, int *result)}
+Determines if $b$ is a witness to the compositeness of $a$ using the Miller-Rabin test. This test
+works much (\textit{on an abstract level}) the same as the Fermat test except is more robust. The
+set of pseudo-primes to any given base for the Miller-Rabin test is a proper subset of the pseudo-primes
+for the Fermat test.
+
+If $a$ is prime and $1 < b < a$ then this function will always set $result$ to $1$. If $a$ is composite
+the trivial bound of error is $1 \over 4$. However, according to HAC\footnote{Handbook of Applied
+Cryptography, Chapter 4, Section 4, pp. 147, Fact 4.48.} the following bounds are
+known. For a test of $t$ trials on a $k$-bit number the probability $P_{k,t}$ of error is given as
+follows.
+
+\begin{enumerate}
+\item $P_{k,1} < k^24^{2 - \sqrt{k}}$ for $k \ge 2$
+\item $P_{k,t} < k^{3/2}2^tt^{-1/2}4^{2-\sqrt{tk}}$ for $(t = 2, k \ge 88)$ or $(3 \le t \le k/9, k \ge 21)$.
+\item $P_{k,t} < {7 \over 20}k2^{-5t} + {1 \over 7}k^{15/4}2^{-k/2-2t} + 12k2^{-k/4-3t}$ for $k/9 \le t \le k/4, k \ge 21$.
+\item $P_{k,t} < {1 \over 7}k^{15/4}2^{-k/2 - 2t}$ for $t \ge k/4, k \ge 21$.
+\end{enumerate}
+
+For instance, $P_{1024,1}$ which indicates the probability of failure of one test with a 1024-bit candidate
+is no more than $2^{-40}$. However, ideally at least a couple of trials should be used. In LibTomCrypt
+for instance eight tests are used. In this case $P_{1024,8}$ falls under the second rule which leads
+to a probability of failure of no more than $2^{-155.52}$.
+
+\begin{figure}[here]
+\begin{small}
+\begin{center}
+\begin{tabular}{|c|c|c|c|c|c|c|}
+\hline \textbf{Size (k)} & \textbf{$t = 3$} & \textbf{$t = 4$} & \textbf{$t = 5$} & \textbf{$t = 6$} & \textbf{$t = 7$} & \textbf{$t = 8$}\\
+\hline 512 & -58 & -70 & -79 & -88 & -96 & -104 \\
+\hline 768 & -75 & -89 & -101 & -112 & -122 & -131\\
+\hline 1024 & -89 & -106 & -120 & -133 & -144 & -155 \\
+\hline 1280 & -102 & -120 & -136 & -151 & -164 & -176 \\
+\hline 1536 & -113 & -133 & -151 & -167 & -181 & -195 \\
+\hline 1792 & -124 & -146 & -165 & -182 & -198 & -212 \\
+\hline 2048 & -134 & -157 & -178 & -196 & -213 & -228\\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Probability of error for a given random candidate of $k$ bits with $t$ trials. Denoted as
+log$_2(P_{k,t})$. }
+\end{figure}
+
+\subsubsection{mp\_prime\_is\_prime(mp\_int *a, int t, int *result)}
+This function determines if $a$ is probably prime by first performing trial division by the first 256
+primes and then $t$ rounds of Miller-Rabin using the first $t$ primes as bases. If $a$ is prime this
+function will always set $result$ to $1$. If $a$ is composite then it will almost always set $result$
+to $0$. The probability of error is given in figure two.
+
+\subsubsection{mp\_prime\_next\_prime(mp\_int *a, int t)}
+This function will find the next prime \textbf{after} $a$ by using trial division and $t$ trials of
+Miller-Rabin.
\section{Timing Analysis}
@@ -662,8 +917,12 @@ MPI uses a binary square-multiply method for exponentiation. For the same expon
perform 8 squarings and 5 multiplications. There is a precomputation phase for the method LibTomMath uses but it
generally cuts down considerably on the number of multiplications. Consider a 512-bit exponent. The worst case for the
LibTomMath method results in 512 squarings and 124 multiplications. The MPI method would have 512 squarings
-and 512 multiplications. Randomly every $2k$ bits another multiplication is saved via the sliding-window
-technique on top of the savings the $k$-ary method provides.
+and 512 multiplications.
+
+Randomly the most probable event is that every $2k^2$ bits another multiplication is saved via the
+sliding-window technique on top of the savings the $k$-ary method provides. This stems from the fact that each window
+has a probability of $2^{-1}$ of being delayed by one bit. In reality the savings can be much more when the exponent
+has an abundance of zero bits.
Both LibTomMath and MPI use Barrett reduction instead of division to reduce the numbers modulo the modulus given.
However, LibTomMath can take advantage of the fact that the multiplications required within the Barrett reduction
@@ -671,12 +930,103 @@ do not have to give full precision. As a result the reduction step is much fast
code will automatically determine at run-time (e.g. when its called) whether the faster multiplier can be used. The
faster multipliers have also been optimized into the two variants (baseline and comba baseline).
-LibTomMath also has a variant of the exptmod function that uses Montgomery reductions instead of Barrett reductions
-which is faster. The code will automatically detect when the Montgomery version can be used (\textit{Requires the
-modulus to be odd and below the MONTGOMERY\_EXPT\_CUTOFF size}). The Montgomery routine is essentially a copy of the
-Barrett exponentiation routine except it uses Montgomery reduction.
+LibTomMath also has a variant of the exptmod function that uses Montgomery or Diminished-Radix reductions instead of
+Barrett reductions which are faster. The code will automatically detect when the Montgomery version can be used
+(\textit{Requires the modulus to be odd and below the MONTGOMERY\_EXPT\_CUTOFF size}). The Montgomery routine is
+essentially a copy of the Barrett exponentiation routine except it uses Montgomery reduction.
As a result of all these changes exponentiation in LibTomMath is much faster than compared to MPI. On most ALU-strong
-processors (AMD Athlon for instance) exponentiation in LibTomMath is often more then ten times faster than MPI.
+processors (AMD Athlon for instance) exponentiation in LibTomMath is often more then ten times faster than MPI.
+
+\newpage
+\section*{Appendix A -- DR Safe Prime Moduli}
+These are safe primes suitable for the DR reduction techniques.
+
+\begin{small}
+\begin{verbatim}
+224-bit prime:
+p == 26959946667150639794667015087019630673637144422540572481103341844143
+
+532-bit prime:
+p == 14059105607947488696282932836518693308967803494693489478439861164411
+ 99243959839959474700214407465892859350284572975279726002583142341968
+ 6528151609940203368691747
+
+784-bit prime:
+p == 10174582569701926077392351975587856746131528201775982910760891436407
+ 52752352543956225804474009941755789631639189671820136396606697711084
+ 75957692810857098847138903161308502419410142185759152435680068435915
+ 159402496058513611411688900243039
+
+1036-bit prime:
+p == 73633510803960459580592340614718453088992337057476877219196961242207
+ 30400993319449915739231125812675425079864519532271929704028930638504
+ 85730703075899286013451337291468249027691733891486704001513279827771
+ 74018362916106519487472796251714810077522836342108369176406547759082
+ 3919364012917984605619526140821798437127
+
+1540-bit prime:
+p == 38564998830736521417281865696453025806593491967131023221754800625044
+ 11826546885121070536038571753679461518026049420807660579867166071933
+ 31995138078062523944232834134301060035963325132466829039948295286901
+ 98205120921557533726473585751382193953592127439965050261476810842071
+ 57368450587885458870662348457392592590350574754547108886771218500413
+ 52012892734056144158994382765356263460989042410208779740029161680999
+ 51885406379295536200413493190419727789712076165162175783
+
+2072-bit prime:
+p == 54218939133169617266167044061918053674999416641599333415160174539219
+ 34845902966009796023786766248081296137779934662422030250545736925626
+ 89251250471628358318743978285860720148446448885701001277560572526947
+ 61939255157449083928645845499448866574499182283776991809511712954641
+ 41244487770339412235658314203908468644295047744779491537946899487476
+ 80362212954278693335653935890352619041936727463717926744868338358149
+ 56836864340303776864961677852601361049369618605589931826833943267154
+ 13281957242613296066998310166663594408748431030206661065682224010477
+ 20269951530296879490444224546654729111504346660859907296364097126834
+ 834235287147
+\end{verbatim}
+\newpage
+\begin{verbatim}
+3080-bit prime:
+p == 14872591348147092640920326485259710388958656451489011805853404549855
+ 24155135260217788758027400478312256339496385275012465661575576202252
+ 06314569873207988029466422057976484876770407676185319721656326266004
+ 66027039730507982182461708359620055985616697068444694474354610925422
+ 65792444947706769615695252256130901271870341005768912974433684521436
+ 21126335809752272646208391793909176002665892575707673348417320292714
+ 14414925737999142402226287954056239531091315945236233530448983394814
+ 94120112723445689647986475279242446083151413667587008191682564376412
+ 34796414611389856588668313940700594138366932599747507691048808666325
+ 63356891811579575714450674901879395531659037735542902605310091218790
+ 44170766615232300936675369451260747671432073394867530820527479172464
+ 10644245072764022650374658634027981631882139521072626829153564850619
+ 07146160831634031899433344310568760382865303657571873671474460048559
+ 12033137386225053275419626102417236133948503
+
+4116-bit prime:
+p == 10951211157166778028568112903923951285881685924091094949001780089679
+ 55253005183831872715423151551999734857184538199864469605657805519106
+ 71752965504405483319768745978263629725521974299473675154181526972794
+ 07518606702687749033402960400061140139713092570283328496790968248002
+ 50742691718610670812374272414086863715763724622797509437062518082383
+ 05605014462496277630214789052124947706021514827516368830127584715531
+ 60422794055576326393660668474428614221648326558746558242215778499288
+ 63023018366835675399949740429332468186340518172487073360822220449055
+ 34058256846156864525995487330361695377639385317484513208112197632746
+ 27403549307444874296172025850155107442985301015477068215901887335158
+ 80733527449780963163909830077616357506845523215289297624086914545378
+ 51108253422962011656326016849452390656670941816601111275452976618355
+ 45793212249409511773940884655967126200762400673705890369240247283750
+ 76210477267488679008016579588696191194060127319035195370137160936882
+ 40224439969917201783514453748848639690614421772002899286394128821718
+ 53539149915834004216827510006035966557909908155251261543943446413363
+ 97793791497068253936771017031980867706707490224041075826337383538651
+ 82549367950377193483609465580277633166426163174014828176348776585274
+ 6577808019633679
+\end{verbatim}
+\end{small}
+
+
\end{document}
diff --git a/bn_fast_mp_invmod.c b/bn_fast_mp_invmod.c
index 1cd0150..38c265e 100644
--- a/bn_fast_mp_invmod.c
+++ b/bn_fast_mp_invmod.c
@@ -80,7 +80,6 @@ fast_mp_invmod (mp_int * a, mp_int * b, mp_int * c)
}
mp_set (&D, 1);
-
top:
/* 4. while u is even do */
while (mp_iseven (&u) == 1) {
diff --git a/bn_mp_div.c b/bn_mp_div.c
index 96e7e6f..8eceec8 100644
--- a/bn_mp_div.c
+++ b/bn_mp_div.c
@@ -106,7 +106,7 @@ mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
/* step 3. for i from n down to (t + 1) */
for (i = n; i >= (t + 1); i--) {
- if (i > x.alloc)
+ if (i > x.used)
continue;
/* step 3.1 if xi == yt then set q{i-t-1} to b-1, otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */
@@ -171,10 +171,11 @@ mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
q.dp[i - t - 1] = (q.dp[i - t - 1] - 1UL) & MP_MASK;
}
}
-
+
/* now q is the quotient and x is the remainder [which we have to normalize] */
/* get sign before writing to c */
x.sign = a->sign;
+
if (c != NULL) {
mp_clamp (&q);
mp_exch (&q, c);
@@ -183,7 +184,6 @@ mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
if (d != NULL) {
mp_div_2d (&x, norm, &x, NULL);
- mp_clamp (&x);
mp_exch (&x, d);
}
diff --git a/bn_mp_div_2d.c b/bn_mp_div_2d.c
index c208f5e..4258c05 100644
--- a/bn_mp_div_2d.c
+++ b/bn_mp_div_2d.c
@@ -52,8 +52,8 @@ mp_div_2d (mp_int * a, int b, mp_int * c, mp_int * d)
/* shift by as many digits in the bit count */
if (b >= DIGIT_BIT) {
- mp_rshd (c, b / DIGIT_BIT);
- }
+ mp_rshd (c, b / DIGIT_BIT);
+ }
/* shift any bit count < DIGIT_BIT */
D = (mp_digit) (b % DIGIT_BIT);
diff --git a/bn_mp_div_d.c b/bn_mp_div_d.c
index b7de4d1..4c25a74 100644
--- a/bn_mp_div_d.c
+++ b/bn_mp_div_d.c
@@ -21,7 +21,6 @@ mp_div_d (mp_int * a, mp_digit b, mp_int * c, mp_digit * d)
mp_int t, t2;
int res;
-
if ((res = mp_init (&t)) != MP_OKAY) {
return res;
}
diff --git a/bn_mp_dr_reduce.c b/bn_mp_dr_reduce.c
new file mode 100644
index 0000000..75fb7ba
--- /dev/null
+++ b/bn_mp_dr_reduce.c
@@ -0,0 +1,150 @@
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* reduce "a" in place modulo "b" using the Diminished Radix algorithm.
+ *
+ * Based on algorithm from the paper
+ *
+ * "Generating Efficient Primes for Discrete Log Cryptosystems"
+ * Chae Hoon Lim, Pil Loong Lee,
+ * POSTECH Information Research Laboratories
+ *
+ * The modulus must be of a special format [see manual]
+ */
+int
+mp_dr_reduce (mp_int * a, mp_int * b, mp_digit mp)
+{
+ int err, i, j, k;
+ mp_word r;
+ mp_digit mu, *tmpj, *tmpi;
+
+ /* k = digits in modulus */
+ k = b->used;
+
+ /* ensure that "a" has at least 2k digits */
+ if (a->alloc < k + k) {
+ if ((err = mp_grow (a, k + k)) != MP_OKAY) {
+ return err;
+ }
+ }
+
+ /* alias for a->dp[i] */
+ tmpi = a->dp + k + k - 1;
+
+ /* for (i = 2k - 1; i >= k; i = i - 1)
+ *
+ * This is the main loop of the reduction. Note that at the end
+ * the words above position k are not zeroed as expected. The end
+ * result is that the digits from 0 to k-1 are the residue. So
+ * we have to clear those afterwards.
+ */
+ for (i = k + k - 1; i >= k; i = i - 1) {
+ /* x[i - 1 : i - k] += x[i]*mp */
+
+ /* x[i] * mp */
+ r = ((mp_word) *tmpi--) * ((mp_word) mp);
+
+ /* now add r to x[i-1:i-k]
+ *
+ * First add it to the first digit x[i-k] then form the carry
+ * then enter the main loop
+ */
+ j = i - k;
+
+ /* alias for a->dp[j] */
+ tmpj = a->dp + j;
+
+ /* add digit */
+ *tmpj += (mp_digit)(r & MP_MASK);
+
+ /* this is the carry */
+ mu = (r >> ((mp_word) DIGIT_BIT)) + (*tmpj >> DIGIT_BIT);
+
+ /* clear carry from a->dp[j] */
+ *tmpj++ &= MP_MASK;
+
+ /* now add rest of the digits
+ *
+ * Note this is basically a simple single digit addition to
+ * a larger multiple digit number. This is optimized somewhat
+ * because the propagation of carries is not likely to move
+ * more than a few digits.
+ *
+ */
+ for (++j; mu != 0 && j <= (i - 1); ++j) {
+ *tmpj += mu;
+ mu = *tmpj >> DIGIT_BIT;
+ *tmpj++ &= MP_MASK;
+ }
+
+ /* if final carry */
+ if (mu != 0) {
+ /* add mp to this to correct */
+ j = i - k;
+ tmpj = a->dp + j;
+
+ *tmpj += mp;
+ mu = *tmpj >> DIGIT_BIT;
+ *tmpj++ &= MP_MASK;
+
+ /* now handle carries */
+ for (++j; mu != 0 && j <= (i - 1); j++) {
+ *tmpj += mu;
+ mu = *tmpj >> DIGIT_BIT;
+ *tmpj++ &= MP_MASK;
+ }
+ }
+ }
+
+ /* zero words above k */
+ tmpi = a->dp + k;
+ for (i = k; i < a->used; i++) {
+ *tmpi++ = 0;
+ }
+
+ /* clamp, sub and return */
+ mp_clamp (a);
+
+ if (mp_cmp_mag (a, b) != MP_LT) {
+ return s_mp_sub (a, b, a);
+ }
+ return MP_OKAY;
+}
+
+/* determines if a number is a valid DR modulus */
+int mp_dr_is_modulus(mp_int *a)
+{
+ int ix;
+
+ /* must be at least two digits */
+ if (a->used < 2) {
+ return 0;
+ }
+
+ for (ix = 1; ix < a->used; ix++) {
+ if (a->dp[ix] != MP_MASK) {
+ return 0;
+ }
+ }
+ return 1;
+}
+
+/* determines the setup value */
+void mp_dr_setup(mp_int *a, mp_digit *d)
+{
+ *d = (1 << DIGIT_BIT) - a->dp[0];
+}
+
diff --git a/bn_mp_exptmod.c b/bn_mp_exptmod.c
index 8b3f27f..a780dbc 100644
--- a/bn_mp_exptmod.c
+++ b/bn_mp_exptmod.c
@@ -24,9 +24,12 @@ static int f_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y);
int
mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
{
+ int dr;
+
+ dr = mp_dr_is_modulus(P);
/* if the modulus is odd use the fast method */
- if (mp_isodd (P) == 1 && P->used > 4 && P->used < MONTGOMERY_EXPT_CUTOFF) {
- return mp_exptmod_fast (G, X, P, Y);
+ if (((mp_isodd (P) == 1 && P->used < MONTGOMERY_EXPT_CUTOFF) || dr == 1) && P->used > 4) {
+ return mp_exptmod_fast (G, X, P, Y, dr);
} else {
return f_mp_exptmod (G, X, P, Y);
}
diff --git a/bn_mp_exptmod_fast.c b/bn_mp_exptmod_fast.c
index 902a894..83c7b7a 100644
--- a/bn_mp_exptmod_fast.c
+++ b/bn_mp_exptmod_fast.c
@@ -22,11 +22,13 @@
* Uses Montgomery reduction
*/
int
-mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
+mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
{
mp_int M[256], res;
mp_digit buf, mp;
int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
+ int (*redux)(mp_int*,mp_int*,mp_digit);
+
/* find window size */
x = mp_count_bits (X);
@@ -55,10 +57,17 @@ mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
return err;
}
}
-
- /* now setup montgomery */
- if ((err = mp_montgomery_setup (P, &mp)) != MP_OKAY) {
- goto __M;
+
+ if (redmode == 0) {
+ /* now setup montgomery */
+ if ((err = mp_montgomery_setup (P, &mp)) != MP_OKAY) {
+ goto __M;
+ }
+ redux = mp_montgomery_reduce;
+ } else {
+ /* setup DR reduction */
+ mp_dr_setup(P, &mp);
+ redux = mp_dr_reduce;
}
/* setup result */
@@ -73,15 +82,23 @@ mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
* The first half of the table is not computed though accept for M[0] and M[1]
*/
- /* now we need R mod m */
- if ((err = mp_montgomery_calc_normalization (&res, P)) != MP_OKAY) {
- goto __RES;
- }
+ if (redmode == 0) {
+ /* now we need R mod m */
+ if ((err = mp_montgomery_calc_normalization (&res, P)) != MP_OKAY) {
+ goto __RES;
+ }
- /* now set M[1] to G * R mod m */
- if ((err = mp_mulmod (G, &res, P, &M[1])) != MP_OKAY) {
- goto __RES;
+ /* now set M[1] to G * R mod m */
+ if ((err = mp_mulmod (G, &res, P, &M[1])) != MP_OKAY) {
+ goto __RES;
+ }
+ } else {
+ mp_set(&res, 1);
+ if ((err = mp_mod(G, P, &M[1])) != MP_OKAY) {
+ goto __RES;
+ }
}
+
/* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times */
if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
goto __RES;
@@ -91,7 +108,7 @@ mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
if ((err = mp_sqr (&M[1 << (winsize - 1)], &M[1 << (winsize - 1)])) != MP_OKAY) {
goto __RES;
}
- if ((err = mp_montgomery_reduce (&M[1 << (winsize - 1)], P, mp)) != MP_OKAY) {
+ if ((err = redux (&M[1 << (winsize - 1)], P, mp)) != MP_OKAY) {
goto __RES;
}
}
@@ -101,7 +118,7 @@ mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
goto __RES;
}
- if ((err = mp_montgomery_reduce (&M[x], P, mp)) != MP_OKAY) {
+ if ((err = redux (&M[x], P, mp)) != MP_OKAY) {
goto __RES;
}
}
@@ -141,7 +158,7 @@ mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
goto __RES;
}
- if ((err = mp_montgomery_reduce (&res, P, mp)) != MP_OKAY) {
+ if ((err = redux (&res, P, mp)) != MP_OKAY) {
goto __RES;
}
continue;
@@ -158,7 +175,7 @@ mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
goto __RES;
}
- if ((err = mp_montgomery_reduce (&res, P, mp)) != MP_OKAY) {
+ if ((err = redux (&res, P, mp)) != MP_OKAY) {
goto __RES;
}
}
@@ -167,7 +184,7 @@ mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) {
goto __RES;
}
- if ((err = mp_montgomery_reduce (&res, P, mp)) != MP_OKAY) {
+ if ((err = redux (&res, P, mp)) != MP_OKAY) {
goto __RES;
}
@@ -184,7 +201,7 @@ mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
goto __RES;
}
- if ((err = mp_montgomery_reduce (&res, P, mp)) != MP_OKAY) {
+ if ((err = redux (&res, P, mp)) != MP_OKAY) {
goto __RES;
}
@@ -194,17 +211,19 @@ mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) {
goto __RES;
}
- if ((err = mp_montgomery_reduce (&res, P, mp)) != MP_OKAY) {
+ if ((err = redux (&res, P, mp)) != MP_OKAY) {
goto __RES;
}
}
}
}
- /* fixup result */
- if ((err = mp_montgomery_reduce (&res, P, mp)) != MP_OKAY) {
- goto __RES;
- }
+ if (redmode == 0) {
+ /* fixup result */
+ if ((err = mp_montgomery_reduce (&res, P, mp)) != MP_OKAY) {
+ goto __RES;
+ }
+ }
mp_exch (&res, Y);
err = MP_OKAY;
diff --git a/bn_mp_grow.c b/bn_mp_grow.c
index 0a0a33b..369fb4e 100644
--- a/bn_mp_grow.c
+++ b/bn_mp_grow.c
@@ -24,7 +24,7 @@ mp_grow (mp_int * a, int size)
if (a->alloc < size) {
size += (MP_PREC * 2) - (size & (MP_PREC - 1)); /* ensure there are always at least MP_PREC digits extra on top */
- a->dp = realloc (a->dp, sizeof (mp_digit) * size);
+ a->dp = OPT_CAST realloc (a->dp, sizeof (mp_digit) * size);
if (a->dp == NULL) {
return MP_MEM;
}
diff --git a/bn_mp_init.c b/bn_mp_init.c
index ae5c30f..7c3ee01 100644
--- a/bn_mp_init.c
+++ b/bn_mp_init.c
@@ -20,7 +20,7 @@ mp_init (mp_int * a)
{
/* allocate ram required and clear it */
- a->dp = calloc (sizeof (mp_digit), MP_PREC);
+ a->dp = OPT_CAST calloc (sizeof (mp_digit), MP_PREC);
if (a->dp == NULL) {
return MP_MEM;
}
diff --git a/bn_mp_init_size.c b/bn_mp_init_size.c
index ce25b91..45d8dc5 100644
--- a/bn_mp_init_size.c
+++ b/bn_mp_init_size.c
@@ -21,7 +21,7 @@ mp_init_size (mp_int * a, int size)
/* pad up so there are at least 16 zero digits */
size += (MP_PREC * 2) - (size & (MP_PREC - 1)); /* ensure there are always at least 16 digits extra on top */
- a->dp = calloc (sizeof (mp_digit), size);
+ a->dp = OPT_CAST calloc (sizeof (mp_digit), size);
if (a->dp == NULL) {
return MP_MEM;
}
diff --git a/bn_mp_lshd.c b/bn_mp_lshd.c
index 6242957..600afda 100644
--- a/bn_mp_lshd.c
+++ b/bn_mp_lshd.c
@@ -36,10 +36,10 @@ mp_lshd (mp_int * a, int b)
/* increment the used by the shift amount than copy upwards */
a->used += b;
-
+
/* top */
tmpa = a->dp + a->used - 1;
-
+
/* base */
tmpaa = a->dp + a->used - 1 - b;
diff --git a/bn_mp_mul_2d.c b/bn_mp_mul_2d.c
index faa9a7f..3b336d1 100644
--- a/bn_mp_mul_2d.c
+++ b/bn_mp_mul_2d.c
@@ -33,10 +33,10 @@ mp_mul_2d (mp_int * a, int b, mp_int * c)
/* shift by as many digits in the bit count */
if (b >= DIGIT_BIT) {
- if ((res = mp_lshd (c, b / DIGIT_BIT)) != MP_OKAY) {
- return res;
- }
- }
+ if ((res = mp_lshd (c, b / DIGIT_BIT)) != MP_OKAY) {
+ return res;
+ }
+ }
c->used = c->alloc;
/* shift any bit count < DIGIT_BIT */
diff --git a/bn_mp_prime_fermat.c b/bn_mp_prime_fermat.c
new file mode 100644
index 0000000..b218077
--- /dev/null
+++ b/bn_mp_prime_fermat.c
@@ -0,0 +1,52 @@
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* performs one Fermat test.
+ *
+ * If "a" were prime then b^a == b (mod a) since the order of
+ * the multiplicative sub-group would be phi(a) = a-1. That means
+ * it would be the same as b^(a mod (a-1)) == b^1 == b (mod a).
+ *
+ * Sets result to 1 if the congruence holds, or zero otherwise.
+ */
+int
+mp_prime_fermat (mp_int * a, mp_int * b, int *result)
+{
+ mp_int t;
+ int err;
+
+ /* default to fail */
+ *result = 0;
+
+ /* init t */
+ if ((err = mp_init (&t)) != MP_OKAY) {
+ return err;
+ }
+
+ /* compute t = b^a mod a */
+ if ((err = mp_exptmod (b, a, a, &t)) != MP_OKAY) {
+ goto __T;
+ }
+
+ /* is it equal to b? */
+ if (mp_cmp (&t, b) == MP_EQ) {
+ *result = 1;
+ }
+
+ err = MP_OKAY;
+__T:mp_clear (&t);
+ return err;
+}
diff --git a/bn_mp_prime_is_divisible.c b/bn_mp_prime_is_divisible.c
new file mode 100644
index 0000000..dac2d0e
--- /dev/null
+++ b/bn_mp_prime_is_divisible.c
@@ -0,0 +1,50 @@
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* determines if an integers is divisible by one of the first 256 primes or not
+ *
+ * sets result to 0 if not, 1 if yes
+ */
+int
+mp_prime_is_divisible (mp_int * a, int *result)
+{
+ int err, ix;
+ mp_digit res;
+
+ /* default to not */
+ *result = 0;
+
+ for (ix = 0; ix < 256; ix++) {
+ /* is it equal to the prime? */
+ if (mp_cmp_d (a, __prime_tab[ix]) == MP_EQ) {
+ *result = 1;
+ return MP_OKAY;
+ }
+
+ /* what is a mod __prime_tab[ix] */
+ if ((err = mp_mod_d (a, __prime_tab[ix], &res)) != MP_OKAY) {
+ return err;
+ }
+
+ /* is the residue zero? */
+ if (res == 0) {
+ *result = 1;
+ return MP_OKAY;
+ }
+ }
+
+ return MP_OKAY;
+}
diff --git a/bn_mp_prime_is_prime.c b/bn_mp_prime_is_prime.c
new file mode 100644
index 0000000..8910c87
--- /dev/null
+++ b/bn_mp_prime_is_prime.c
@@ -0,0 +1,68 @@
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* performs a variable number of rounds of Miller-Rabin
+ *
+ * Probability of error after t rounds is no more than
+ * (1/4)^t when 1 <= t <= 256
+ *
+ * Sets result to 1 if probably prime, 0 otherwise
+ */
+int
+mp_prime_is_prime (mp_int * a, int t, int *result)
+{
+ mp_int b;
+ int ix, err, res;
+
+ /* default to no */
+ *result = 0;
+
+ /* valid value of t? */
+ if (t < 1 || t > 256) {
+ return MP_VAL;
+ }
+
+ /* first perform trial division */
+ if ((err = mp_prime_is_divisible (a, &res)) != MP_OKAY) {
+ return err;
+ }
+ if (res == 1) {
+ return MP_OKAY;
+ }
+
+ /* now perform the miller-rabin rounds */
+ if ((err = mp_init (&b)) != MP_OKAY) {
+ return err;
+ }
+
+ for (ix = 0; ix < t; ix++) {
+ /* set the prime */
+ mp_set (&b, __prime_tab[ix]);
+
+ if ((err = mp_prime_miller_rabin (a, &b, &res)) != MP_OKAY) {
+ goto __B;
+ }
+
+ if (res == 0) {
+ goto __B;
+ }
+ }
+
+ /* passed the test */
+ *result = 1;
+__B:mp_clear (&b);
+ return err;
+}
diff --git a/bn_mp_prime_miller_rabin.c b/bn_mp_prime_miller_rabin.c
new file mode 100644
index 0000000..422a5eb
--- /dev/null
+++ b/bn_mp_prime_miller_rabin.c
@@ -0,0 +1,90 @@
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* Miller-Rabin test of "a" to the base of "b" as described in
+ * HAC pp. 139 Algorithm 4.24
+ *
+ * Sets result to 0 if definitely composite or 1 if probably prime.
+ * Randomly the chance of error is no more than 1/4 and often
+ * very much lower.
+ */
+int
+mp_prime_miller_rabin (mp_int * a, mp_int * b, int *result)
+{
+ mp_int n1, y, r;
+ int s, j, err;
+
+ /* default */
+ *result = 0;
+
+ /* get n1 = a - 1 */
+ if ((err = mp_init_copy (&n1, a)) != MP_OKAY) {
+ return err;
+ }
+ if ((err = mp_sub_d (&n1, 1, &n1)) != MP_OKAY) {
+ goto __N1;
+ }
+
+ /* set 2^s * r = n1 */
+ if ((err = mp_init_copy (&r, &n1)) != MP_OKAY) {
+ goto __N1;
+ }
+ s = 0;
+ while (mp_iseven (&r) == 1) {
+ ++s;
+ if ((err = mp_div_2 (&r, &r)) != MP_OKAY) {
+ goto __R;
+ }
+ }
+
+ /* compute y = b^r mod a */
+ if ((err = mp_init (&y)) != MP_OKAY) {
+ goto __R;
+ }
+ if ((err = mp_exptmod (b, &r, a, &y)) != MP_OKAY) {
+ goto __Y;
+ }
+
+ /* if y != 1 and y != n1 do */
+ if (mp_cmp_d (&y, 1) != MP_EQ && mp_cmp (&y, &n1) != MP_EQ) {
+ j = 1;
+ /* while j <= s-1 and y != n1 */
+ while ((j <= (s - 1)) && mp_cmp (&y, &n1) != MP_EQ) {
+ if ((err = mp_sqrmod (&y, a, &y)) != MP_OKAY) {
+ goto __Y;
+ }
+
+ /* if y == 1 then composite */
+ if (mp_cmp_d (&y, 1) == MP_EQ) {
+ goto __Y;
+ }
+
+ ++j;
+ }
+
+ /* if y != n1 then composite */
+ if (mp_cmp (&y, &n1) != MP_EQ) {
+ goto __Y;
+ }
+ }
+
+ /* probably prime now */
+ *result = 1;
+__Y:mp_clear (&y);
+__R:mp_clear (&r);
+__N1:mp_clear (&n1);
+ return err;
+}
diff --git a/bn_mp_prime_next_prime.c b/bn_mp_prime_next_prime.c
new file mode 100644
index 0000000..932d914
--- /dev/null
+++ b/bn_mp_prime_next_prime.c
@@ -0,0 +1,54 @@
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* finds the next prime after the number "a" using "t" trials
+ * of Miller-Rabin.
+ */
+int mp_prime_next_prime(mp_int *a, int t)
+{
+ int err, res;
+
+ if (mp_iseven(a) == 1) {
+ /* force odd */
+ if ((err = mp_add_d(a, 1, a)) != MP_OKAY) {
+ return err;
+ }
+ } else {
+ /* force to next number */
+ if ((err = mp_add_d(a, 2, a)) != MP_OKAY) {
+ return err;
+ }
+ }
+
+ for (;;) {
+ /* is this prime? */
+ if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY) {
+ return err;
+ }
+
+ if (res == 1) {
+ break;
+ }
+
+ /* add two, next candidate */
+ if ((err = mp_add_d(a, 2, a)) != MP_OKAY) {
+ return err;
+ }
+ }
+
+ return MP_OKAY;
+}
+
diff --git a/bn_mp_rshd.c b/bn_mp_rshd.c
index ef1a6bf..582c8c5 100644
--- a/bn_mp_rshd.c
+++ b/bn_mp_rshd.c
@@ -38,19 +38,19 @@ mp_rshd (mp_int * a, int b)
/* base */
tmpa = a->dp;
-
+
/* offset into digits */
tmpaa = a->dp + b;
-
+
/* this is implemented as a sliding window where the window is b-digits long
* and digits from the top of the window are copied to the bottom
*
* e.g.
-
+
b-2 | b-1 | b0 | b1 | b2 | ... | bb | ---->
/\ | ---->
\-------------------/ ---->
- */
+ */
for (x = 0; x < (a->used - b); x++) {
*tmpa++ = *tmpaa++;
}
diff --git a/bn_mp_shrink.c b/bn_mp_shrink.c
index c3f1aa9..023a46b 100644
--- a/bn_mp_shrink.c
+++ b/bn_mp_shrink.c
@@ -19,7 +19,7 @@ int
mp_shrink (mp_int * a)
{
if (a->alloc != a->used) {
- if ((a->dp = realloc (a->dp, sizeof (mp_digit) * a->used)) == NULL) {
+ if ((a->dp = OPT_CAST realloc (a->dp, sizeof (mp_digit) * a->used)) == NULL) {
return MP_MEM;
}
a->alloc = a->used;
diff --git a/bn_prime_tab.c b/bn_prime_tab.c
new file mode 100644
index 0000000..e663578
--- /dev/null
+++ b/bn_prime_tab.c
@@ -0,0 +1,52 @@
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+const mp_digit __prime_tab[] = {
+ 0x0002, 0x0003, 0x0005, 0x0007, 0x000B, 0x000D, 0x0011, 0x0013,
+ 0x0017, 0x001D, 0x001F, 0x0025, 0x0029, 0x002B, 0x002F, 0x0035,
+ 0x003B, 0x003D, 0x0043, 0x0047, 0x0049, 0x004F, 0x0053, 0x0059,
+ 0x0061, 0x0065, 0x0067, 0x006B, 0x006D, 0x0071, 0x007F, 0x0083,
+ 0x0089, 0x008B, 0x0095, 0x0097, 0x009D, 0x00A3, 0x00A7, 0x00AD,
+ 0x00B3, 0x00B5, 0x00BF, 0x00C1, 0x00C5, 0x00C7, 0x00D3, 0x00DF,
+ 0x00E3, 0x00E5, 0x00E9, 0x00EF, 0x00F1, 0x00FB, 0x0101, 0x0107,
+ 0x010D, 0x010F, 0x0115, 0x0119, 0x011B, 0x0125, 0x0133, 0x0137,
+
+ 0x0139, 0x013D, 0x014B, 0x0151, 0x015B, 0x015D, 0x0161, 0x0167,
+ 0x016F, 0x0175, 0x017B, 0x017F, 0x0185, 0x018D, 0x0191, 0x0199,
+ 0x01A3, 0x01A5, 0x01AF, 0x01B1, 0x01B7, 0x01BB, 0x01C1, 0x01C9,
+ 0x01CD, 0x01CF, 0x01D3, 0x01DF, 0x01E7, 0x01EB, 0x01F3, 0x01F7,
+ 0x01FD, 0x0209, 0x020B, 0x021D, 0x0223, 0x022D, 0x0233, 0x0239,
+ 0x023B, 0x0241, 0x024B, 0x0251, 0x0257, 0x0259, 0x025F, 0x0265,
+ 0x0269, 0x026B, 0x0277, 0x0281, 0x0283, 0x0287, 0x028D, 0x0293,
+ 0x0295, 0x02A1, 0x02A5, 0x02AB, 0x02B3, 0x02BD, 0x02C5, 0x02CF,
+
+ 0x02D7, 0x02DD, 0x02E3, 0x02E7, 0x02EF, 0x02F5, 0x02F9, 0x0301,
+ 0x0305, 0x0313, 0x031D, 0x0329, 0x032B, 0x0335, 0x0337, 0x033B,
+ 0x033D, 0x0347, 0x0355, 0x0359, 0x035B, 0x035F, 0x036D, 0x0371,
+ 0x0373, 0x0377, 0x038B, 0x038F, 0x0397, 0x03A1, 0x03A9, 0x03AD,
+ 0x03B3, 0x03B9, 0x03C7, 0x03CB, 0x03D1, 0x03D7, 0x03DF, 0x03E5,
+ 0x03F1, 0x03F5, 0x03FB, 0x03FD, 0x0407, 0x0409, 0x040F, 0x0419,
+ 0x041B, 0x0425, 0x0427, 0x042D, 0x043F, 0x0443, 0x0445, 0x0449,
+ 0x044F, 0x0455, 0x045D, 0x0463, 0x0469, 0x047F, 0x0481, 0x048B,
+
+ 0x0493, 0x049D, 0x04A3, 0x04A9, 0x04B1, 0x04BD, 0x04C1, 0x04C7,
+ 0x04CD, 0x04CF, 0x04D5, 0x04E1, 0x04EB, 0x04FD, 0x04FF, 0x0503,
+ 0x0509, 0x050B, 0x0511, 0x0515, 0x0517, 0x051B, 0x0527, 0x0529,
+ 0x052F, 0x0551, 0x0557, 0x055D, 0x0565, 0x0577, 0x0581, 0x058F,
+ 0x0593, 0x0595, 0x0599, 0x059F, 0x05A7, 0x05AB, 0x05AD, 0x05B3,
+ 0x05BF, 0x05C9, 0x05CB, 0x05CF, 0x05D1, 0x05D5, 0x05DB, 0x05E7,
+ 0x05F3, 0x05FB, 0x0607, 0x060D, 0x0611, 0x0617, 0x061F, 0x0623,
+ 0x062B, 0x062F, 0x063D, 0x0641, 0x0647, 0x0649, 0x064D, 0x0653
+};
diff --git a/bn_radix.c b/bn_radix.c
index 1f06389..6aeda17 100644
--- a/bn_radix.c
+++ b/bn_radix.c
@@ -93,7 +93,7 @@ mp_toradix (mp_int * a, char *str, int radix)
*str++ = s_rmap[d];
++digs;
}
- bn_reverse ((unsigned char *) _s, digs);
+ bn_reverse ((unsigned char *)_s, digs);
*str++ = '\0';
mp_clear (&t);
return MP_OKAY;
diff --git a/bn_s_mp_add.c b/bn_s_mp_add.c
index 314db79..ceb2702 100644
--- a/bn_s_mp_add.c
+++ b/bn_s_mp_add.c
@@ -55,13 +55,13 @@ s_mp_add (mp_int * a, mp_int * b, mp_int * c)
register int i;
/* alias for digit pointers */
-
+
/* first input */
tmpa = a->dp;
-
+
/* second input */
tmpb = b->dp;
-
+
/* destination */
tmpc = c->dp;
diff --git a/bncore.c b/bncore.c
index ba9fbf9..3660c6d 100644
--- a/bncore.c
+++ b/bncore.c
@@ -18,5 +18,3 @@
int KARATSUBA_MUL_CUTOFF = 73, /* Min. number of digits before Karatsuba multiplication is used. */
KARATSUBA_SQR_CUTOFF = 121, /* Min. number of digits before Karatsuba squaring is used. */
MONTGOMERY_EXPT_CUTOFF = 128; /* max. number of digits that montgomery reductions will help for */
-
-
diff --git a/changes.txt b/changes.txt
index 284d40e..df7ac4e 100644
--- a/changes.txt
+++ b/changes.txt
@@ -1,3 +1,14 @@
+Mar 22nd, 2003
+v0.15 -- Added series of prime testing routines to lib
+ -- Fixed up etc/tune.c
+ -- Added DR reduction algorithm
+ -- Beefed up the manual more.
+ -- Fixed up demo/demo.c so it doesn't have so many warnings and it does the full series of
+ tests
+ -- Added "pre-gen" directory which will hold a "gen.pl"'ed copy of the entire lib [done at
+ zipup time so its always the latest]
+ -- Added conditional casts for C++ users [boo!]
+
Mar 15th, 2003
v0.14 -- Tons of manual updates
-- cleaned up the directory
diff --git a/demo/demo.c b/demo/demo.c
index 0d79021..8cf6dfe 100644
--- a/demo/demo.c
+++ b/demo/demo.c
@@ -89,7 +89,7 @@ int main(void)
unsigned long expt_n, add_n, sub_n, mul_n, div_n, sqr_n, mul2d_n, div2d_n, gcd_n, lcm_n, inv_n,
div2_n, mul2_n;
unsigned rr;
- int cnt;
+ int cnt, ix;
#ifdef TIMER
int n;
@@ -103,10 +103,43 @@ int main(void)
mp_init(&d);
mp_init(&e);
mp_init(&f);
+
+/* test the DR reduction */
+#if 0
+
+ srand(time(NULL));
+ for (cnt = 2; cnt < 32; cnt++) {
+ printf("%d digit modulus\n", cnt);
+ mp_grow(&a, cnt);
+ mp_zero(&a);
+ for (ix = 1; ix < cnt; ix++) {
+ a.dp[ix] = MP_MASK;
+ }
+ a.used = cnt;
+ mp_prime_next_prime(&a, 3);
+
+ mp_rand(&b, cnt - 1);
+ mp_copy(&b, &c);
+
+ rr = 0;
+ do {
+ if (!(rr & 127)) { printf("%9lu\r", rr); fflush(stdout); }
+ mp_sqr(&b, &b); mp_add_d(&b, 1, &b);
+ mp_copy(&b, &c);
+
+ mp_mod(&b, &a, &b);
+ mp_dr_reduce(&c, &a, (1<<DIGIT_BIT)-a.dp[0]);
+
+ if (mp_cmp(&b, &c) != MP_EQ) {
+ printf("Failed on trial %lu\n", rr); exit(-1);
+ }
+ } while (++rr < 1000000);
+ printf("Passed DR test for %d digits\n", cnt);
+ }
+#endif
#ifdef TIMER
printf("CLOCKS_PER_SEC == %lu\n", CLOCKS_PER_SEC);
-goto expttime;
log = fopen("add.log", "w");
for (cnt = 4; cnt <= 128; cnt += 4) {
@@ -136,7 +169,6 @@ goto expttime;
}
fclose(log);
-multtime:
log = fopen("sqr.log", "w");
for (cnt = 4; cnt <= 128; cnt += 4) {
@@ -165,9 +197,18 @@ multtime:
}
fclose(log);
-expttime:
{
char *primes[] = {
+ /* DR moduli */
+ "14059105607947488696282932836518693308967803494693489478439861164411992439598399594747002144074658928593502845729752797260025831423419686528151609940203368612079",
+ "101745825697019260773923519755878567461315282017759829107608914364075275235254395622580447400994175578963163918967182013639660669771108475957692810857098847138903161308502419410142185759152435680068435915159402496058513611411688900243039",
+ "736335108039604595805923406147184530889923370574768772191969612422073040099331944991573923112581267542507986451953227192970402893063850485730703075899286013451337291468249027691733891486704001513279827771740183629161065194874727962517148100775228363421083691764065477590823919364012917984605619526140821797602431",
+ "38564998830736521417281865696453025806593491967131023221754800625044118265468851210705360385717536794615180260494208076605798671660719333199513807806252394423283413430106003596332513246682903994829528690198205120921557533726473585751382193953592127439965050261476810842071573684505878854588706623484573925925903505747545471088867712185004135201289273405614415899438276535626346098904241020877974002916168099951885406379295536200413493190419727789712076165162175783",
+ "542189391331696172661670440619180536749994166415993334151601745392193484590296600979602378676624808129613777993466242203025054573692562689251250471628358318743978285860720148446448885701001277560572526947619392551574490839286458454994488665744991822837769918095117129546414124448777033941223565831420390846864429504774477949153794689948747680362212954278693335653935890352619041936727463717926744868338358149568368643403037768649616778526013610493696186055899318268339432671541328195724261329606699831016666359440874843103020666106568222401047720269951530296879490444224546654729111504346660859907296364097126834834235287147",
+ "1487259134814709264092032648525971038895865645148901180585340454985524155135260217788758027400478312256339496385275012465661575576202252063145698732079880294664220579764848767704076761853197216563262660046602703973050798218246170835962005598561669706844469447435461092542265792444947706769615695252256130901271870341005768912974433684521436211263358097522726462083917939091760026658925757076733484173202927141441492573799914240222628795405623953109131594523623353044898339481494120112723445689647986475279242446083151413667587008191682564376412347964146113898565886683139407005941383669325997475076910488086663256335689181157957571445067490187939553165903773554290260531009121879044170766615232300936675369451260747671432073394867530820527479172464106442450727640226503746586340279816318821395210726268291535648506190714616083163403189943334431056876038286530365757187367147446004855912033137386225053275419626102417236133948503",
+ "1095121115716677802856811290392395128588168592409109494900178008967955253005183831872715423151551999734857184538199864469605657805519106717529655044054833197687459782636297255219742994736751541815269727940751860670268774903340296040006114013971309257028332849679096824800250742691718610670812374272414086863715763724622797509437062518082383056050144624962776302147890521249477060215148275163688301275847155316042279405557632639366066847442861422164832655874655824221577849928863023018366835675399949740429332468186340518172487073360822220449055340582568461568645259954873303616953776393853174845132081121976327462740354930744487429617202585015510744298530101547706821590188733515880733527449780963163909830077616357506845523215289297624086914545378511082534229620116563260168494523906566709418166011112754529766183554579321224940951177394088465596712620076240067370589036924024728375076210477267488679008016579588696191194060127319035195370137160936882402244399699172017835144537488486396906144217720028992863941288217185353914991583400421682751000603596655790990815525126154394344641336397793791497068253936771017031980867706707490224041075826337383538651825493679503771934836094655802776331664261631740148281763487765852746577808019633679",
+
+ /* generic unrestricted moduli */
"17933601194860113372237070562165128350027320072176844226673287945873370751245439587792371960615073855669274087805055507977323024886880985062002853331424203",
"2893527720709661239493896562339544088620375736490408468011883030469939904368086092336458298221245707898933583190713188177399401852627749210994595974791782790253946539043962213027074922559572312141181787434278708783207966459019479487",
"347743159439876626079252796797422223177535447388206607607181663903045907591201940478223621722118173270898487582987137708656414344685816179420855160986340457973820182883508387588163122354089264395604796675278966117567294812714812796820596564876450716066283126720010859041484786529056457896367683122960411136319",
@@ -208,7 +249,7 @@ expttime:
}
}
fclose(log);
-invtime:
+
log = fopen("invmod.log", "w");
for (cnt = 4; cnt <= 128; cnt += 4) {
mp_rand(&a, cnt);
@@ -241,8 +282,7 @@ invtime:
div2_n = mul2_n = inv_n = expt_n = lcm_n = gcd_n = add_n =
sub_n = mul_n = div_n = sqr_n = mul2d_n = div2d_n = cnt = 0;
for (;;) {
- if (!(++cnt & 15)) sleep(3);
-
+
/* randomly clear and re-init one variable, this has the affect of triming the alloc space */
switch (abs(rand()) % 7) {
case 0: mp_clear(&a); mp_init(&a); break;
diff --git a/etc/drprime.c b/etc/drprime.c
new file mode 100644
index 0000000..157e358
--- /dev/null
+++ b/etc/drprime.c
@@ -0,0 +1,53 @@
+/* Makes safe primes of a DR nature */
+#include <tommath.h>
+
+const int sizes[] = { 8, 19, 28, 37, 55, 74, 110, 147 };
+int main(void)
+{
+ int res, x, y;
+ char buf[4096];
+ FILE *out;
+ mp_int a, b;
+
+ mp_init(&a);
+ mp_init(&b);
+
+ out = fopen("drprimes.txt", "w");
+ for (x = 0; x < (int)(sizeof(sizes)/sizeof(sizes[0])); x++) {
+ printf("Seeking a %d-bit safe prime\n", sizes[x] * DIGIT_BIT);
+ mp_grow(&a, sizes[x]);
+ mp_zero(&a);
+ for (y = 1; y < sizes[x]; y++) {
+ a.dp[y] = MP_MASK;
+ }
+
+ /* make a DR modulus */
+ a.dp[0] = 1;
+ a.used = sizes[x];
+
+ /* now loop */
+ do {
+ fflush(stdout);
+ mp_prime_next_prime(&a, 3);
+ printf(".");
+ mp_sub_d(&a, 1, &b);
+ mp_div_2(&b, &b);
+ mp_prime_is_prime(&b, 3, &res);
+ } while (res == 0);
+
+ if (mp_dr_is_modulus(&a) != 1) {
+ printf("Error not DR modulus\n");
+ } else {
+ mp_toradix(&a, buf, 10);
+ printf("\n\np == %s\n\n", buf);
+ fprintf(out, "%d-bit prime:\np == %s\n\n", mp_count_bits(&a), buf); fflush(out);
+ }
+ }
+ fclose(out);
+
+ mp_clear(&a);
+ mp_clear(&b);
+
+ return 0;
+}
+
diff --git a/etc/drprimes.1 b/etc/drprimes.1
new file mode 100644
index 0000000..e7cc366
--- /dev/null
+++ b/etc/drprimes.1
@@ -0,0 +1,23 @@
+224-bit prime:
+p == 26959946667150639794667015087019630673637144422540572481103341844143
+
+532-bit prime:
+p == 14059105607947488696282932836518693308967803494693489478439861164411992439598399594747002144074658928593502845729752797260025831423419686528151609940203368691747
+
+784-bit prime:
+p == 101745825697019260773923519755878567461315282017759829107608914364075275235254395622580447400994175578963163918967182013639660669771108475957692810857098847138903161308502419410142185759152435680068435915159402496058513611411688900243039
+
+1036-bit prime:
+p == 736335108039604595805923406147184530889923370574768772191969612422073040099331944991573923112581267542507986451953227192970402893063850485730703075899286013451337291468249027691733891486704001513279827771740183629161065194874727962517148100775228363421083691764065477590823919364012917984605619526140821798437127
+
+1540-bit prime:
+p == 38564998830736521417281865696453025806593491967131023221754800625044118265468851210705360385717536794615180260494208076605798671660719333199513807806252394423283413430106003596332513246682903994829528690198205120921557533726473585751382193953592127439965050261476810842071573684505878854588706623484573925925903505747545471088867712185004135201289273405614415899438276535626346098904241020877974002916168099951885406379295536200413493190419727789712076165162175783
+
+2072-bit prime:
+p == 542189391331696172661670440619180536749994166415993334151601745392193484590296600979602378676624808129613777993466242203025054573692562689251250471628358318743978285860720148446448885701001277560572526947619392551574490839286458454994488665744991822837769918095117129546414124448777033941223565831420390846864429504774477949153794689948747680362212954278693335653935890352619041936727463717926744868338358149568368643403037768649616778526013610493696186055899318268339432671541328195724261329606699831016666359440874843103020666106568222401047720269951530296879490444224546654729111504346660859907296364097126834834235287147
+
+3080-bit prime:
+p == 1487259134814709264092032648525971038895865645148901180585340454985524155135260217788758027400478312256339496385275012465661575576202252063145698732079880294664220579764848767704076761853197216563262660046602703973050798218246170835962005598561669706844469447435461092542265792444947706769615695252256130901271870341005768912974433684521436211263358097522726462083917939091760026658925757076733484173202927141441492573799914240222628795405623953109131594523623353044898339481494120112723445689647986475279242446083151413667587008191682564376412347964146113898565886683139407005941383669325997475076910488086663256335689181157957571445067490187939553165903773554290260531009121879044170766615232300936675369451260747671432073394867530820527479172464106442450727640226503746586340279816318821395210726268291535648506190714616083163403189943334431056876038286530365757187367147446004855912033137386225053275419626102417236133948503
+
+4116-bit prime:
+p == 1095121115716677802856811290392395128588168592409109494900178008967955253005183831872715423151551999734857184538199864469605657805519106717529655044054833197687459782636297255219742994736751541815269727940751860670268774903340296040006114013971309257028332849679096824800250742691718610670812374272414086863715763724622797509437062518082383056050144624962776302147890521249477060215148275163688301275847155316042279405557632639366066847442861422164832655874655824221577849928863023018366835675399949740429332468186340518172487073360822220449055340582568461568645259954873303616953776393853174845132081121976327462740354930744487429617202585015510744298530101547706821590188733515880733527449780963163909830077616357506845523215289297624086914545378511082534229620116563260168494523906566709418166011112754529766183554579321224940951177394088465596712620076240067370589036924024728375076210477267488679008016579588696191194060127319035195370137160936882402244399699172017835144537488486396906144217720028992863941288217185353914991583400421682751000603596655790990815525126154394344641336397793791497068253936771017031980867706707490224041075826337383538651825493679503771934836094655802776331664261631740148281763487765852746577808019633679
diff --git a/etc/makefile b/etc/makefile
index 81f692c..261cd1c 100644
--- a/etc/makefile
+++ b/etc/makefile
@@ -15,6 +15,9 @@ tune: tune.o
mersenne: mersenne.o
$(CC) mersenne.o $(LIBNAME) -o mersenne
+
+drprime: drprime.o
+ $(CC) drprime.o $(LIBNAME) -o drprime
clean:
- rm -f *.log *.o *.obj *.exe pprime tune mersenne
\ No newline at end of file
+ rm -f *.log *.o *.obj *.exe pprime tune mersenne drprime
\ No newline at end of file
diff --git a/etc/makefile.msvc b/etc/makefile.msvc
index 6011cf3..06a95e2 100644
--- a/etc/makefile.msvc
+++ b/etc/makefile.msvc
@@ -11,4 +11,7 @@ mersenne: mersenne.obj
cl mersenne.obj ../tommath.lib
tune: tune.obj
- cl tune.obj ../tommath.lib
\ No newline at end of file
+ cl tune.obj ../tommath.lib
+
+drprime: drprime.obj
+ cl drprime.obj ../tommath.lib
\ No newline at end of file
diff --git a/etc/tune.c b/etc/tune.c
index f50edab..0346677 100644
--- a/etc/tune.c
+++ b/etc/tune.c
@@ -17,7 +17,7 @@ time_mult (void)
mp_init (&c);
t1 = clock ();
- for (x = 4; x <= 128; x += 4) {
+ for (x = 4; x <= 144; x += 4) {
mp_rand (&a, x);
mp_rand (&b, x);
for (y = 0; y < 10000; y++) {
@@ -41,7 +41,7 @@ time_sqr (void)
mp_init (&b);
t1 = clock ();
- for (x = 4; x <= 128; x += 4) {
+ for (x = 4; x <= 144; x += 4) {
mp_rand (&a, x);
for (y = 0; y < 10000; y++) {
mp_sqr (&a, &b);
@@ -65,7 +65,7 @@ time_expt (void)
mp_init (&d);
t1 = clock ();
- for (x = 4; x <= 128; x += 4) {
+ for (x = 4; x <= 144; x += 4) {
mp_rand (&a, x);
mp_rand (&b, x);
mp_rand (&c, x);
@@ -96,7 +96,7 @@ main (void)
/* tune multiplication first */
log = fopen ("mult.log", "w");
best = CLOCKS_PER_SEC * 1000;
- for (KARATSUBA_MUL_CUTOFF = 8; KARATSUBA_MUL_CUTOFF <= 128; KARATSUBA_MUL_CUTOFF++) {
+ for (KARATSUBA_MUL_CUTOFF = 8; KARATSUBA_MUL_CUTOFF <= 144; KARATSUBA_MUL_CUTOFF++) {
ti = time_mult ();
printf ("%4d : %9lu\r", KARATSUBA_MUL_CUTOFF, ti);
fprintf (log, "%d, %lu\n", KARATSUBA_MUL_CUTOFF, ti);
@@ -112,7 +112,7 @@ main (void)
/* tune squaring */
log = fopen ("sqr.log", "w");
best = CLOCKS_PER_SEC * 1000;
- for (KARATSUBA_SQR_CUTOFF = 8; KARATSUBA_SQR_CUTOFF <= 128; KARATSUBA_SQR_CUTOFF++) {
+ for (KARATSUBA_SQR_CUTOFF = 8; KARATSUBA_SQR_CUTOFF <= 144; KARATSUBA_SQR_CUTOFF++) {
ti = time_sqr ();
printf ("%4d : %9lu\r", KARATSUBA_SQR_CUTOFF, ti);
fprintf (log, "%d, %lu\n", KARATSUBA_SQR_CUTOFF, ti);
@@ -131,7 +131,7 @@ main (void)
log = fopen ("expt.log", "w");
best = CLOCKS_PER_SEC * 1000;
- for (MONTGOMERY_EXPT_CUTOFF = 8; MONTGOMERY_EXPT_CUTOFF <= 192; MONTGOMERY_EXPT_CUTOFF++) {
+ for (MONTGOMERY_EXPT_CUTOFF = 8; MONTGOMERY_EXPT_CUTOFF <= 144; MONTGOMERY_EXPT_CUTOFF++) {
ti = time_expt ();
printf ("%4d : %9lu\r", MONTGOMERY_EXPT_CUTOFF, ti);
fflush (stdout);
diff --git a/makefile b/makefile
index 856274b..4219e6b 100644
--- a/makefile
+++ b/makefile
@@ -1,6 +1,6 @@
CFLAGS += -I./ -Wall -W -Wshadow -O3 -fomit-frame-pointer -funroll-loops
-VERSION=0.14
+VERSION=0.15
default: libtommath.a
@@ -30,7 +30,9 @@ bn_mp_reduce.o bn_mp_montgomery_setup.o bn_fast_mp_montgomery_reduce.o bn_mp_mon
bn_mp_exptmod_fast.o bn_mp_exptmod.o bn_mp_2expt.o bn_mp_n_root.o bn_mp_jacobi.o bn_reverse.o \
bn_mp_count_bits.o bn_mp_read_unsigned_bin.o bn_mp_read_signed_bin.o bn_mp_to_unsigned_bin.o \
bn_mp_to_signed_bin.o bn_mp_unsigned_bin_size.o bn_mp_signed_bin_size.o bn_radix.o \
-bn_mp_xor.o bn_mp_and.o bn_mp_or.o bn_mp_rand.o bn_mp_montgomery_calc_normalization.o
+bn_mp_xor.o bn_mp_and.o bn_mp_or.o bn_mp_rand.o bn_mp_montgomery_calc_normalization.o \
+bn_mp_prime_is_divisible.o bn_prime_tab.o bn_mp_prime_fermat.o bn_mp_prime_miller_rabin.o \
+bn_mp_prime_is_prime.o bn_mp_prime_next_prime.o bn_mp_dr_reduce.o
libtommath.a: $(OBJECTS)
$(AR) $(ARFLAGS) libtommath.a $(OBJECTS)
@@ -65,6 +67,7 @@ clean:
cd etc ; make clean
zipup: clean docs
+ perl gen.pl ; mv mpi.c pre_gen/ ; \
cd .. ; rm -rf ltm* libtommath-$(VERSION) ; mkdir libtommath-$(VERSION) ; \
cp -R ./libtommath/* ./libtommath-$(VERSION)/ ; tar -c libtommath-$(VERSION)/* > ltm-$(VERSION).tar ; \
bzip2 -9vv ltm-$(VERSION).tar ; zip -9 -r ltm-$(VERSION).zip libtommath-$(VERSION)/*
diff --git a/makefile.msvc b/makefile.msvc
index 7c5f763..4daf310 100644
--- a/makefile.msvc
+++ b/makefile.msvc
@@ -20,7 +20,10 @@ bn_mp_reduce.obj bn_mp_montgomery_setup.obj bn_fast_mp_montgomery_reduce.obj bn_
bn_mp_exptmod_fast.obj bn_mp_exptmod.obj bn_mp_2expt.obj bn_mp_n_root.obj bn_mp_jacobi.obj bn_reverse.obj \
bn_mp_count_bits.obj bn_mp_read_unsigned_bin.obj bn_mp_read_signed_bin.obj bn_mp_to_unsigned_bin.obj \
bn_mp_to_signed_bin.obj bn_mp_unsigned_bin_size.obj bn_mp_signed_bin_size.obj bn_radix.obj \
-bn_mp_xor.obj bn_mp_and.obj bn_mp_or.obj bn_mp_rand.obj bn_mp_montgomery_calc_normalization.obj
+bn_mp_xor.obj bn_mp_and.obj bn_mp_or.obj bn_mp_rand.obj bn_mp_montgomery_calc_normalization.obj \
+bn_mp_prime_is_divisible.obj bn_prime_tab.obj bn_mp_prime_fermat.obj bn_mp_prime_miller_rabin.obj \
+bn_mp_prime_is_prime.obj bn_mp_prime_next_prime.obj bn_mp_dr_reduce.obj
+
library: $(OBJECTS)
lib /out:tommath.lib $(OBJECTS)
diff --git a/mtest/mtest.c b/mtest/mtest.c
index 245c0d7..fe02906 100644
--- a/mtest/mtest.c
+++ b/mtest/mtest.c
@@ -41,7 +41,7 @@ void rand_num(mp_int *a)
unsigned char buf[512];
top:
- size = 1 + ((fgetc(rng)*fgetc(rng)) % 512);
+ size = 1 + ((fgetc(rng)*fgetc(rng)) % 96);
buf[0] = (fgetc(rng)&1)?1:0;
fread(buf+1, 1, size, rng);
for (n = 0; n < size; n++) {
@@ -57,7 +57,7 @@ void rand_num2(mp_int *a)
unsigned char buf[512];
top:
- size = 1 + ((fgetc(rng)*fgetc(rng)) % 512);
+ size = 1 + ((fgetc(rng)*fgetc(rng)) % 96);
buf[0] = (fgetc(rng)&1)?1:0;
fread(buf+1, 1, size, rng);
for (n = 0; n < size; n++) {
@@ -73,8 +73,6 @@ int main(void)
mp_int a, b, c, d, e;
char buf[4096];
- static int tests[] = { 11, 12 };
-
mp_init(&a);
mp_init(&b);
mp_init(&c);
diff --git a/pre_gen/mpi.c b/pre_gen/mpi.c
new file mode 100644
index 0000000..d659761
--- /dev/null
+++ b/pre_gen/mpi.c
@@ -0,0 +1,5993 @@
+/* File Generated Automatically by gen.pl */
+
+/* Start: bncore.c */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* configured for a AMD Duron Morgan core with etc/tune.c */
+int KARATSUBA_MUL_CUTOFF = 73, /* Min. number of digits before Karatsuba multiplication is used. */
+ KARATSUBA_SQR_CUTOFF = 121, /* Min. number of digits before Karatsuba squaring is used. */
+ MONTGOMERY_EXPT_CUTOFF = 128; /* max. number of digits that montgomery reductions will help for */
+
+/* End: bncore.c */
+
+/* Start: bn_fast_mp_invmod.c */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* computes the modular inverse via binary extended euclidean algorithm,
+ * that is c = 1/a mod b
+ *
+ * Based on mp_invmod except this is optimized for the case where b is
+ * odd as per HAC Note 14.64 on pp. 610
+ */
+int
+fast_mp_invmod (mp_int * a, mp_int * b, mp_int * c)
+{
+ mp_int x, y, u, v, B, D;
+ int res, neg;
+
+ if ((res = mp_init (&x)) != MP_OKAY) {
+ goto __ERR;
+ }
+
+ if ((res = mp_init (&y)) != MP_OKAY) {
+ goto __X;
+ }
+
+ if ((res = mp_init (&u)) != MP_OKAY) {
+ goto __Y;
+ }
+
+ if ((res = mp_init (&v)) != MP_OKAY) {
+ goto __U;
+ }
+
+ if ((res = mp_init (&B)) != MP_OKAY) {
+ goto __V;
+ }
+
+ if ((res = mp_init (&D)) != MP_OKAY) {
+ goto __B;
+ }
+
+ /* x == modulus, y == value to invert */
+ if ((res = mp_copy (b, &x)) != MP_OKAY) {
+ goto __D;
+ }
+ if ((res = mp_copy (a, &y)) != MP_OKAY) {
+ goto __D;
+ }
+
+ if ((res = mp_abs (&y, &y)) != MP_OKAY) {
+ goto __D;
+ }
+
+ /* 2. [modified] if x,y are both even then return an error!
+ *
+ * That is if gcd(x,y) = 2 * k then obviously there is no inverse.
+ */
+ if (mp_iseven (&x) == 1 && mp_iseven (&y) == 1) {
+ res = MP_VAL;
+ goto __D;
+ }
+
+ /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
+ if ((res = mp_copy (&x, &u)) != MP_OKAY) {
+ goto __D;
+ }
+ if ((res = mp_copy (&y, &v)) != MP_OKAY) {
+ goto __D;
+ }
+ mp_set (&D, 1);
+
+top:
+ /* 4. while u is even do */
+ while (mp_iseven (&u) == 1) {
+ /* 4.1 u = u/2 */
+ if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
+ goto __D;
+ }
+ /* 4.2 if A or B is odd then */
+ if (mp_iseven (&B) == 0) {
+ if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
+ goto __D;
+ }
+ }
+ /* A = A/2, B = B/2 */
+ if ((res = mp_div_2 (&B, &B)) != MP_OKAY) {
+ goto __D;
+ }
+ }
+
+
+ /* 5. while v is even do */
+ while (mp_iseven (&v) == 1) {
+ /* 5.1 v = v/2 */
+ if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
+ goto __D;
+ }
+ /* 5.2 if C,D are even then */
+ if (mp_iseven (&D) == 0) {
+ /* C = (C+y)/2, D = (D-x)/2 */
+ if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
+ goto __D;
+ }
+ }
+ /* C = C/2, D = D/2 */
+ if ((res = mp_div_2 (&D, &D)) != MP_OKAY) {
+ goto __D;
+ }
+ }
+
+ /* 6. if u >= v then */
+ if (mp_cmp (&u, &v) != MP_LT) {
+ /* u = u - v, A = A - C, B = B - D */
+ if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) {
+ goto __D;
+ }
+
+ if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) {
+ goto __D;
+ }
+ } else {
+ /* v - v - u, C = C - A, D = D - B */
+ if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) {
+ goto __D;
+ }
+
+ if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) {
+ goto __D;
+ }
+ }
+
+ /* if not zero goto step 4 */
+ if (mp_iszero (&u) == 0) {
+ goto top;
+ }
+
+ /* now a = C, b = D, gcd == g*v */
+
+ /* if v != 1 then there is no inverse */
+ if (mp_cmp_d (&v, 1) != MP_EQ) {
+ res = MP_VAL;
+ goto __D;
+ }
+
+ /* b is now the inverse */
+ neg = a->sign;
+ while (D.sign == MP_NEG) {
+ if ((res = mp_add (&D, b, &D)) != MP_OKAY) {
+ goto __D;
+ }
+ }
+ mp_exch (&D, c);
+ c->sign = neg;
+ res = MP_OKAY;
+
+__D:mp_clear (&D);
+__B:mp_clear (&B);
+__V:mp_clear (&v);
+__U:mp_clear (&u);
+__Y:mp_clear (&y);
+__X:mp_clear (&x);
+__ERR:
+ return res;
+}
+
+/* End: bn_fast_mp_invmod.c */
+
+/* Start: bn_fast_mp_montgomery_reduce.c */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* computes xR^-1 == x (mod N) via Montgomery Reduction
+ *
+ * This is an optimized implementation of mp_montgomery_reduce
+ * which uses the comba method to quickly calculate the columns of the
+ * reduction.
+ *
+ * Based on Algorithm 14.32 on pp.601 of HAC.
+*/
+int
+fast_mp_montgomery_reduce (mp_int * a, mp_int * m, mp_digit mp)
+{
+ int ix, res, olduse;
+ mp_word W[512];
+
+ /* get old used count */
+ olduse = a->used;
+
+ /* grow a as required */
+ if (a->alloc < m->used + 1) {
+ if ((res = mp_grow (a, m->used + 1)) != MP_OKAY) {
+ return res;
+ }
+ }
+
+ {
+ register mp_word *_W;
+ register mp_digit *tmpa;
+
+ _W = W;
+ tmpa = a->dp;
+
+ /* copy the digits of a */
+ for (ix = 0; ix < a->used; ix++) {
+ *_W++ = *tmpa++;
+ }
+
+ /* zero the high words */
+ for (; ix < m->used * 2 + 1; ix++) {
+ *_W++ = 0;
+ }
+ }
+
+ for (ix = 0; ix < m->used; ix++) {
+ /* ui = ai * m' mod b
+ *
+ * We avoid a double precision multiplication (which isn't required)
+ * by casting the value down to a mp_digit. Note this requires that W[ix-1] have
+ * the carry cleared (see after the inner loop)
+ */
+ register mp_digit ui;
+ ui = (((mp_digit) (W[ix] & MP_MASK)) * mp) & MP_MASK;
+
+ /* a = a + ui * m * b^i
+ *
+ * This is computed in place and on the fly. The multiplication
+ * by b^i is handled by offseting which columns the results
+ * are added to.
+ *
+ * Note the comba method normally doesn't handle carries in the inner loop
+ * In this case we fix the carry from the previous column since the Montgomery
+ * reduction requires digits of the result (so far) [see above] to work. This is
+ * handled by fixing up one carry after the inner loop. The carry fixups are done
+ * in order so after these loops the first m->used words of W[] have the carries
+ * fixed
+ */
+ {
+ register int iy;
+ register mp_digit *tmpx;
+ register mp_word *_W;
+
+ /* alias for the digits of the modulus */
+ tmpx = m->dp;
+
+ /* Alias for the columns set by an offset of ix */
+ _W = W + ix;
+
+ /* inner loop */
+ for (iy = 0; iy < m->used; iy++) {
+ *_W++ += ((mp_word) ui) * ((mp_word) * tmpx++);
+ }
+ }
+
+ /* now fix carry for next digit, W[ix+1] */
+ W[ix + 1] += W[ix] >> ((mp_word) DIGIT_BIT);
+ }
+
+
+ {
+ register mp_digit *tmpa;
+ register mp_word *_W, *_W1;
+
+ /* nox fix rest of carries */
+ _W1 = W + ix;
+ _W = W + ++ix;
+
+ for (; ix <= m->used * 2 + 1; ix++) {
+ *_W++ += *_W1++ >> ((mp_word) DIGIT_BIT);
+ }
+
+ /* copy out, A = A/b^n
+ *
+ * The result is A/b^n but instead of converting from an array of mp_word
+ * to mp_digit than calling mp_rshd we just copy them in the right
+ * order
+ */
+ tmpa = a->dp;
+ _W = W + m->used;
+
+ for (ix = 0; ix < m->used + 1; ix++) {
+ *tmpa++ = *_W++ & ((mp_word) MP_MASK);
+ }
+
+ /* zero oldused digits, if the input a was larger than
+ * m->used+1 we'll have to clear the digits */
+ for (; ix < olduse; ix++) {
+ *tmpa++ = 0;
+ }
+ }
+
+ /* set the max used and clamp */
+ a->used = m->used + 1;
+ mp_clamp (a);
+
+ /* if A >= m then A = A - m */
+ if (mp_cmp_mag (a, m) != MP_LT) {
+ return s_mp_sub (a, m, a);
+ }
+ return MP_OKAY;
+}
+
+/* End: bn_fast_mp_montgomery_reduce.c */
+
+/* Start: bn_fast_s_mp_mul_digs.c */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* Fast (comba) multiplier
+ *
+ * This is the fast column-array [comba] multiplier. It is designed to compute
+ * the columns of the product first then handle the carries afterwards. This
+ * has the effect of making the nested loops that compute the columns very
+ * simple and schedulable on super-scalar processors.
+ *
+ * This has been modified to produce a variable number of digits of output so
+ * if say only a half-product is required you don't have to compute the upper half
+ * (a feature required for fast Barrett reduction).
+ *
+ * Based on Algorithm 14.12 on pp.595 of HAC.
+ *
+ */
+int
+fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
+{
+ int olduse, res, pa, ix;
+ mp_word W[512];
+
+ /* grow the destination as required */
+ if (c->alloc < digs) {
+ if ((res = mp_grow (c, digs)) != MP_OKAY) {
+ return res;
+ }
+ }
+
+ /* clear temp buf (the columns) */
+ memset (W, 0, sizeof (mp_word) * digs);
+
+ /* calculate the columns */
+ pa = a->used;
+ for (ix = 0; ix < pa; ix++) {
+
+ /* this multiplier has been modified to allow you to control how many digits
+ * of output are produced. So at most we want to make upto "digs" digits
+ * of output.
+ *
+ * this adds products to distinct columns (at ix+iy) of W
+ * note that each step through the loop is not dependent on
+ * the previous which means the compiler can easily unroll
+ * the loop without scheduling problems
+ */
+ {
+ register mp_digit tmpx, *tmpy;
+ register mp_word *_W;
+ register int iy, pb;
+
+ /* alias for the the word on the left e.g. A[ix] * A[iy] */
+ tmpx = a->dp[ix];
+
+ /* alias for the right side */
+ tmpy = b->dp;
+
+ /* alias for the columns, each step through the loop adds a new
+ term to each column
+ */
+ _W = W + ix;
+
+ /* the number of digits is limited by their placement. E.g.
+ we avoid multiplying digits that will end up above the # of
+ digits of precision requested
+ */
+ pb = MIN (b->used, digs - ix);
+
+ for (iy = 0; iy < pb; iy++) {
+ *_W++ += ((mp_word) tmpx) * ((mp_word) * tmpy++);
+ }
+ }
+
+ }
+
+ /* setup dest */
+ olduse = c->used;
+ c->used = digs;
+
+ {
+ register mp_digit *tmpc;
+
+ /* At this point W[] contains the sums of each column. To get the
+ * correct result we must take the extra bits from each column and
+ * carry them down
+ *
+ * Note that while this adds extra code to the multiplier it saves time
+ * since the carry propagation is removed from the above nested loop.
+ * This has the effect of reducing the work from N*(N+N*c)==N^2 + c*N^2 to
+ * N^2 + N*c where c is the cost of the shifting. On very small numbers
+ * this is slower but on most cryptographic size numbers it is faster.
+ */
+ tmpc = c->dp;
+ for (ix = 1; ix < digs; ix++) {
+ W[ix] += (W[ix - 1] >> ((mp_word) DIGIT_BIT));
+ *tmpc++ = (mp_digit) (W[ix - 1] & ((mp_word) MP_MASK));
+ }
+ *tmpc++ = (mp_digit) (W[digs - 1] & ((mp_word) MP_MASK));
+
+ /* clear unused */
+ for (; ix < olduse; ix++) {
+ *tmpc++ = 0;
+ }
+ }
+
+ mp_clamp (c);
+ return MP_OKAY;
+}
+
+/* End: bn_fast_s_mp_mul_digs.c */
+
+/* Start: bn_fast_s_mp_mul_high_digs.c */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* this is a modified version of fast_s_mp_mul_digs that only produces
+ * output digits *above* digs. See the comments for fast_s_mp_mul_digs
+ * to see how it works.
+ *
+ * This is used in the Barrett reduction since for one of the multiplications
+ * only the higher digits were needed. This essentially halves the work.
+ *
+ * Based on Algorithm 14.12 on pp.595 of HAC.
+ */
+int
+fast_s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
+{
+ int oldused, newused, res, pa, pb, ix;
+ mp_word W[512];
+
+ /* calculate size of product and allocate more space if required */
+ newused = a->used + b->used + 1;
+ if (c->alloc < newused) {
+ if ((res = mp_grow (c, newused)) != MP_OKAY) {
+ return res;
+ }
+ }
+
+ /* like the other comba method we compute the columns first */
+ pa = a->used;
+ pb = b->used;
+ memset (W + digs, 0, (pa + pb + 1 - digs) * sizeof (mp_word));
+ for (ix = 0; ix < pa; ix++) {
+ {
+ register mp_digit tmpx, *tmpy;
+ register int iy;
+ register mp_word *_W;
+
+ /* work todo, that is we only calculate digits that are at "digs" or above */
+ iy = digs - ix;
+
+ /* copy of word on the left of A[ix] * B[iy] */
+ tmpx = a->dp[ix];
+
+ /* alias for right side */
+ tmpy = b->dp + iy;
+
+ /* alias for the columns of output. Offset to be equal to or above the
+ * smallest digit place requested
+ */
+ _W = &(W[digs]);
+
+ /* compute column products for digits above the minimum */
+ for (; iy < pb; iy++) {
+ *_W++ += ((mp_word) tmpx) * ((mp_word) * tmpy++);
+ }
+ }
+ }
+
+ /* setup dest */
+ oldused = c->used;
+ c->used = newused;
+
+ /* now convert the array W downto what we need */
+ for (ix = digs + 1; ix < newused; ix++) {
+ W[ix] += (W[ix - 1] >> ((mp_word) DIGIT_BIT));
+ c->dp[ix - 1] = (mp_digit) (W[ix - 1] & ((mp_word) MP_MASK));
+ }
+ c->dp[(pa + pb + 1) - 1] = (mp_digit) (W[(pa + pb + 1) - 1] & ((mp_word) MP_MASK));
+
+ for (; ix < oldused; ix++) {
+ c->dp[ix] = 0;
+ }
+ mp_clamp (c);
+ return MP_OKAY;
+}
+
+/* End: bn_fast_s_mp_mul_high_digs.c */
+
+/* Start: bn_fast_s_mp_sqr.c */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* fast squaring
+ *
+ * This is the comba method where the columns of the product are computed first
+ * then the carries are computed. This has the effect of making a very simple
+ * inner loop that is executed the most
+ *
+ * W2 represents the outer products and W the inner.
+ *
+ * A further optimizations is made because the inner products are of the form
+ * "A * B * 2". The *2 part does not need to be computed until the end which is
+ * good because 64-bit shifts are slow!
+ *
+ * Based on Algorithm 14.16 on pp.597 of HAC.
+ *
+ */
+int
+fast_s_mp_sqr (mp_int * a, mp_int * b)
+{
+ int olduse, newused, res, ix, pa;
+ mp_word W2[512], W[512];
+
+ /* calculate size of product and allocate as required */
+ pa = a->used;
+ newused = pa + pa + 1;
+ if (b->alloc < newused) {
+ if ((res = mp_grow (b, newused)) != MP_OKAY) {
+ return res;
+ }
+ }
+
+ /* zero temp buffer (columns)
+ * Note that there are two buffers. Since squaring requires
+ * a outter and inner product and the inner product requires
+ * computing a product and doubling it (a relatively expensive
+ * op to perform n^2 times if you don't have to) the inner and
+ * outer products are computed in different buffers. This way
+ * the inner product can be doubled using n doublings instead of
+ * n^2
+ */
+ memset (W, 0, newused * sizeof (mp_word));
+ memset (W2, 0, newused * sizeof (mp_word));
+
+/* note optimization
+ * values in W2 are only written in even locations which means
+ * we can collapse the array to 256 words [and fixup the memset above]
+ * provided we also fix up the summations below. Ideally
+ * the fixup loop should be unrolled twice to handle the even/odd
+ * cases, and then a final step to handle odd cases [e.g. newused == odd]
+ *
+ * This will not only save ~8*256 = 2KB of stack but lower the number of
+ * operations required to finally fix up the columns
+ */
+
+ /* This computes the inner product. To simplify the inner N^2 loop
+ * the multiplication by two is done afterwards in the N loop.
+ */
+ for (ix = 0; ix < pa; ix++) {
+ /* compute the outer product
+ *
+ * Note that every outer product is computed
+ * for a particular column only once which means that
+ * there is no need todo a double precision addition
+ */
+ W2[ix + ix] = ((mp_word) a->dp[ix]) * ((mp_word) a->dp[ix]);
+
+ {
+ register mp_digit tmpx, *tmpy;
+ register mp_word *_W;
+ register int iy;
+
+ /* copy of left side */
+ tmpx = a->dp[ix];
+
+ /* alias for right side */
+ tmpy = a->dp + (ix + 1);
+
+ /* the column to store the result in */
+ _W = W + (ix + ix + 1);
+
+ /* inner products */
+ for (iy = ix + 1; iy < pa; iy++) {
+ *_W++ += ((mp_word) tmpx) * ((mp_word) * tmpy++);
+ }
+ }
+ }
+
+ /* setup dest */
+ olduse = b->used;
+ b->used = newused;
+
+ /* double first value, since the inner products are half of what they should be */
+ W[0] += W[0] + W2[0];
+
+ /* now compute digits */
+ {
+ register mp_digit *tmpb;
+
+ tmpb = b->dp;
+
+ for (ix = 1; ix < newused; ix++) {
+ /* double/add next digit */
+ W[ix] += W[ix] + W2[ix];
+
+ W[ix] = W[ix] + (W[ix - 1] >> ((mp_word) DIGIT_BIT));
+ *tmpb++ = (mp_digit) (W[ix - 1] & ((mp_word) MP_MASK));
+ }
+ *tmpb++ = (mp_digit) (W[(newused) - 1] & ((mp_word) MP_MASK));
+
+ /* clear high */
+ for (; ix < olduse; ix++) {
+ *tmpb++ = 0;
+ }
+ }
+
+ mp_clamp (b);
+ return MP_OKAY;
+}
+
+/* End: bn_fast_s_mp_sqr.c */
+
+/* Start: bn_mp_2expt.c */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* computes a = 2^b
+ *
+ * Simple algorithm which zeroes the int, grows it then just sets one bit
+ * as required.
+ */
+int
+mp_2expt (mp_int * a, int b)
+{
+ int res;
+
+ mp_zero (a);
+ if ((res = mp_grow (a, b / DIGIT_BIT + 1)) != MP_OKAY) {
+ return res;
+ }
+ a->used = b / DIGIT_BIT + 1;
+ a->dp[b / DIGIT_BIT] = 1 << (b % DIGIT_BIT);
+
+ return MP_OKAY;
+}
+
+/* End: bn_mp_2expt.c */
+
+/* Start: bn_mp_abs.c */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* b = |a|
+ *
+ * Simple function copies the input and fixes the sign to positive
+ */
+int
+mp_abs (mp_int * a, mp_int * b)
+{
+ int res;
+ if ((res = mp_copy (a, b)) != MP_OKAY) {
+ return res;
+ }
+ b->sign = MP_ZPOS;
+ return MP_OKAY;
+}
+
+/* End: bn_mp_abs.c */
+
+/* Start: bn_mp_add.c */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* high level addition (handles signs) */
+int
+mp_add (mp_int * a, mp_int * b, mp_int * c)
+{
+ int sa, sb, res;
+
+ /* get sign of both inputs */
+ sa = a->sign;
+ sb = b->sign;
+
+ /* handle four cases */
+ if (sa == MP_ZPOS && sb == MP_ZPOS) {
+ /* both positive */
+ res = s_mp_add (a, b, c);
+ c->sign = MP_ZPOS;
+ } else if (sa == MP_ZPOS && sb == MP_NEG) {
+ /* a + -b == a - b, but if b>a then we do it as -(b-a) */
+ if (mp_cmp_mag (a, b) == MP_LT) {
+ res = s_mp_sub (b, a, c);
+ c->sign = MP_NEG;
+ } else {
+ res = s_mp_sub (a, b, c);
+ c->sign = MP_ZPOS;
+ }
+ } else if (sa == MP_NEG && sb == MP_ZPOS) {
+ /* -a + b == b - a, but if a>b then we do it as -(a-b) */
+ if (mp_cmp_mag (a, b) == MP_GT) {
+ res = s_mp_sub (a, b, c);
+ c->sign = MP_NEG;
+ } else {
+ res = s_mp_sub (b, a, c);
+ c->sign = MP_ZPOS;
+ }
+ } else {
+ /* -a + -b == -(a + b) */
+ res = s_mp_add (a, b, c);
+ c->sign = MP_NEG;
+ }
+ return res;
+}
+
+/* End: bn_mp_add.c */
+
+/* Start: bn_mp_addmod.c */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* d = a + b (mod c) */
+int
+mp_addmod (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
+{
+ int res;
+ mp_int t;
+
+ if ((res = mp_init (&t)) != MP_OKAY) {
+ return res;
+ }
+
+ if ((res = mp_add (a, b, &t)) != MP_OKAY) {
+ mp_clear (&t);
+ return res;
+ }
+ res = mp_mod (&t, c, d);
+ mp_clear (&t);
+ return res;
+}
+
+/* End: bn_mp_addmod.c */
+
+/* Start: bn_mp_add_d.c */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* single digit addition */
+int
+mp_add_d (mp_int * a, mp_digit b, mp_int * c)
+{
+ mp_int t;
+ int res;
+
+ if ((res = mp_init (&t)) != MP_OKAY) {
+ return res;
+ }
+ mp_set (&t, b);
+ res = mp_add (a, &t, c);
+
+ mp_clear (&t);
+ return res;
+}
+
+/* End: bn_mp_add_d.c */
+
+/* Start: bn_mp_and.c */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* AND two ints together */
+int
+mp_and (mp_int * a, mp_int * b, mp_int * c)
+{
+ int res, ix, px;
+ mp_int t, *x;
+
+ if (a->used > b->used) {
+ if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
+ return res;
+ }
+ px = b->used;
+ x = b;
+ } else {
+ if ((res = mp_init_copy (&t, b)) != MP_OKAY) {
+ return res;
+ }
+ px = a->used;
+ x = a;
+ }
+
+ for (ix = 0; ix < px; ix++) {
+ t.dp[ix] &= x->dp[ix];
+ }
+
+ /* zero digits above the last from the smallest mp_int */
+ for (; ix < t.used; ix++) {
+ t.dp[ix] = 0;
+ }
+
+ mp_clamp (&t);
+ mp_exch (c, &t);
+ mp_clear (&t);
+ return MP_OKAY;
+}
+
+/* End: bn_mp_and.c */
+
+/* Start: bn_mp_clamp.c */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* trim unused digits
+ *
+ * This is used to ensure that leading zero digits are
+ * trimed and the leading "used" digit will be non-zero
+ * Typically very fast. Also fixes the sign if there
+ * are no more leading digits
+ */
+void
+mp_clamp (mp_int * a)
+{
+ while (a->used > 0 && a->dp[a->used - 1] == 0)
+ --(a->used);
+ if (a->used == 0) {
+ a->sign = MP_ZPOS;
+ }
+}
+
+/* End: bn_mp_clamp.c */
+
+/* Start: bn_mp_clear.c */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* clear one (frees) */
+void
+mp_clear (mp_int * a)
+{
+ if (a->dp != NULL) {
+
+ /* first zero the digits */
+ memset (a->dp, 0, sizeof (mp_digit) * a->used);
+
+ /* free ram */
+ free (a->dp);
+
+ /* reset members to make debugging easier */
+ a->dp = NULL;
+ a->alloc = a->used = 0;
+ }
+}
+
+/* End: bn_mp_clear.c */
+
+/* Start: bn_mp_cmp.c */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* compare two ints (signed)*/
+int
+mp_cmp (mp_int * a, mp_int * b)
+{
+ /* compare based on sign */
+ if (a->sign == MP_NEG && b->sign == MP_ZPOS) {
+ return MP_LT;
+ } else if (a->sign == MP_ZPOS && b->sign == MP_NEG) {
+ return MP_GT;
+ }
+ return mp_cmp_mag (a, b);
+}
+
+/* End: bn_mp_cmp.c */
+
+/* Start: bn_mp_cmp_d.c */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* compare a digit */
+int
+mp_cmp_d (mp_int * a, mp_digit b)
+{
+
+ if (a->sign == MP_NEG) {
+ return MP_LT;
+ }
+
+ if (a->used > 1) {
+ return MP_GT;
+ }
+
+ if (a->dp[0] > b) {
+ return MP_GT;
+ } else if (a->dp[0] < b) {
+ return MP_LT;
+ } else {
+ return MP_EQ;
+ }
+}
+
+/* End: bn_mp_cmp_d.c */
+
+/* Start: bn_mp_cmp_mag.c */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* compare maginitude of two ints (unsigned) */
+int
+mp_cmp_mag (mp_int * a, mp_int * b)
+{
+ int n;
+
+ /* compare based on # of non-zero digits */
+ if (a->used > b->used) {
+ return MP_GT;
+ } else if (a->used < b->used) {
+ return MP_LT;
+ }
+
+ /* compare based on digits */
+ for (n = a->used - 1; n >= 0; n--) {
+ if (a->dp[n] > b->dp[n]) {
+ return MP_GT;
+ } else if (a->dp[n] < b->dp[n]) {
+ return MP_LT;
+ }
+ }
+ return MP_EQ;
+}
+
+/* End: bn_mp_cmp_mag.c */
+
+/* Start: bn_mp_copy.c */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* copy, b = a */
+int
+mp_copy (mp_int * a, mp_int * b)
+{
+ int res, n;
+
+ /* if dst == src do nothing */
+ if (a == b || a->dp == b->dp) {
+ return MP_OKAY;
+ }
+
+ /* grow dest */
+ if ((res = mp_grow (b, a->used)) != MP_OKAY) {
+ return res;
+ }
+
+ /* zero b and copy the parameters over */
+ b->used = a->used;
+ b->sign = a->sign;
+
+ {
+ register mp_digit *tmpa, *tmpb;
+
+ tmpa = a->dp;
+ tmpb = b->dp;
+
+ /* copy all the digits */
+ for (n = 0; n < a->used; n++) {
+ *tmpb++ = *tmpa++;
+ }
+
+ /* clear high digits */
+ for (; n < b->alloc; n++) {
+ *tmpb++ = 0;
+ }
+ }
+ return MP_OKAY;
+}
+
+/* End: bn_mp_copy.c */
+
+/* Start: bn_mp_count_bits.c */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* returns the number of bits in an int */
+int
+mp_count_bits (mp_int * a)
+{
+ int r;
+ mp_digit q;
+
+ if (a->used == 0) {
+ return 0;
+ }
+
+ r = (a->used - 1) * DIGIT_BIT;
+ q = a->dp[a->used - 1];
+ while (q > ((mp_digit) 0)) {
+ ++r;
+ q >>= ((mp_digit) 1);
+ }
+ return r;
+}
+
+/* End: bn_mp_count_bits.c */
+
+/* Start: bn_mp_div.c */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* integer signed division. c*b + d == a [e.g. a/b, c=quotient, d=remainder]
+ * HAC pp.598 Algorithm 14.20
+ *
+ * Note that the description in HAC is horribly incomplete. For example,
+ * it doesn't consider the case where digits are removed from 'x' in the inner
+ * loop. It also doesn't consider the case that y has fewer than three digits, etc..
+ *
+ * The overall algorithm is as described as 14.20 from HAC but fixed to treat these cases.
+*/
+int
+mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
+{
+ mp_int q, x, y, t1, t2;
+ int res, n, t, i, norm, neg;
+
+
+ /* is divisor zero ? */
+ if (mp_iszero (b) == 1) {
+ return MP_VAL;
+ }
+
+ /* if a < b then q=0, r = a */
+ if (mp_cmp_mag (a, b) == MP_LT) {
+ if (d != NULL) {
+ res = mp_copy (a, d);
+ } else {
+ res = MP_OKAY;
+ }
+ if (c != NULL) {
+ mp_zero (c);
+ }
+ return res;
+ }
+
+ if ((res = mp_init_size (&q, a->used + 2)) != MP_OKAY) {
+ return res;
+ }
+ q.used = a->used + 2;
+
+ if ((res = mp_init (&t1)) != MP_OKAY) {
+ goto __Q;
+ }
+
+ if ((res = mp_init (&t2)) != MP_OKAY) {
+ goto __T1;
+ }
+
+ if ((res = mp_init_copy (&x, a)) != MP_OKAY) {
+ goto __T2;
+ }
+
+ if ((res = mp_init_copy (&y, b)) != MP_OKAY) {
+ goto __X;
+ }
+
+ /* fix the sign */
+ neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
+ x.sign = y.sign = MP_ZPOS;
+
+ /* normalize both x and y, ensure that y >= b/2, [b == 2^DIGIT_BIT] */
+ norm = 0;
+ while ((y.dp[y.used - 1] & (((mp_digit) 1) << (DIGIT_BIT - 1))) == ((mp_digit) 0)) {
+ ++norm;
+ if ((res = mp_mul_2 (&x, &x)) != MP_OKAY) {
+ goto __Y;
+ }
+ if ((res = mp_mul_2 (&y, &y)) != MP_OKAY) {
+ goto __Y;
+ }
+ }
+
+ /* note hac does 0 based, so if used==5 then its 0,1,2,3,4, e.g. use 4 */
+ n = x.used - 1;
+ t = y.used - 1;
+
+ /* step 2. while (x >= y*b^n-t) do { q[n-t] += 1; x -= y*b^{n-t} } */
+ if ((res = mp_lshd (&y, n - t)) != MP_OKAY) { /* y = y*b^{n-t} */
+ goto __Y;
+ }
+
+ while (mp_cmp (&x, &y) != MP_LT) {
+ ++(q.dp[n - t]);
+ if ((res = mp_sub (&x, &y, &x)) != MP_OKAY) {
+ goto __Y;
+ }
+ }
+
+ /* reset y by shifting it back down */
+ mp_rshd (&y, n - t);
+
+ /* step 3. for i from n down to (t + 1) */
+ for (i = n; i >= (t + 1); i--) {
+ if (i > x.used)
+ continue;
+
+ /* step 3.1 if xi == yt then set q{i-t-1} to b-1, otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */
+ if (x.dp[i] == y.dp[t]) {
+ q.dp[i - t - 1] = ((1UL << DIGIT_BIT) - 1UL);
+ } else {
+ mp_word tmp;
+ tmp = ((mp_word) x.dp[i]) << ((mp_word) DIGIT_BIT);
+ tmp |= ((mp_word) x.dp[i - 1]);
+ tmp /= ((mp_word) y.dp[t]);
+ if (tmp > (mp_word) MP_MASK)
+ tmp = MP_MASK;
+ q.dp[i - t - 1] = (mp_digit) (tmp & (mp_word) (MP_MASK));
+ }
+
+ /* step 3.2 while (q{i-t-1} * (yt * b + y{t-1})) > xi * b^2 + xi-1 * b + xi-2 do q{i-t-1} -= 1; */
+ q.dp[i - t - 1] = (q.dp[i - t - 1] + 1) & MP_MASK;
+ do {
+ q.dp[i - t - 1] = (q.dp[i - t - 1] - 1) & MP_MASK;
+
+ /* find left hand */
+ mp_zero (&t1);
+ t1.dp[0] = (t - 1 < 0) ? 0 : y.dp[t - 1];
+ t1.dp[1] = y.dp[t];
+ t1.used = 2;
+ if ((res = mp_mul_d (&t1, q.dp[i - t - 1], &t1)) != MP_OKAY) {
+ goto __Y;
+ }
+
+ /* find right hand */
+ t2.dp[0] = (i - 2 < 0) ? 0 : x.dp[i - 2];
+ t2.dp[1] = (i - 1 < 0) ? 0 : x.dp[i - 1];
+ t2.dp[2] = x.dp[i];
+ t2.used = 3;
+ } while (mp_cmp (&t1, &t2) == MP_GT);
+
+ /* step 3.3 x = x - q{i-t-1} * y * b^{i-t-1} */
+ if ((res = mp_mul_d (&y, q.dp[i - t - 1], &t1)) != MP_OKAY) {
+ goto __Y;
+ }
+
+ if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) {
+ goto __Y;
+ }
+
+ if ((res = mp_sub (&x, &t1, &x)) != MP_OKAY) {
+ goto __Y;
+ }
+
+ /* step 3.4 if x < 0 then { x = x + y*b^{i-t-1}; q{i-t-1} -= 1; } */
+ if (x.sign == MP_NEG) {
+ if ((res = mp_copy (&y, &t1)) != MP_OKAY) {
+ goto __Y;
+ }
+ if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) {
+ goto __Y;
+ }
+ if ((res = mp_add (&x, &t1, &x)) != MP_OKAY) {
+ goto __Y;
+ }
+
+ q.dp[i - t - 1] = (q.dp[i - t - 1] - 1UL) & MP_MASK;
+ }
+ }
+
+ /* now q is the quotient and x is the remainder [which we have to normalize] */
+ /* get sign before writing to c */
+ x.sign = a->sign;
+
+ if (c != NULL) {
+ mp_clamp (&q);
+ mp_exch (&q, c);
+ c->sign = neg;
+ }
+
+ if (d != NULL) {
+ mp_div_2d (&x, norm, &x, NULL);
+ mp_exch (&x, d);
+ }
+
+ res = MP_OKAY;
+
+__Y:mp_clear (&y);
+__X:mp_clear (&x);
+__T2:mp_clear (&t2);
+__T1:mp_clear (&t1);
+__Q:mp_clear (&q);
+ return res;
+}
+
+/* End: bn_mp_div.c */
+
+/* Start: bn_mp_div_2.c */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* b = a/2 */
+int
+mp_div_2 (mp_int * a, mp_int * b)
+{
+ int x, res, oldused;
+
+ /* copy */
+ if (b->alloc < a->used) {
+ if ((res = mp_grow (b, a->used)) != MP_OKAY) {
+ return res;
+ }
+ }
+
+ oldused = b->used;
+ b->used = a->used;
+ {
+ register mp_digit r, rr, *tmpa, *tmpb;
+
+ tmpa = a->dp + b->used - 1;
+ tmpb = b->dp + b->used - 1;
+ r = 0;
+ for (x = b->used - 1; x >= 0; x--) {
+ rr = *tmpa & 1;
+ *tmpb-- = (*tmpa-- >> 1) | (r << (DIGIT_BIT - 1));
+ r = rr;
+ }
+
+ tmpb = b->dp + b->used;
+ for (x = b->used; x < oldused; x++) {
+ *tmpb++ = 0;
+ }
+ }
+ b->sign = a->sign;
+ mp_clamp (b);
+ return MP_OKAY;
+}
+
+/* End: bn_mp_div_2.c */
+
+/* Start: bn_mp_div_2d.c */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* shift right by a certain bit count (store quotient in c, remainder in d) */
+int
+mp_div_2d (mp_int * a, int b, mp_int * c, mp_int * d)
+{
+ mp_digit D, r, rr;
+ int x, res;
+ mp_int t;
+
+
+ /* if the shift count is <= 0 then we do no work */
+ if (b <= 0) {
+ res = mp_copy (a, c);
+ if (d != NULL) {
+ mp_zero (d);
+ }
+ return res;
+ }
+
+ if ((res = mp_init (&t)) != MP_OKAY) {
+ return res;
+ }
+
+ /* get the remainder */
+ if (d != NULL) {
+ if ((res = mp_mod_2d (a, b, &t)) != MP_OKAY) {
+ mp_clear (&t);
+ return res;
+ }
+ }
+
+ /* copy */
+ if ((res = mp_copy (a, c)) != MP_OKAY) {
+ mp_clear (&t);
+ return res;
+ }
+
+ /* shift by as many digits in the bit count */
+ if (b >= DIGIT_BIT) {
+ mp_rshd (c, b / DIGIT_BIT);
+ }
+
+ /* shift any bit count < DIGIT_BIT */
+ D = (mp_digit) (b % DIGIT_BIT);
+ if (D != 0) {
+ r = 0;
+ for (x = c->used - 1; x >= 0; x--) {
+ /* get the lower bits of this word in a temp */
+ rr = c->dp[x] & ((mp_digit) ((1U << D) - 1U));
+
+ /* shift the current word and mix in the carry bits from the previous word */
+ c->dp[x] = (c->dp[x] >> D) | (r << (DIGIT_BIT - D));
+
+ /* set the carry to the carry bits of the current word found above */
+ r = rr;
+ }
+ }
+ mp_clamp (c);
+ res = MP_OKAY;
+ if (d != NULL) {
+ mp_exch (&t, d);
+ }
+ mp_clear (&t);
+ return MP_OKAY;
+}
+
+/* End: bn_mp_div_2d.c */
+
+/* Start: bn_mp_div_d.c */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* single digit division */
+int
+mp_div_d (mp_int * a, mp_digit b, mp_int * c, mp_digit * d)
+{
+ mp_int t, t2;
+ int res;
+
+ if ((res = mp_init (&t)) != MP_OKAY) {
+ return res;
+ }
+
+ if ((res = mp_init (&t2)) != MP_OKAY) {
+ mp_clear (&t);
+ return res;
+ }
+
+ mp_set (&t, b);
+ res = mp_div (a, &t, c, &t2);
+
+ if (d != NULL) {
+ *d = t2.dp[0];
+ }
+
+ mp_clear (&t);
+ mp_clear (&t2);
+ return res;
+}
+
+/* End: bn_mp_div_d.c */
+
+/* Start: bn_mp_dr_reduce.c */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* reduce "a" in place modulo "b" using the Diminished Radix algorithm.
+ *
+ * Based on algorithm from the paper
+ *
+ * "Generating Efficient Primes for Discrete Log Cryptosystems"
+ * Chae Hoon Lim, Pil Loong Lee,
+ * POSTECH Information Research Laboratories
+ *
+ * The modulus must be of a special format [see manual]
+ */
+int
+mp_dr_reduce (mp_int * a, mp_int * b, mp_digit mp)
+{
+ int err, i, j, k;
+ mp_word r;
+ mp_digit mu, *tmpj, *tmpi;
+
+ /* k = digits in modulus */
+ k = b->used;
+
+ /* ensure that "a" has at least 2k digits */
+ if (a->alloc < k + k) {
+ if ((err = mp_grow (a, k + k)) != MP_OKAY) {
+ return err;
+ }
+ }
+
+ /* alias for a->dp[i] */
+ tmpi = a->dp + k + k - 1;
+
+ /* for (i = 2k - 1; i >= k; i = i - 1)
+ *
+ * This is the main loop of the reduction. Note that at the end
+ * the words above position k are not zeroed as expected. The end
+ * result is that the digits from 0 to k-1 are the residue. So
+ * we have to clear those afterwards.
+ */
+ for (i = k + k - 1; i >= k; i = i - 1) {
+ /* x[i - 1 : i - k] += x[i]*mp */
+
+ /* x[i] * mp */
+ r = ((mp_word) *tmpi--) * ((mp_word) mp);
+
+ /* now add r to x[i-1:i-k]
+ *
+ * First add it to the first digit x[i-k] then form the carry
+ * then enter the main loop
+ */
+ j = i - k;
+
+ /* alias for a->dp[j] */
+ tmpj = a->dp + j;
+
+ /* add digit */
+ *tmpj += (mp_digit)(r & MP_MASK);
+
+ /* this is the carry */
+ mu = (r >> ((mp_word) DIGIT_BIT)) + (*tmpj >> DIGIT_BIT);
+
+ /* clear carry from a->dp[j] */
+ *tmpj++ &= MP_MASK;
+
+ /* now add rest of the digits
+ *
+ * Note this is basically a simple single digit addition to
+ * a larger multiple digit number. This is optimized somewhat
+ * because the propagation of carries is not likely to move
+ * more than a few digits.
+ *
+ */
+ for (++j; mu != 0 && j <= (i - 1); ++j) {
+ *tmpj += mu;
+ mu = *tmpj >> DIGIT_BIT;
+ *tmpj++ &= MP_MASK;
+ }
+
+ /* if final carry */
+ if (mu != 0) {
+ /* add mp to this to correct */
+ j = i - k;
+ tmpj = a->dp + j;
+
+ *tmpj += mp;
+ mu = *tmpj >> DIGIT_BIT;
+ *tmpj++ &= MP_MASK;
+
+ /* now handle carries */
+ for (++j; mu != 0 && j <= (i - 1); j++) {
+ *tmpj += mu;
+ mu = *tmpj >> DIGIT_BIT;
+ *tmpj++ &= MP_MASK;
+ }
+ }
+ }
+
+ /* zero words above k */
+ tmpi = a->dp + k;
+ for (i = k; i < a->used; i++) {
+ *tmpi++ = 0;
+ }
+
+ /* clamp, sub and return */
+ mp_clamp (a);
+
+ if (mp_cmp_mag (a, b) != MP_LT) {
+ return s_mp_sub (a, b, a);
+ }
+ return MP_OKAY;
+}
+
+/* determines if a number is a valid DR modulus */
+int mp_dr_is_modulus(mp_int *a)
+{
+ int ix;
+
+ /* must be at least two digits */
+ if (a->used < 2) {
+ return 0;
+ }
+
+ for (ix = 1; ix < a->used; ix++) {
+ if (a->dp[ix] != MP_MASK) {
+ return 0;
+ }
+ }
+ return 1;
+}
+
+/* determines the setup value */
+void mp_dr_setup(mp_int *a, mp_digit *d)
+{
+ *d = (1 << DIGIT_BIT) - a->dp[0];
+}
+
+
+/* End: bn_mp_dr_reduce.c */
+
+/* Start: bn_mp_exch.c */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+void
+mp_exch (mp_int * a, mp_int * b)
+{
+ mp_int t;
+
+ t = *a;
+ *a = *b;
+ *b = t;
+}
+
+/* End: bn_mp_exch.c */
+
+/* Start: bn_mp_exptmod.c */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+static int f_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y);
+
+/* this is a shell function that calls either the normal or Montgomery
+ * exptmod functions. Originally the call to the montgomery code was
+ * embedded in the normal function but that wasted alot of stack space
+ * for nothing (since 99% of the time the Montgomery code would be called)
+ */
+int
+mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
+{
+ int dr;
+
+ dr = mp_dr_is_modulus(P);
+ /* if the modulus is odd use the fast method */
+ if (((mp_isodd (P) == 1 && P->used < MONTGOMERY_EXPT_CUTOFF) || dr == 1) && P->used > 4) {
+ return mp_exptmod_fast (G, X, P, Y, dr);
+ } else {
+ return f_mp_exptmod (G, X, P, Y);
+ }
+}
+
+static int
+f_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
+{
+ mp_int M[256], res, mu;
+ mp_digit buf;
+ int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
+
+ /* find window size */
+ x = mp_count_bits (X);
+ if (x <= 7) {
+ winsize = 2;
+ } else if (x <= 36) {
+ winsize = 3;
+ } else if (x <= 140) {
+ winsize = 4;
+ } else if (x <= 450) {
+ winsize = 5;
+ } else if (x <= 1303) {
+ winsize = 6;
+ } else if (x <= 3529) {
+ winsize = 7;
+ } else {
+ winsize = 8;
+ }
+
+ /* init G array */
+ for (x = 0; x < (1 << winsize); x++) {
+ if ((err = mp_init_size (&M[x], 1)) != MP_OKAY) {
+ for (y = 0; y < x; y++) {
+ mp_clear (&M[y]);
+ }
+ return err;
+ }
+ }
+
+ /* create mu, used for Barrett reduction */
+ if ((err = mp_init (&mu)) != MP_OKAY) {
+ goto __M;
+ }
+ if ((err = mp_reduce_setup (&mu, P)) != MP_OKAY) {
+ goto __MU;
+ }
+
+ /* create M table
+ *
+ * The M table contains powers of the input base, e.g. M[x] = G^x mod P
+ *
+ * The first half of the table is not computed though accept for M[0] and M[1]
+ */
+ if ((err = mp_mod (G, P, &M[1])) != MP_OKAY) {
+ goto __MU;
+ }
+
+ /* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times */
+ if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
+ goto __MU;
+ }
+
+ for (x = 0; x < (winsize - 1); x++) {
+ if ((err = mp_sqr (&M[1 << (winsize - 1)], &M[1 << (winsize - 1)])) != MP_OKAY) {
+ goto __MU;
+ }
+ if ((err = mp_reduce (&M[1 << (winsize - 1)], P, &mu)) != MP_OKAY) {
+ goto __MU;
+ }
+ }
+
+ /* create upper table */
+ for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
+ if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
+ goto __MU;
+ }
+ if ((err = mp_reduce (&M[x], P, &mu)) != MP_OKAY) {
+ goto __MU;
+ }
+ }
+
+ /* setup result */
+ if ((err = mp_init (&res)) != MP_OKAY) {
+ goto __MU;
+ }
+ mp_set (&res, 1);
+
+ /* set initial mode and bit cnt */
+ mode = 0;
+ bitcnt = 0;
+ buf = 0;
+ digidx = X->used - 1;
+ bitcpy = bitbuf = 0;
+
+ bitcnt = 1;
+ for (;;) {
+ /* grab next digit as required */
+ if (--bitcnt == 0) {
+ if (digidx == -1) {
+ break;
+ }
+ buf = X->dp[digidx--];
+ bitcnt = (int) DIGIT_BIT;
+ }
+
+ /* grab the next msb from the exponent */
+ y = (buf >> (DIGIT_BIT - 1)) & 1;
+ buf <<= 1;
+
+ /* if the bit is zero and mode == 0 then we ignore it
+ * These represent the leading zero bits before the first 1 bit
+ * in the exponent. Technically this opt is not required but it
+ * does lower the # of trivial squaring/reductions used
+ */
+ if (mode == 0 && y == 0)
+ continue;
+
+ /* if the bit is zero and mode == 1 then we square */
+ if (mode == 1 && y == 0) {
+ if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
+ goto __RES;
+ }
+ if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
+ goto __RES;
+ }
+ continue;
+ }
+
+ /* else we add it to the window */
+ bitbuf |= (y << (winsize - ++bitcpy));
+ mode = 2;
+
+ if (bitcpy == winsize) {
+ /* ok window is filled so square as required and multiply multiply */
+ /* square first */
+ for (x = 0; x < winsize; x++) {
+ if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
+ goto __RES;
+ }
+ if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
+ goto __RES;
+ }
+ }
+
+ /* then multiply */
+ if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) {
+ goto __MU;
+ }
+ if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
+ goto __MU;
+ }
+
+ /* empty window and reset */
+ bitcpy = bitbuf = 0;
+ mode = 1;
+ }
+ }
+
+ /* if bits remain then square/multiply */
+ if (mode == 2 && bitcpy > 0) {
+ /* square then multiply if the bit is set */
+ for (x = 0; x < bitcpy; x++) {
+ if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
+ goto __RES;
+ }
+ if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
+ goto __RES;
+ }
+
+ bitbuf <<= 1;
+ if ((bitbuf & (1 << winsize)) != 0) {
+ /* then multiply */
+ if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) {
+ goto __RES;
+ }
+ if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
+ goto __RES;
+ }
+ }
+ }
+ }
+
+ mp_exch (&res, Y);
+ err = MP_OKAY;
+__RES:mp_clear (&res);
+__MU:mp_clear (&mu);
+__M:
+ for (x = 0; x < (1 << winsize); x++) {
+ mp_clear (&M[x]);
+ }
+ return err;
+}
+
+/* End: bn_mp_exptmod.c */
+
+/* Start: bn_mp_exptmod_fast.c */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* computes Y == G^X mod P, HAC pp.616, Algorithm 14.85
+ *
+ * Uses a left-to-right k-ary sliding window to compute the modular exponentiation.
+ * The value of k changes based on the size of the exponent.
+ *
+ * Uses Montgomery reduction
+ */
+int
+mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
+{
+ mp_int M[256], res;
+ mp_digit buf, mp;
+ int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
+ int (*redux)(mp_int*,mp_int*,mp_digit);
+
+
+ /* find window size */
+ x = mp_count_bits (X);
+ if (x <= 7) {
+ winsize = 2;
+ } else if (x <= 36) {
+ winsize = 3;
+ } else if (x <= 140) {
+ winsize = 4;
+ } else if (x <= 450) {
+ winsize = 5;
+ } else if (x <= 1303) {
+ winsize = 6;
+ } else if (x <= 3529) {
+ winsize = 7;
+ } else {
+ winsize = 8;
+ }
+
+ /* init G array */
+ for (x = 0; x < (1 << winsize); x++) {
+ if ((err = mp_init (&M[x])) != MP_OKAY) {
+ for (y = 0; y < x; y++) {
+ mp_clear (&M[y]);
+ }
+ return err;
+ }
+ }
+
+ if (redmode == 0) {
+ /* now setup montgomery */
+ if ((err = mp_montgomery_setup (P, &mp)) != MP_OKAY) {
+ goto __M;
+ }
+ redux = mp_montgomery_reduce;
+ } else {
+ /* setup DR reduction */
+ mp_dr_setup(P, &mp);
+ redux = mp_dr_reduce;
+ }
+
+ /* setup result */
+ if ((err = mp_init (&res)) != MP_OKAY) {
+ goto __RES;
+ }
+
+ /* create M table
+ *
+ * The M table contains powers of the input base, e.g. M[x] = G^x mod P
+ *
+ * The first half of the table is not computed though accept for M[0] and M[1]
+ */
+
+ if (redmode == 0) {
+ /* now we need R mod m */
+ if ((err = mp_montgomery_calc_normalization (&res, P)) != MP_OKAY) {
+ goto __RES;
+ }
+
+ /* now set M[1] to G * R mod m */
+ if ((err = mp_mulmod (G, &res, P, &M[1])) != MP_OKAY) {
+ goto __RES;
+ }
+ } else {
+ mp_set(&res, 1);
+ if ((err = mp_mod(G, P, &M[1])) != MP_OKAY) {
+ goto __RES;
+ }
+ }
+
+ /* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times */
+ if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
+ goto __RES;
+ }
+
+ for (x = 0; x < (winsize - 1); x++) {
+ if ((err = mp_sqr (&M[1 << (winsize - 1)], &M[1 << (winsize - 1)])) != MP_OKAY) {
+ goto __RES;
+ }
+ if ((err = redux (&M[1 << (winsize - 1)], P, mp)) != MP_OKAY) {
+ goto __RES;
+ }
+ }
+
+ /* create upper table */
+ for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
+ if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
+ goto __RES;
+ }
+ if ((err = redux (&M[x], P, mp)) != MP_OKAY) {
+ goto __RES;
+ }
+ }
+
+ /* set initial mode and bit cnt */
+ mode = 0;
+ bitcnt = 0;
+ buf = 0;
+ digidx = X->used - 1;
+ bitcpy = bitbuf = 0;
+
+ bitcnt = 1;
+ for (;;) {
+ /* grab next digit as required */
+ if (--bitcnt == 0) {
+ if (digidx == -1) {
+ break;
+ }
+ buf = X->dp[digidx--];
+ bitcnt = (int) DIGIT_BIT;
+ }
+
+ /* grab the next msb from the exponent */
+ y = (buf >> (DIGIT_BIT - 1)) & 1;
+ buf <<= 1;
+
+ /* if the bit is zero and mode == 0 then we ignore it
+ * These represent the leading zero bits before the first 1 bit
+ * in the exponent. Technically this opt is not required but it
+ * does lower the # of trivial squaring/reductions used
+ */
+ if (mode == 0 && y == 0)
+ continue;
+
+ /* if the bit is zero and mode == 1 then we square */
+ if (mode == 1 && y == 0) {
+ if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
+ goto __RES;
+ }
+ if ((err = redux (&res, P, mp)) != MP_OKAY) {
+ goto __RES;
+ }
+ continue;
+ }
+
+ /* else we add it to the window */
+ bitbuf |= (y << (winsize - ++bitcpy));
+ mode = 2;
+
+ if (bitcpy == winsize) {
+ /* ok window is filled so square as required and multiply multiply */
+ /* square first */
+ for (x = 0; x < winsize; x++) {
+ if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
+ goto __RES;
+ }
+ if ((err = redux (&res, P, mp)) != MP_OKAY) {
+ goto __RES;
+ }
+ }
+
+ /* then multiply */
+ if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) {
+ goto __RES;
+ }
+ if ((err = redux (&res, P, mp)) != MP_OKAY) {
+ goto __RES;
+ }
+
+ /* empty window and reset */
+ bitcpy = bitbuf = 0;
+ mode = 1;
+ }
+ }
+
+ /* if bits remain then square/multiply */
+ if (mode == 2 && bitcpy > 0) {
+ /* square then multiply if the bit is set */
+ for (x = 0; x < bitcpy; x++) {
+ if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
+ goto __RES;
+ }
+ if ((err = redux (&res, P, mp)) != MP_OKAY) {
+ goto __RES;
+ }
+
+ bitbuf <<= 1;
+ if ((bitbuf & (1 << winsize)) != 0) {
+ /* then multiply */
+ if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) {
+ goto __RES;
+ }
+ if ((err = redux (&res, P, mp)) != MP_OKAY) {
+ goto __RES;
+ }
+ }
+ }
+ }
+
+ if (redmode == 0) {
+ /* fixup result */
+ if ((err = mp_montgomery_reduce (&res, P, mp)) != MP_OKAY) {
+ goto __RES;
+ }
+ }
+
+ mp_exch (&res, Y);
+ err = MP_OKAY;
+__RES:mp_clear (&res);
+__M:
+ for (x = 0; x < (1 << winsize); x++) {
+ mp_clear (&M[x]);
+ }
+ return err;
+}
+
+/* End: bn_mp_exptmod_fast.c */
+
+/* Start: bn_mp_expt_d.c */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+int
+mp_expt_d (mp_int * a, mp_digit b, mp_int * c)
+{
+ int res, x;
+ mp_int g;
+
+
+ if ((res = mp_init_copy (&g, a)) != MP_OKAY) {
+ return res;
+ }
+
+ /* set initial result */
+ mp_set (c, 1);
+
+ for (x = 0; x < (int) DIGIT_BIT; x++) {
+ if ((res = mp_sqr (c, c)) != MP_OKAY) {
+ mp_clear (&g);
+ return res;
+ }
+
+ if ((b & (mp_digit) (1 << (DIGIT_BIT - 1))) != 0) {
+ if ((res = mp_mul (c, &g, c)) != MP_OKAY) {
+ mp_clear (&g);
+ return res;
+ }
+ }
+
+ b <<= 1;
+ }
+
+ mp_clear (&g);
+ return MP_OKAY;
+}
+
+/* End: bn_mp_expt_d.c */
+
+/* Start: bn_mp_gcd.c */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* Greatest Common Divisor using the binary method [Algorithm B, page 338, vol2 of TAOCP]
+ */
+int
+mp_gcd (mp_int * a, mp_int * b, mp_int * c)
+{
+ mp_int u, v, t;
+ int k, res, neg;
+
+
+ /* either zero than gcd is the largest */
+ if (mp_iszero (a) == 1 && mp_iszero (b) == 0) {
+ return mp_copy (b, c);
+ }
+ if (mp_iszero (a) == 0 && mp_iszero (b) == 1) {
+ return mp_copy (a, c);
+ }
+ if (mp_iszero (a) == 1 && mp_iszero (b) == 1) {
+ mp_set (c, 1);
+ return MP_OKAY;
+ }
+
+ /* if both are negative they share (-1) as a common divisor */
+ neg = (a->sign == b->sign) ? a->sign : MP_ZPOS;
+
+ if ((res = mp_init_copy (&u, a)) != MP_OKAY) {
+ return res;
+ }
+
+ if ((res = mp_init_copy (&v, b)) != MP_OKAY) {
+ goto __U;
+ }
+
+ /* must be positive for the remainder of the algorithm */
+ u.sign = v.sign = MP_ZPOS;
+
+ if ((res = mp_init (&t)) != MP_OKAY) {
+ goto __V;
+ }
+
+ /* B1. Find power of two */
+ k = 0;
+ while ((u.dp[0] & 1) == 0 && (v.dp[0] & 1) == 0) {
+ ++k;
+ if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
+ goto __T;
+ }
+ if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
+ goto __T;
+ }
+ }
+
+ /* B2. Initialize */
+ if ((u.dp[0] & 1) == 1) {
+ if ((res = mp_copy (&v, &t)) != MP_OKAY) {
+ goto __T;
+ }
+ t.sign = MP_NEG;
+ } else {
+ if ((res = mp_copy (&u, &t)) != MP_OKAY) {
+ goto __T;
+ }
+ }
+
+ do {
+ /* B3 (and B4). Halve t, if even */
+ while (t.used != 0 && (t.dp[0] & 1) == 0) {
+ if ((res = mp_div_2 (&t, &t)) != MP_OKAY) {
+ goto __T;
+ }
+ }
+
+ /* B5. if t>0 then u=t otherwise v=-t */
+ if (t.used != 0 && t.sign != MP_NEG) {
+ if ((res = mp_copy (&t, &u)) != MP_OKAY) {
+ goto __T;
+ }
+ } else {
+ if ((res = mp_copy (&t, &v)) != MP_OKAY) {
+ goto __T;
+ }
+ v.sign = (v.sign == MP_ZPOS) ? MP_NEG : MP_ZPOS;
+ }
+
+ /* B6. t = u - v, if t != 0 loop otherwise terminate */
+ if ((res = mp_sub (&u, &v, &t)) != MP_OKAY) {
+ goto __T;
+ }
+ }
+ while (t.used != 0);
+
+ if ((res = mp_mul_2d (&u, k, &u)) != MP_OKAY) {
+ goto __T;
+ }
+
+ mp_exch (&u, c);
+ c->sign = neg;
+ res = MP_OKAY;
+__T:mp_clear (&t);
+__V:mp_clear (&u);
+__U:mp_clear (&v);
+ return res;
+}
+
+/* End: bn_mp_gcd.c */
+
+/* Start: bn_mp_grow.c */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* grow as required */
+int
+mp_grow (mp_int * a, int size)
+{
+ int i, n;
+
+ /* if the alloc size is smaller alloc more ram */
+ if (a->alloc < size) {
+ size += (MP_PREC * 2) - (size & (MP_PREC - 1)); /* ensure there are always at least MP_PREC digits extra on top */
+
+ a->dp = OPT_CAST realloc (a->dp, sizeof (mp_digit) * size);
+ if (a->dp == NULL) {
+ return MP_MEM;
+ }
+
+ n = a->alloc;
+ a->alloc = size;
+ for (i = n; i < a->alloc; i++) {
+ a->dp[i] = 0;
+ }
+ }
+ return MP_OKAY;
+}
+
+/* End: bn_mp_grow.c */
+
+/* Start: bn_mp_init.c */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* init a new bigint */
+int
+mp_init (mp_int * a)
+{
+
+ /* allocate ram required and clear it */
+ a->dp = OPT_CAST calloc (sizeof (mp_digit), MP_PREC);
+ if (a->dp == NULL) {
+ return MP_MEM;
+ }
+
+ /* set the used to zero, allocated digit to the default precision
+ * and sign to positive */
+ a->used = 0;
+ a->alloc = MP_PREC;
+ a->sign = MP_ZPOS;
+
+ return MP_OKAY;
+}
+
+/* End: bn_mp_init.c */
+
+/* Start: bn_mp_init_copy.c */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* creates "a" then copies b into it */
+int
+mp_init_copy (mp_int * a, mp_int * b)
+{
+ int res;
+
+ if ((res = mp_init (a)) != MP_OKAY) {
+ return res;
+ }
+ return mp_copy (b, a);
+}
+
+/* End: bn_mp_init_copy.c */
+
+/* Start: bn_mp_init_size.c */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* init a mp_init and grow it to a given size */
+int
+mp_init_size (mp_int * a, int size)
+{
+
+ /* pad up so there are at least 16 zero digits */
+ size += (MP_PREC * 2) - (size & (MP_PREC - 1)); /* ensure there are always at least 16 digits extra on top */
+ a->dp = OPT_CAST calloc (sizeof (mp_digit), size);
+ if (a->dp == NULL) {
+ return MP_MEM;
+ }
+ a->used = 0;
+ a->alloc = size;
+ a->sign = MP_ZPOS;
+
+ return MP_OKAY;
+}
+
+/* End: bn_mp_init_size.c */
+
+/* Start: bn_mp_invmod.c */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+int
+mp_invmod (mp_int * a, mp_int * b, mp_int * c)
+{
+ mp_int x, y, u, v, A, B, C, D;
+ int res;
+
+ /* b cannot be negative */
+ if (b->sign == MP_NEG) {
+ return MP_VAL;
+ }
+
+ /* if the modulus is odd we can use a faster routine instead */
+ if (mp_iseven (b) == 0) {
+ return fast_mp_invmod (a, b, c);
+ }
+
+ if ((res = mp_init (&x)) != MP_OKAY) {
+ goto __ERR;
+ }
+
+ if ((res = mp_init (&y)) != MP_OKAY) {
+ goto __X;
+ }
+
+ if ((res = mp_init (&u)) != MP_OKAY) {
+ goto __Y;
+ }
+
+ if ((res = mp_init (&v)) != MP_OKAY) {
+ goto __U;
+ }
+
+ if ((res = mp_init (&A)) != MP_OKAY) {
+ goto __V;
+ }
+
+ if ((res = mp_init (&B)) != MP_OKAY) {
+ goto __A;
+ }
+
+ if ((res = mp_init (&C)) != MP_OKAY) {
+ goto __B;
+ }
+
+ if ((res = mp_init (&D)) != MP_OKAY) {
+ goto __C;
+ }
+
+ /* x = a, y = b */
+ if ((res = mp_copy (a, &x)) != MP_OKAY) {
+ goto __D;
+ }
+ if ((res = mp_copy (b, &y)) != MP_OKAY) {
+ goto __D;
+ }
+
+ if ((res = mp_abs (&x, &x)) != MP_OKAY) {
+ goto __D;
+ }
+
+ /* 2. [modified] if x,y are both even then return an error! */
+ if (mp_iseven (&x) == 1 && mp_iseven (&y) == 1) {
+ res = MP_VAL;
+ goto __D;
+ }
+
+ /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
+ if ((res = mp_copy (&x, &u)) != MP_OKAY) {
+ goto __D;
+ }
+ if ((res = mp_copy (&y, &v)) != MP_OKAY) {
+ goto __D;
+ }
+ mp_set (&A, 1);
+ mp_set (&D, 1);
+
+
+top:
+ /* 4. while u is even do */
+ while (mp_iseven (&u) == 1) {
+ /* 4.1 u = u/2 */
+ if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
+ goto __D;
+ }
+ /* 4.2 if A or B is odd then */
+ if (mp_iseven (&A) == 0 || mp_iseven (&B) == 0) {
+ /* A = (A+y)/2, B = (B-x)/2 */
+ if ((res = mp_add (&A, &y, &A)) != MP_OKAY) {
+ goto __D;
+ }
+ if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
+ goto __D;
+ }
+ }
+ /* A = A/2, B = B/2 */
+ if ((res = mp_div_2 (&A, &A)) != MP_OKAY) {
+ goto __D;
+ }
+ if ((res = mp_div_2 (&B, &B)) != MP_OKAY) {
+ goto __D;
+ }
+ }
+
+
+ /* 5. while v is even do */
+ while (mp_iseven (&v) == 1) {
+ /* 5.1 v = v/2 */
+ if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
+ goto __D;
+ }
+ /* 5.2 if C,D are even then */
+ if (mp_iseven (&C) == 0 || mp_iseven (&D) == 0) {
+ /* C = (C+y)/2, D = (D-x)/2 */
+ if ((res = mp_add (&C, &y, &C)) != MP_OKAY) {
+ goto __D;
+ }
+ if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
+ goto __D;
+ }
+ }
+ /* C = C/2, D = D/2 */
+ if ((res = mp_div_2 (&C, &C)) != MP_OKAY) {
+ goto __D;
+ }
+ if ((res = mp_div_2 (&D, &D)) != MP_OKAY) {
+ goto __D;
+ }
+ }
+
+ /* 6. if u >= v then */
+ if (mp_cmp (&u, &v) != MP_LT) {
+ /* u = u - v, A = A - C, B = B - D */
+ if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) {
+ goto __D;
+ }
+
+ if ((res = mp_sub (&A, &C, &A)) != MP_OKAY) {
+ goto __D;
+ }
+
+ if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) {
+ goto __D;
+ }
+ } else {
+ /* v - v - u, C = C - A, D = D - B */
+ if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) {
+ goto __D;
+ }
+
+ if ((res = mp_sub (&C, &A, &C)) != MP_OKAY) {
+ goto __D;
+ }
+
+ if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) {
+ goto __D;
+ }
+ }
+
+ /* if not zero goto step 4 */
+ if (mp_iszero (&u) == 0)
+ goto top;
+
+ /* now a = C, b = D, gcd == g*v */
+
+ /* if v != 1 then there is no inverse */
+ if (mp_cmp_d (&v, 1) != MP_EQ) {
+ res = MP_VAL;
+ goto __D;
+ }
+
+ /* a is now the inverse */
+ mp_exch (&C, c);
+ res = MP_OKAY;
+
+__D:mp_clear (&D);
+__C:mp_clear (&C);
+__B:mp_clear (&B);
+__A:mp_clear (&A);
+__V:mp_clear (&v);
+__U:mp_clear (&u);
+__Y:mp_clear (&y);
+__X:mp_clear (&x);
+__ERR:
+ return res;
+}
+
+/* End: bn_mp_invmod.c */
+
+/* Start: bn_mp_jacobi.c */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* computes the jacobi c = (a | n) (or Legendre if b is prime)
+ * HAC pp. 73 Algorithm 2.149
+ */
+int
+mp_jacobi (mp_int * a, mp_int * n, int *c)
+{
+ mp_int a1, n1, e;
+ int s, r, res;
+ mp_digit residue;
+
+ /* step 1. if a == 0, return 0 */
+ if (mp_iszero (a) == 1) {
+ *c = 0;
+ return MP_OKAY;
+ }
+
+ /* step 2. if a == 1, return 1 */
+ if (mp_cmp_d (a, 1) == MP_EQ) {
+ *c = 1;
+ return MP_OKAY;
+ }
+
+ /* default */
+ s = 0;
+
+ /* step 3. write a = a1 * 2^e */
+ if ((res = mp_init_copy (&a1, a)) != MP_OKAY) {
+ return res;
+ }
+
+ if ((res = mp_init (&n1)) != MP_OKAY) {
+ goto __A1;
+ }
+
+ if ((res = mp_init (&e)) != MP_OKAY) {
+ goto __N1;
+ }
+
+ while (mp_iseven (&a1) == 1) {
+ if ((res = mp_add_d (&e, 1, &e)) != MP_OKAY) {
+ goto __E;
+ }
+
+ if ((res = mp_div_2 (&a1, &a1)) != MP_OKAY) {
+ goto __E;
+ }
+ }
+
+ /* step 4. if e is even set s=1 */
+ if (mp_iseven (&e) == 1) {
+ s = 1;
+ } else {
+ /* else set s=1 if n = 1/7 (mod 8) or s=-1 if n = 3/5 (mod 8) */
+ if ((res = mp_mod_d (n, 8, &residue)) != MP_OKAY) {
+ goto __E;
+ }
+
+ if (residue == 1 || residue == 7) {
+ s = 1;
+ } else if (residue == 3 || residue == 5) {
+ s = -1;
+ }
+ }
+
+ /* step 5. if n == 3 (mod 4) *and* a1 == 3 (mod 4) then s = -s */
+ if ((res = mp_mod_d (n, 4, &residue)) != MP_OKAY) {
+ goto __E;
+ }
+ if (residue == 3) {
+ if ((res = mp_mod_d (&a1, 4, &residue)) != MP_OKAY) {
+ goto __E;
+ }
+ if (residue == 3) {
+ s = -s;
+ }
+ }
+
+ /* if a1 == 1 we're done */
+ if (mp_cmp_d (&a1, 1) == MP_EQ) {
+ *c = s;
+ } else {
+ /* n1 = n mod a1 */
+ if ((res = mp_mod (n, &a1, &n1)) != MP_OKAY) {
+ goto __E;
+ }
+ if ((res = mp_jacobi (&n1, &a1, &r)) != MP_OKAY) {
+ goto __E;
+ }
+ *c = s * r;
+ }
+
+ /* done */
+ res = MP_OKAY;
+__E:mp_clear (&e);
+__N1:mp_clear (&n1);
+__A1:mp_clear (&a1);
+ return res;
+}
+
+/* End: bn_mp_jacobi.c */
+
+/* Start: bn_mp_karatsuba_mul.c */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* c = |a| * |b| using Karatsuba Multiplication using three half size multiplications
+ *
+ * Let B represent the radix [e.g. 2**DIGIT_BIT] and let n represent half of the number of digits in the min(a,b)
+ *
+ * a = a1 * B^n + a0
+ * b = b1 * B^n + b0
+ *
+ * Then, a * b => a1b1 * B^2n + ((a1 - b1)(a0 - b0) + a0b0 + a1b1) * B + a0b0
+ *
+ * Note that a1b1 and a0b0 are used twice and only need to be computed once. So in total
+ * three half size (half # of digit) multiplications are performed, a0b0, a1b1 and (a1-b1)(a0-b0)
+ *
+ * Note that a multiplication of half the digits requires 1/4th the number of single precision
+ * multiplications so in total after one call 25% of the single precision multiplications are saved.
+ * Note also that the call to mp_mul can end up back in this function if the a0, a1, b0, or b1 are above
+ * the threshold. This is known as divide-and-conquer and leads to the famous O(N^lg(3)) or O(N^1.584) work which
+ * is asymptopically lower than the standard O(N^2) that the baseline/comba methods use. Generally though the
+ * overhead of this method doesn't pay off until a certain size (N ~ 80) is reached.
+ */
+int
+mp_karatsuba_mul (mp_int * a, mp_int * b, mp_int * c)
+{
+ mp_int x0, x1, y0, y1, t1, t2, x0y0, x1y1;
+ int B, err;
+
+ err = MP_MEM;
+
+ /* min # of digits */
+ B = MIN (a->used, b->used);
+
+ /* now divide in two */
+ B = B / 2;
+
+ /* init copy all the temps */
+ if (mp_init_size (&x0, B) != MP_OKAY)
+ goto ERR;
+ if (mp_init_size (&x1, a->used - B) != MP_OKAY)
+ goto X0;
+ if (mp_init_size (&y0, B) != MP_OKAY)
+ goto X1;
+ if (mp_init_size (&y1, b->used - B) != MP_OKAY)
+ goto Y0;
+
+ /* init temps */
+ if (mp_init_size (&t1, B * 2) != MP_OKAY)
+ goto Y1;
+ if (mp_init_size (&t2, B * 2) != MP_OKAY)
+ goto T1;
+ if (mp_init_size (&x0y0, B * 2) != MP_OKAY)
+ goto T2;
+ if (mp_init_size (&x1y1, B * 2) != MP_OKAY)
+ goto X0Y0;
+
+ /* now shift the digits */
+ x0.sign = x1.sign = a->sign;
+ y0.sign = y1.sign = b->sign;
+
+ x0.used = y0.used = B;
+ x1.used = a->used - B;
+ y1.used = b->used - B;
+
+ {
+ register int x;
+ register mp_digit *tmpa, *tmpb, *tmpx, *tmpy;
+
+ /* we copy the digits directly instead of using higher level functions
+ * since we also need to shift the digits
+ */
+ tmpa = a->dp;
+ tmpb = b->dp;
+
+ tmpx = x0.dp;
+ tmpy = y0.dp;
+ for (x = 0; x < B; x++) {
+ *tmpx++ = *tmpa++;
+ *tmpy++ = *tmpb++;
+ }
+
+ tmpx = x1.dp;
+ for (x = B; x < a->used; x++) {
+ *tmpx++ = *tmpa++;
+ }
+
+ tmpy = y1.dp;
+ for (x = B; x < b->used; x++) {
+ *tmpy++ = *tmpb++;
+ }
+ }
+
+ /* only need to clamp the lower words since by definition the upper words x1/y1 must
+ * have a known number of digits
+ */
+ mp_clamp (&x0);
+ mp_clamp (&y0);
+
+ /* now calc the products x0y0 and x1y1 */
+ if (mp_mul (&x0, &y0, &x0y0) != MP_OKAY)
+ goto X1Y1; /* x0y0 = x0*y0 */
+ if (mp_mul (&x1, &y1, &x1y1) != MP_OKAY)
+ goto X1Y1; /* x1y1 = x1*y1 */
+
+ /* now calc x1-x0 and y1-y0 */
+ if (mp_sub (&x1, &x0, &t1) != MP_OKAY)
+ goto X1Y1; /* t1 = x1 - x0 */
+ if (mp_sub (&y1, &y0, &t2) != MP_OKAY)
+ goto X1Y1; /* t2 = y1 - y0 */
+ if (mp_mul (&t1, &t2, &t1) != MP_OKAY)
+ goto X1Y1; /* t1 = (x1 - x0) * (y1 - y0) */
+
+ /* add x0y0 */
+ if (mp_add (&x0y0, &x1y1, &t2) != MP_OKAY)
+ goto X1Y1; /* t2 = x0y0 + x1y1 */
+ if (mp_sub (&t2, &t1, &t1) != MP_OKAY)
+ goto X1Y1; /* t1 = x0y0 + x1y1 - (x1-x0)*(y1-y0) */
+
+ /* shift by B */
+ if (mp_lshd (&t1, B) != MP_OKAY)
+ goto X1Y1; /* t1 = (x0y0 + x1y1 - (x1-x0)*(y1-y0))<<B */
+ if (mp_lshd (&x1y1, B * 2) != MP_OKAY)
+ goto X1Y1; /* x1y1 = x1y1 << 2*B */
+
+ if (mp_add (&x0y0, &t1, &t1) != MP_OKAY)
+ goto X1Y1; /* t1 = x0y0 + t1 */
+ if (mp_add (&t1, &x1y1, c) != MP_OKAY)
+ goto X1Y1; /* t1 = x0y0 + t1 + x1y1 */
+
+ err = MP_OKAY;
+
+X1Y1:mp_clear (&x1y1);
+X0Y0:mp_clear (&x0y0);
+T2:mp_clear (&t2);
+T1:mp_clear (&t1);
+Y1:mp_clear (&y1);
+Y0:mp_clear (&y0);
+X1:mp_clear (&x1);
+X0:mp_clear (&x0);
+ERR:
+ return err;
+}
+
+/* End: bn_mp_karatsuba_mul.c */
+
+/* Start: bn_mp_karatsuba_sqr.c */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* Karatsuba squaring, computes b = a*a using three half size squarings
+ *
+ * See comments of mp_karatsuba_mul for details. It is essentially the same algorithm
+ * but merely tuned to perform recursive squarings.
+ */
+int
+mp_karatsuba_sqr (mp_int * a, mp_int * b)
+{
+ mp_int x0, x1, t1, t2, x0x0, x1x1;
+ int B, err;
+
+ err = MP_MEM;
+
+ /* min # of digits */
+ B = a->used;
+
+ /* now divide in two */
+ B = B / 2;
+
+ /* init copy all the temps */
+ if (mp_init_size (&x0, B) != MP_OKAY)
+ goto ERR;
+ if (mp_init_size (&x1, a->used - B) != MP_OKAY)
+ goto X0;
+
+ /* init temps */
+ if (mp_init_size (&t1, a->used * 2) != MP_OKAY)
+ goto X1;
+ if (mp_init_size (&t2, a->used * 2) != MP_OKAY)
+ goto T1;
+ if (mp_init_size (&x0x0, B * 2) != MP_OKAY)
+ goto T2;
+ if (mp_init_size (&x1x1, (a->used - B) * 2) != MP_OKAY)
+ goto X0X0;
+
+ {
+ register int x;
+ register mp_digit *dst, *src;
+
+ src = a->dp;
+
+ /* now shift the digits */
+ dst = x0.dp;
+ for (x = 0; x < B; x++) {
+ *dst++ = *src++;
+ }
+
+ dst = x1.dp;
+ for (x = B; x < a->used; x++) {
+ *dst++ = *src++;
+ }
+ }
+
+ x0.used = B;
+ x1.used = a->used - B;
+
+ mp_clamp (&x0);
+
+ /* now calc the products x0*x0 and x1*x1 */
+ if (mp_sqr (&x0, &x0x0) != MP_OKAY)
+ goto X1X1; /* x0x0 = x0*x0 */
+ if (mp_sqr (&x1, &x1x1) != MP_OKAY)
+ goto X1X1; /* x1x1 = x1*x1 */
+
+ /* now calc x1-x0 and y1-y0 */
+ if (mp_sub (&x1, &x0, &t1) != MP_OKAY)
+ goto X1X1; /* t1 = x1 - x0 */
+ if (mp_sqr (&t1, &t1) != MP_OKAY)
+ goto X1X1; /* t1 = (x1 - x0) * (y1 - y0) */
+
+ /* add x0y0 */
+ if (s_mp_add (&x0x0, &x1x1, &t2) != MP_OKAY)
+ goto X1X1; /* t2 = x0y0 + x1y1 */
+ if (mp_sub (&t2, &t1, &t1) != MP_OKAY)
+ goto X1X1; /* t1 = x0y0 + x1y1 - (x1-x0)*(y1-y0) */
+
+ /* shift by B */
+ if (mp_lshd (&t1, B) != MP_OKAY)
+ goto X1X1; /* t1 = (x0y0 + x1y1 - (x1-x0)*(y1-y0))<<B */
+ if (mp_lshd (&x1x1, B * 2) != MP_OKAY)
+ goto X1X1; /* x1y1 = x1y1 << 2*B */
+
+ if (mp_add (&x0x0, &t1, &t1) != MP_OKAY)
+ goto X1X1; /* t1 = x0y0 + t1 */
+ if (mp_add (&t1, &x1x1, b) != MP_OKAY)
+ goto X1X1; /* t1 = x0y0 + t1 + x1y1 */
+
+ err = MP_OKAY;
+
+X1X1:mp_clear (&x1x1);
+X0X0:mp_clear (&x0x0);
+T2:mp_clear (&t2);
+T1:mp_clear (&t1);
+X1:mp_clear (&x1);
+X0:mp_clear (&x0);
+ERR:
+ return err;
+}
+
+/* End: bn_mp_karatsuba_sqr.c */
+
+/* Start: bn_mp_lcm.c */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* computes least common multiple as a*b/(a, b) */
+int
+mp_lcm (mp_int * a, mp_int * b, mp_int * c)
+{
+ int res;
+ mp_int t;
+
+
+ if ((res = mp_init (&t)) != MP_OKAY) {
+ return res;
+ }
+
+ if ((res = mp_mul (a, b, &t)) != MP_OKAY) {
+ mp_clear (&t);
+ return res;
+ }
+
+ if ((res = mp_gcd (a, b, c)) != MP_OKAY) {
+ mp_clear (&t);
+ return res;
+ }
+
+ res = mp_div (&t, c, c, NULL);
+ mp_clear (&t);
+ return res;
+}
+
+/* End: bn_mp_lcm.c */
+
+/* Start: bn_mp_lshd.c */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* shift left a certain amount of digits */
+int
+mp_lshd (mp_int * a, int b)
+{
+ int x, res;
+
+
+ /* if its less than zero return */
+ if (b <= 0) {
+ return MP_OKAY;
+ }
+
+ /* grow to fit the new digits */
+ if ((res = mp_grow (a, a->used + b)) != MP_OKAY) {
+ return res;
+ }
+
+ {
+ register mp_digit *tmpa, *tmpaa;
+
+ /* increment the used by the shift amount than copy upwards */
+ a->used += b;
+
+ /* top */
+ tmpa = a->dp + a->used - 1;
+
+ /* base */
+ tmpaa = a->dp + a->used - 1 - b;
+
+ /* much like mp_rshd this is implemented using a sliding window
+ * except the window goes the otherway around. Copying from
+ * the bottom to the top. see bn_mp_rshd.c for more info.
+ */
+ for (x = a->used - 1; x >= b; x--) {
+ *tmpa-- = *tmpaa--;
+ }
+
+ /* zero the lower digits */
+ tmpa = a->dp;
+ for (x = 0; x < b; x++) {
+ *tmpa++ = 0;
+ }
+ }
+ return MP_OKAY;
+}
+
+/* End: bn_mp_lshd.c */
+
+/* Start: bn_mp_mod.c */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* c = a mod b, 0 <= c < b */
+int
+mp_mod (mp_int * a, mp_int * b, mp_int * c)
+{
+ mp_int t;
+ int res;
+
+
+ if ((res = mp_init (&t)) != MP_OKAY) {
+ return res;
+ }
+
+ if ((res = mp_div (a, b, NULL, &t)) != MP_OKAY) {
+ mp_clear (&t);
+ return res;
+ }
+
+ if (t.sign == MP_NEG) {
+ res = mp_add (b, &t, c);
+ } else {
+ res = MP_OKAY;
+ mp_exch (&t, c);
+ }
+
+ mp_clear (&t);
+ return res;
+}
+
+/* End: bn_mp_mod.c */
+
+/* Start: bn_mp_mod_2d.c */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* calc a value mod 2^b */
+int
+mp_mod_2d (mp_int * a, int b, mp_int * c)
+{
+ int x, res;
+
+
+ /* if b is <= 0 then zero the int */
+ if (b <= 0) {
+ mp_zero (c);
+ return MP_OKAY;
+ }
+
+ /* if the modulus is larger than the value than return */
+ if (b > (int) (a->used * DIGIT_BIT)) {
+ res = mp_copy (a, c);
+ return res;
+ }
+
+ /* copy */
+ if ((res = mp_copy (a, c)) != MP_OKAY) {
+ return res;
+ }
+
+ /* zero digits above the last digit of the modulus */
+ for (x = (b / DIGIT_BIT) + ((b % DIGIT_BIT) == 0 ? 0 : 1); x < c->used; x++) {
+ c->dp[x] = 0;
+ }
+ /* clear the digit that is not completely outside/inside the modulus */
+ c->dp[b / DIGIT_BIT] &=
+ (mp_digit) ((((mp_digit) 1) << (((mp_digit) b) % DIGIT_BIT)) - ((mp_digit) 1));
+ mp_clamp (c);
+ return MP_OKAY;
+}
+
+/* End: bn_mp_mod_2d.c */
+
+/* Start: bn_mp_mod_d.c */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+int
+mp_mod_d (mp_int * a, mp_digit b, mp_digit * c)
+{
+ mp_int t, t2;
+ int res;
+
+
+ if ((res = mp_init (&t)) != MP_OKAY) {
+ return res;
+ }
+
+ if ((res = mp_init (&t2)) != MP_OKAY) {
+ mp_clear (&t);
+ return res;
+ }
+
+ mp_set (&t, b);
+ mp_div (a, &t, NULL, &t2);
+
+ if (t2.sign == MP_NEG) {
+ if ((res = mp_add_d (&t2, b, &t2)) != MP_OKAY) {
+ mp_clear (&t);
+ mp_clear (&t2);
+ return res;
+ }
+ }
+ *c = t2.dp[0];
+ mp_clear (&t);
+ mp_clear (&t2);
+ return MP_OKAY;
+}
+
+/* End: bn_mp_mod_d.c */
+
+/* Start: bn_mp_montgomery_calc_normalization.c */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* calculates a = B^n mod b for Montgomery reduction
+ * Where B is the base [e.g. 2^DIGIT_BIT].
+ * B^n mod b is computed by first computing
+ * A = B^(n-1) which doesn't require a reduction but a simple OR.
+ * then C = A * B = B^n is computed by performing upto DIGIT_BIT
+ * shifts with subtractions when the result is greater than b.
+ *
+ * The method is slightly modified to shift B unconditionally upto just under
+ * the leading bit of b. This saves alot of multiple precision shifting.
+ */
+int
+mp_montgomery_calc_normalization (mp_int * a, mp_int * b)
+{
+ int x, bits, res;
+
+ /* how many bits of last digit does b use */
+ bits = mp_count_bits (b) % DIGIT_BIT;
+
+ /* compute A = B^(n-1) * 2^(bits-1) */
+ if ((res = mp_2expt (a, (b->used - 1) * DIGIT_BIT + bits - 1)) != MP_OKAY) {
+ return res;
+ }
+
+ /* now compute C = A * B mod b */
+ for (x = bits - 1; x < DIGIT_BIT; x++) {
+ if ((res = mp_mul_2 (a, a)) != MP_OKAY) {
+ return res;
+ }
+ if (mp_cmp_mag (a, b) != MP_LT) {
+ if ((res = s_mp_sub (a, b, a)) != MP_OKAY) {
+ return res;
+ }
+ }
+ }
+
+ return MP_OKAY;
+}
+
+/* End: bn_mp_montgomery_calc_normalization.c */
+
+/* Start: bn_mp_montgomery_reduce.c */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* computes xR^-1 == x (mod N) via Montgomery Reduction */
+int
+mp_montgomery_reduce (mp_int * a, mp_int * m, mp_digit mp)
+{
+ int ix, res, digs;
+ mp_digit ui;
+
+ digs = m->used * 2 + 1;
+ if ((digs < 512)
+ && digs < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
+ return fast_mp_montgomery_reduce (a, m, mp);
+ }
+
+ if (a->alloc < m->used * 2 + 1) {
+ if ((res = mp_grow (a, m->used * 2 + 1)) != MP_OKAY) {
+ return res;
+ }
+ }
+ a->used = m->used * 2 + 1;
+
+ for (ix = 0; ix < m->used; ix++) {
+ /* ui = ai * m' mod b */
+ ui = (a->dp[ix] * mp) & MP_MASK;
+
+ /* a = a + ui * m * b^i */
+ {
+ register int iy;
+ register mp_digit *tmpx, *tmpy, mu;
+ register mp_word r;
+
+ /* aliases */
+ tmpx = m->dp;
+ tmpy = a->dp + ix;
+
+ mu = 0;
+ for (iy = 0; iy < m->used; iy++) {
+ r = ((mp_word) ui) * ((mp_word) * tmpx++) + ((mp_word) mu) + ((mp_word) * tmpy);
+ mu = (r >> ((mp_word) DIGIT_BIT));
+ *tmpy++ = (r & ((mp_word) MP_MASK));
+ }
+ /* propagate carries */
+ while (mu) {
+ *tmpy += mu;
+ mu = (*tmpy >> DIGIT_BIT) & 1;
+ *tmpy++ &= MP_MASK;
+ }
+ }
+ }
+
+ /* A = A/b^n */
+ mp_rshd (a, m->used);
+
+ /* if A >= m then A = A - m */
+ if (mp_cmp_mag (a, m) != MP_LT) {
+ return s_mp_sub (a, m, a);
+ }
+
+ return MP_OKAY;
+}
+
+/* End: bn_mp_montgomery_reduce.c */
+
+/* Start: bn_mp_montgomery_setup.c */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* setups the montgomery reduction stuff */
+int
+mp_montgomery_setup (mp_int * a, mp_digit * mp)
+{
+ unsigned long x, b;
+
+/* fast inversion mod 2^32
+ *
+ * Based on the fact that
+ *
+ * XA = 1 (mod 2^n) => (X(2-XA)) A = 1 (mod 2^2n)
+ * => 2*X*A - X*X*A*A = 1
+ * => 2*(1) - (1) = 1
+ */
+ b = a->dp[0];
+
+ if ((b & 1) == 0) {
+ return MP_VAL;
+ }
+
+ x = (((b + 2) & 4) << 1) + b; /* here x*a==1 mod 2^4 */
+ x *= 2 - b * x; /* here x*a==1 mod 2^8 */
+ x *= 2 - b * x; /* here x*a==1 mod 2^16; each step doubles the nb of bits */
+ x *= 2 - b * x; /* here x*a==1 mod 2^32 */
+
+ /* t = -1/m mod b */
+ *mp = ((mp_digit) 1 << ((mp_digit) DIGIT_BIT)) - (x & MP_MASK);
+
+ return MP_OKAY;
+}
+
+/* End: bn_mp_montgomery_setup.c */
+
+/* Start: bn_mp_mul.c */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* high level multiplication (handles sign) */
+int
+mp_mul (mp_int * a, mp_int * b, mp_int * c)
+{
+ int res, neg;
+ neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
+ if (MIN (a->used, b->used) > KARATSUBA_MUL_CUTOFF) {
+ res = mp_karatsuba_mul (a, b, c);
+ } else {
+
+ /* can we use the fast multiplier?
+ *
+ * The fast multiplier can be used if the output will have less than
+ * 512 digits and the number of digits won't affect carry propagation
+ */
+ int digs = a->used + b->used + 1;
+
+ if ((digs < 512)
+ && digs < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
+ res = fast_s_mp_mul_digs (a, b, c, digs);
+ } else {
+ res = s_mp_mul (a, b, c);
+ }
+
+ }
+ c->sign = neg;
+ return res;
+}
+
+/* End: bn_mp_mul.c */
+
+/* Start: bn_mp_mulmod.c */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* d = a * b (mod c) */
+int
+mp_mulmod (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
+{
+ int res;
+ mp_int t;
+
+
+ if ((res = mp_init (&t)) != MP_OKAY) {
+ return res;
+ }
+
+ if ((res = mp_mul (a, b, &t)) != MP_OKAY) {
+ mp_clear (&t);
+ return res;
+ }
+ res = mp_mod (&t, c, d);
+ mp_clear (&t);
+ return res;
+}
+
+/* End: bn_mp_mulmod.c */
+
+/* Start: bn_mp_mul_2.c */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* b = a*2 */
+int
+mp_mul_2 (mp_int * a, mp_int * b)
+{
+ int x, res, oldused;
+
+ /* Optimization: should copy and shift at the same time */
+
+ if (b->alloc < a->used) {
+ if ((res = mp_grow (b, a->used)) != MP_OKAY) {
+ return res;
+ }
+ }
+
+ oldused = b->used;
+ b->used = a->used;
+
+ /* shift any bit count < DIGIT_BIT */
+ {
+ register mp_digit r, rr, *tmpa, *tmpb;
+
+ r = 0;
+ tmpa = a->dp;
+ tmpb = b->dp;
+ for (x = 0; x < b->used; x++) {
+ rr = *tmpa >> (DIGIT_BIT - 1);
+ *tmpb++ = ((*tmpa++ << 1) | r) & MP_MASK;
+ r = rr;
+ }
+
+ /* new leading digit? */
+ if (r != 0) {
+ if (b->alloc == b->used) {
+ if ((res = mp_grow (b, b->used + 1)) != MP_OKAY) {
+ return res;
+ }
+
+ /* after the grow *tmpb is no longer valid so we have to reset it!
+ * (this bug took me about 17 minutes to find...!)
+ */
+ tmpb = b->dp + b->used;
+ }
+ /* add a MSB of 1 */
+ *tmpb = 1;
+ ++b->used;
+ }
+
+ tmpb = b->dp + b->used;
+ for (x = b->used; x < oldused; x++) {
+ *tmpb++ = 0;
+ }
+ }
+ b->sign = a->sign;
+ return MP_OKAY;
+}
+
+/* End: bn_mp_mul_2.c */
+
+/* Start: bn_mp_mul_2d.c */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* shift left by a certain bit count */
+int
+mp_mul_2d (mp_int * a, int b, mp_int * c)
+{
+ mp_digit d, r, rr;
+ int x, res;
+
+
+ /* copy */
+ if ((res = mp_copy (a, c)) != MP_OKAY) {
+ return res;
+ }
+
+ if ((res = mp_grow (c, c->used + b / DIGIT_BIT + 1)) != MP_OKAY) {
+ return res;
+ }
+
+ /* shift by as many digits in the bit count */
+ if (b >= DIGIT_BIT) {
+ if ((res = mp_lshd (c, b / DIGIT_BIT)) != MP_OKAY) {
+ return res;
+ }
+ }
+ c->used = c->alloc;
+
+ /* shift any bit count < DIGIT_BIT */
+ d = (mp_digit) (b % DIGIT_BIT);
+ if (d != 0) {
+ r = 0;
+ for (x = 0; x < c->used; x++) {
+ /* get the higher bits of the current word */
+ rr = (c->dp[x] >> (DIGIT_BIT - d)) & ((mp_digit) ((1U << d) - 1U));
+
+ /* shift the current word and OR in the carry */
+ c->dp[x] = ((c->dp[x] << d) | r) & MP_MASK;
+
+ /* set the carry to the carry bits of the current word */
+ r = rr;
+ }
+ }
+ mp_clamp (c);
+ return MP_OKAY;
+}
+
+/* End: bn_mp_mul_2d.c */
+
+/* Start: bn_mp_mul_d.c */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* multiply by a digit */
+int
+mp_mul_d (mp_int * a, mp_digit b, mp_int * c)
+{
+ int res, pa, olduse;
+
+ pa = a->used;
+ if (c->alloc < pa + 1) {
+ if ((res = mp_grow (c, pa + 1)) != MP_OKAY) {
+ return res;
+ }
+ }
+
+ olduse = c->used;
+ c->used = pa + 1;
+
+ {
+ register mp_digit u, *tmpa, *tmpc;
+ register mp_word r;
+ register int ix;
+
+ tmpc = c->dp + c->used;
+ for (ix = c->used; ix < olduse; ix++) {
+ *tmpc++ = 0;
+ }
+
+ tmpa = a->dp;
+ tmpc = c->dp;
+
+ u = 0;
+ for (ix = 0; ix < pa; ix++) {
+ r = ((mp_word) u) + ((mp_word) * tmpa++) * ((mp_word) b);
+ *tmpc++ = (mp_digit) (r & ((mp_word) MP_MASK));
+ u = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
+ }
+ *tmpc = u;
+ }
+
+ mp_clamp (c);
+ return MP_OKAY;
+}
+
+/* End: bn_mp_mul_d.c */
+
+/* Start: bn_mp_neg.c */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* b = -a */
+int
+mp_neg (mp_int * a, mp_int * b)
+{
+ int res;
+ if ((res = mp_copy (a, b)) != MP_OKAY) {
+ return res;
+ }
+ b->sign = (a->sign == MP_ZPOS) ? MP_NEG : MP_ZPOS;
+ return MP_OKAY;
+}
+
+/* End: bn_mp_neg.c */
+
+/* Start: bn_mp_n_root.c */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* find the n'th root of an integer
+ *
+ * Result found such that (c)^b <= a and (c+1)^b > a
+ *
+ * This algorithm uses Newton's approximation x[i+1] = x[i] - f(x[i])/f'(x[i])
+ * which will find the root in log(N) time where each step involves a fair bit. This
+ * is not meant to find huge roots [square and cube at most].
+ */
+int
+mp_n_root (mp_int * a, mp_digit b, mp_int * c)
+{
+ mp_int t1, t2, t3;
+ int res, neg;
+
+ /* input must be positive if b is even */
+ if ((b & 1) == 0 && a->sign == MP_NEG) {
+ return MP_VAL;
+ }
+
+ if ((res = mp_init (&t1)) != MP_OKAY) {
+ return res;
+ }
+
+ if ((res = mp_init (&t2)) != MP_OKAY) {
+ goto __T1;
+ }
+
+ if ((res = mp_init (&t3)) != MP_OKAY) {
+ goto __T2;
+ }
+
+ /* if a is negative fudge the sign but keep track */
+ neg = a->sign;
+ a->sign = MP_ZPOS;
+
+ /* t2 = 2 */
+ mp_set (&t2, 2);
+
+ do {
+ /* t1 = t2 */
+ if ((res = mp_copy (&t2, &t1)) != MP_OKAY) {
+ goto __T3;
+ }
+
+ /* t2 = t1 - ((t1^b - a) / (b * t1^(b-1))) */
+ if ((res = mp_expt_d (&t1, b - 1, &t3)) != MP_OKAY) { /* t3 = t1^(b-1) */
+ goto __T3;
+ }
+
+ /* numerator */
+ if ((res = mp_mul (&t3, &t1, &t2)) != MP_OKAY) { /* t2 = t1^b */
+ goto __T3;
+ }
+
+ if ((res = mp_sub (&t2, a, &t2)) != MP_OKAY) { /* t2 = t1^b - a */
+ goto __T3;
+ }
+
+ if ((res = mp_mul_d (&t3, b, &t3)) != MP_OKAY) { /* t3 = t1^(b-1) * b */
+ goto __T3;
+ }
+
+ if ((res = mp_div (&t2, &t3, &t3, NULL)) != MP_OKAY) { /* t3 = (t1^b - a)/(b * t1^(b-1)) */
+ goto __T3;
+ }
+
+ if ((res = mp_sub (&t1, &t3, &t2)) != MP_OKAY) {
+ goto __T3;
+ }
+ }
+ while (mp_cmp (&t1, &t2) != MP_EQ);
+
+ /* result can be off by a few so check */
+ for (;;) {
+ if ((res = mp_expt_d (&t1, b, &t2)) != MP_OKAY) {
+ goto __T3;
+ }
+
+ if (mp_cmp (&t2, a) == MP_GT) {
+ if ((res = mp_sub_d (&t1, 1, &t1)) != MP_OKAY) {
+ goto __T3;
+ }
+ } else {
+ break;
+ }
+ }
+
+ /* reset the sign of a first */
+ a->sign = neg;
+
+ /* set the result */
+ mp_exch (&t1, c);
+
+ /* set the sign of the result */
+ c->sign = neg;
+
+ res = MP_OKAY;
+
+__T3:mp_clear (&t3);
+__T2:mp_clear (&t2);
+__T1:mp_clear (&t1);
+ return res;
+}
+
+/* End: bn_mp_n_root.c */
+
+/* Start: bn_mp_or.c */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* OR two ints together */
+int
+mp_or (mp_int * a, mp_int * b, mp_int * c)
+{
+ int res, ix, px;
+ mp_int t, *x;
+
+ if (a->used > b->used) {
+ if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
+ return res;
+ }
+ px = b->used;
+ x = b;
+ } else {
+ if ((res = mp_init_copy (&t, b)) != MP_OKAY) {
+ return res;
+ }
+ px = a->used;
+ x = a;
+ }
+
+ for (ix = 0; ix < px; ix++) {
+ t.dp[ix] |= x->dp[ix];
+ }
+ mp_clamp (&t);
+ mp_exch (c, &t);
+ mp_clear (&t);
+ return MP_OKAY;
+}
+
+/* End: bn_mp_or.c */
+
+/* Start: bn_mp_prime_fermat.c */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* performs one Fermat test.
+ *
+ * If "a" were prime then b^a == b (mod a) since the order of
+ * the multiplicative sub-group would be phi(a) = a-1. That means
+ * it would be the same as b^(a mod (a-1)) == b^1 == b (mod a).
+ *
+ * Sets result to 1 if the congruence holds, or zero otherwise.
+ */
+int
+mp_prime_fermat (mp_int * a, mp_int * b, int *result)
+{
+ mp_int t;
+ int err;
+
+ /* default to fail */
+ *result = 0;
+
+ /* init t */
+ if ((err = mp_init (&t)) != MP_OKAY) {
+ return err;
+ }
+
+ /* compute t = b^a mod a */
+ if ((err = mp_exptmod (b, a, a, &t)) != MP_OKAY) {
+ goto __T;
+ }
+
+ /* is it equal to b? */
+ if (mp_cmp (&t, b) == MP_EQ) {
+ *result = 1;
+ }
+
+ err = MP_OKAY;
+__T:mp_clear (&t);
+ return err;
+}
+
+/* End: bn_mp_prime_fermat.c */
+
+/* Start: bn_mp_prime_is_divisible.c */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* determines if an integers is divisible by one of the first 256 primes or not
+ *
+ * sets result to 0 if not, 1 if yes
+ */
+int
+mp_prime_is_divisible (mp_int * a, int *result)
+{
+ int err, ix;
+ mp_digit res;
+
+ /* default to not */
+ *result = 0;
+
+ for (ix = 0; ix < 256; ix++) {
+ /* is it equal to the prime? */
+ if (mp_cmp_d (a, __prime_tab[ix]) == MP_EQ) {
+ *result = 1;
+ return MP_OKAY;
+ }
+
+ /* what is a mod __prime_tab[ix] */
+ if ((err = mp_mod_d (a, __prime_tab[ix], &res)) != MP_OKAY) {
+ return err;
+ }
+
+ /* is the residue zero? */
+ if (res == 0) {
+ *result = 1;
+ return MP_OKAY;
+ }
+ }
+
+ return MP_OKAY;
+}
+
+/* End: bn_mp_prime_is_divisible.c */
+
+/* Start: bn_mp_prime_is_prime.c */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* performs a variable number of rounds of Miller-Rabin
+ *
+ * Probability of error after t rounds is no more than
+ * (1/4)^t when 1 <= t <= 256
+ *
+ * Sets result to 1 if probably prime, 0 otherwise
+ */
+int
+mp_prime_is_prime (mp_int * a, int t, int *result)
+{
+ mp_int b;
+ int ix, err, res;
+
+ /* default to no */
+ *result = 0;
+
+ /* valid value of t? */
+ if (t < 1 || t > 256) {
+ return MP_VAL;
+ }
+
+ /* first perform trial division */
+ if ((err = mp_prime_is_divisible (a, &res)) != MP_OKAY) {
+ return err;
+ }
+ if (res == 1) {
+ return MP_OKAY;
+ }
+
+ /* now perform the miller-rabin rounds */
+ if ((err = mp_init (&b)) != MP_OKAY) {
+ return err;
+ }
+
+ for (ix = 0; ix < t; ix++) {
+ /* set the prime */
+ mp_set (&b, __prime_tab[ix]);
+
+ if ((err = mp_prime_miller_rabin (a, &b, &res)) != MP_OKAY) {
+ goto __B;
+ }
+
+ if (res == 0) {
+ goto __B;
+ }
+ }
+
+ /* passed the test */
+ *result = 1;
+__B:mp_clear (&b);
+ return err;
+}
+
+/* End: bn_mp_prime_is_prime.c */
+
+/* Start: bn_mp_prime_miller_rabin.c */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* Miller-Rabin test of "a" to the base of "b" as described in
+ * HAC pp. 139 Algorithm 4.24
+ *
+ * Sets result to 0 if definitely composite or 1 if probably prime.
+ * Randomly the chance of error is no more than 1/4 and often
+ * very much lower.
+ */
+int
+mp_prime_miller_rabin (mp_int * a, mp_int * b, int *result)
+{
+ mp_int n1, y, r;
+ int s, j, err;
+
+ /* default */
+ *result = 0;
+
+ /* get n1 = a - 1 */
+ if ((err = mp_init_copy (&n1, a)) != MP_OKAY) {
+ return err;
+ }
+ if ((err = mp_sub_d (&n1, 1, &n1)) != MP_OKAY) {
+ goto __N1;
+ }
+
+ /* set 2^s * r = n1 */
+ if ((err = mp_init_copy (&r, &n1)) != MP_OKAY) {
+ goto __N1;
+ }
+ s = 0;
+ while (mp_iseven (&r) == 1) {
+ ++s;
+ if ((err = mp_div_2 (&r, &r)) != MP_OKAY) {
+ goto __R;
+ }
+ }
+
+ /* compute y = b^r mod a */
+ if ((err = mp_init (&y)) != MP_OKAY) {
+ goto __R;
+ }
+ if ((err = mp_exptmod (b, &r, a, &y)) != MP_OKAY) {
+ goto __Y;
+ }
+
+ /* if y != 1 and y != n1 do */
+ if (mp_cmp_d (&y, 1) != MP_EQ && mp_cmp (&y, &n1) != MP_EQ) {
+ j = 1;
+ /* while j <= s-1 and y != n1 */
+ while ((j <= (s - 1)) && mp_cmp (&y, &n1) != MP_EQ) {
+ if ((err = mp_sqrmod (&y, a, &y)) != MP_OKAY) {
+ goto __Y;
+ }
+
+ /* if y == 1 then composite */
+ if (mp_cmp_d (&y, 1) == MP_EQ) {
+ goto __Y;
+ }
+
+ ++j;
+ }
+
+ /* if y != n1 then composite */
+ if (mp_cmp (&y, &n1) != MP_EQ) {
+ goto __Y;
+ }
+ }
+
+ /* probably prime now */
+ *result = 1;
+__Y:mp_clear (&y);
+__R:mp_clear (&r);
+__N1:mp_clear (&n1);
+ return err;
+}
+
+/* End: bn_mp_prime_miller_rabin.c */
+
+/* Start: bn_mp_prime_next_prime.c */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* finds the next prime after the number "a" using "t" trials
+ * of Miller-Rabin.
+ */
+int mp_prime_next_prime(mp_int *a, int t)
+{
+ int err, res;
+
+ if (mp_iseven(a) == 1) {
+ /* force odd */
+ if ((err = mp_add_d(a, 1, a)) != MP_OKAY) {
+ return err;
+ }
+ } else {
+ /* force to next number */
+ if ((err = mp_add_d(a, 2, a)) != MP_OKAY) {
+ return err;
+ }
+ }
+
+ for (;;) {
+ /* is this prime? */
+ if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY) {
+ return err;
+ }
+
+ if (res == 1) {
+ break;
+ }
+
+ /* add two, next candidate */
+ if ((err = mp_add_d(a, 2, a)) != MP_OKAY) {
+ return err;
+ }
+ }
+
+ return MP_OKAY;
+}
+
+
+/* End: bn_mp_prime_next_prime.c */
+
+/* Start: bn_mp_rand.c */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* makes a pseudo-random int of a given size */
+int
+mp_rand (mp_int * a, int digits)
+{
+ int res;
+ mp_digit d;
+
+ mp_zero (a);
+ if (digits <= 0) {
+ return MP_OKAY;
+ }
+
+ /* first place a random non-zero digit */
+ do {
+ d = ((mp_digit) abs (rand ()));
+ } while (d == 0);
+
+ if ((res = mp_add_d (a, d, a)) != MP_OKAY) {
+ return res;
+ }
+
+ while (digits-- > 0) {
+ if ((res = mp_lshd (a, 1)) != MP_OKAY) {
+ return res;
+ }
+
+ if ((res = mp_add_d (a, ((mp_digit) abs (rand ())), a)) != MP_OKAY) {
+ return res;
+ }
+ }
+
+ return MP_OKAY;
+}
+
+/* End: bn_mp_rand.c */
+
+/* Start: bn_mp_read_signed_bin.c */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* read signed bin, big endian, first byte is 0==positive or 1==negative */
+int
+mp_read_signed_bin (mp_int * a, unsigned char *b, int c)
+{
+ int res;
+
+ if ((res = mp_read_unsigned_bin (a, b + 1, c - 1)) != MP_OKAY) {
+ return res;
+ }
+ a->sign = ((b[0] == (unsigned char) 0) ? MP_ZPOS : MP_NEG);
+ return MP_OKAY;
+}
+
+/* End: bn_mp_read_signed_bin.c */
+
+/* Start: bn_mp_read_unsigned_bin.c */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* reads a unsigned char array, assumes the msb is stored first [big endian] */
+int
+mp_read_unsigned_bin (mp_int * a, unsigned char *b, int c)
+{
+ int res;
+ mp_zero (a);
+ while (c-- > 0) {
+ if ((res = mp_mul_2d (a, 8, a)) != MP_OKAY) {
+ return res;
+ }
+
+ if (DIGIT_BIT != 7) {
+ a->dp[0] |= *b++;
+ a->used += 1;
+ } else {
+ a->dp[0] = (*b & MP_MASK);
+ a->dp[1] |= ((*b++ >> 7U) & 1);
+ a->used += 2;
+ }
+ }
+ mp_clamp (a);
+ return MP_OKAY;
+}
+
+/* End: bn_mp_read_unsigned_bin.c */
+
+/* Start: bn_mp_reduce.c */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* pre-calculate the value required for Barrett reduction
+ * For a given modulus "b" it calulates the value required in "a"
+ */
+int
+mp_reduce_setup (mp_int * a, mp_int * b)
+{
+ int res;
+
+
+ if ((res = mp_2expt (a, b->used * 2 * DIGIT_BIT)) != MP_OKAY) {
+ return res;
+ }
+ res = mp_div (a, b, a, NULL);
+ return res;
+}
+
+/* reduces x mod m, assumes 0 < x < m^2, mu is precomputed via mp_reduce_setup
+ * From HAC pp.604 Algorithm 14.42
+ */
+int
+mp_reduce (mp_int * x, mp_int * m, mp_int * mu)
+{
+ mp_int q;
+ int res, um = m->used;
+
+
+ if ((res = mp_init_copy (&q, x)) != MP_OKAY) {
+ return res;
+ }
+
+ mp_rshd (&q, um - 1); /* q1 = x / b^(k-1) */
+
+ /* according to HAC this is optimization is ok */
+ if (((unsigned long) m->used) > (1UL << (unsigned long) (DIGIT_BIT - 1UL))) {
+ if ((res = mp_mul (&q, mu, &q)) != MP_OKAY) {
+ goto CLEANUP;
+ }
+ } else {
+ if ((res = s_mp_mul_high_digs (&q, mu, &q, um - 1)) != MP_OKAY) {
+ goto CLEANUP;
+ }
+ }
+
+ mp_rshd (&q, um + 1); /* q3 = q2 / b^(k+1) */
+
+ /* x = x mod b^(k+1), quick (no division) */
+ if ((res = mp_mod_2d (x, DIGIT_BIT * (um + 1), x)) != MP_OKAY) {
+ goto CLEANUP;
+ }
+
+ /* q = q * m mod b^(k+1), quick (no division) */
+ if ((res = s_mp_mul_digs (&q, m, &q, um + 1)) != MP_OKAY) {
+ goto CLEANUP;
+ }
+
+ /* x = x - q */
+ if ((res = mp_sub (x, &q, x)) != MP_OKAY)
+ goto CLEANUP;
+
+ /* If x < 0, add b^(k+1) to it */
+ if (mp_cmp_d (x, 0) == MP_LT) {
+ mp_set (&q, 1);
+ if ((res = mp_lshd (&q, um + 1)) != MP_OKAY)
+ goto CLEANUP;
+ if ((res = mp_add (x, &q, x)) != MP_OKAY)
+ goto CLEANUP;
+ }
+
+ /* Back off if it's too big */
+ while (mp_cmp (x, m) != MP_LT) {
+ if ((res = s_mp_sub (x, m, x)) != MP_OKAY)
+ break;
+ }
+
+CLEANUP:
+ mp_clear (&q);
+
+ return res;
+}
+
+/* End: bn_mp_reduce.c */
+
+/* Start: bn_mp_rshd.c */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* shift right a certain amount of digits */
+void
+mp_rshd (mp_int * a, int b)
+{
+ int x;
+
+ /* if b <= 0 then ignore it */
+ if (b <= 0) {
+ return;
+ }
+
+ /* if b > used then simply zero it and return */
+ if (a->used < b) {
+ mp_zero (a);
+ return;
+ }
+
+ {
+ register mp_digit *tmpa, *tmpaa;
+
+ /* shift the digits down */
+
+ /* base */
+ tmpa = a->dp;
+
+ /* offset into digits */
+ tmpaa = a->dp + b;
+
+ /* this is implemented as a sliding window where the window is b-digits long
+ * and digits from the top of the window are copied to the bottom
+ *
+ * e.g.
+
+ b-2 | b-1 | b0 | b1 | b2 | ... | bb | ---->
+ /\ | ---->
+ \-------------------/ ---->
+ */
+ for (x = 0; x < (a->used - b); x++) {
+ *tmpa++ = *tmpaa++;
+ }
+
+ /* zero the top digits */
+ for (; x < a->used; x++) {
+ *tmpa++ = 0;
+ }
+ }
+ mp_clamp (a);
+}
+
+/* End: bn_mp_rshd.c */
+
+/* Start: bn_mp_set.c */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* set to a digit */
+void
+mp_set (mp_int * a, mp_digit b)
+{
+ mp_zero (a);
+ a->dp[0] = b & MP_MASK;
+ a->used = (a->dp[0] != 0) ? 1 : 0;
+}
+
+/* End: bn_mp_set.c */
+
+/* Start: bn_mp_set_int.c */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* set a 32-bit const */
+int
+mp_set_int (mp_int * a, unsigned long b)
+{
+ int x, res;
+
+ mp_zero (a);
+
+ /* set four bits at a time, simplest solution to the what if DIGIT_BIT==7 case */
+ for (x = 0; x < 8; x++) {
+
+ /* shift the number up four bits */
+ if ((res = mp_mul_2d (a, 4, a)) != MP_OKAY) {
+ return res;
+ }
+
+ /* OR in the top four bits of the source */
+ a->dp[0] |= (b >> 28) & 15;
+
+ /* shift the source up to the next four bits */
+ b <<= 4;
+
+ /* ensure that digits are not clamped off */
+ a->used += 32 / DIGIT_BIT + 1;
+ }
+
+ mp_clamp (a);
+ return MP_OKAY;
+}
+
+/* End: bn_mp_set_int.c */
+
+/* Start: bn_mp_shrink.c */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* shrink a bignum */
+int
+mp_shrink (mp_int * a)
+{
+ if (a->alloc != a->used) {
+ if ((a->dp = OPT_CAST realloc (a->dp, sizeof (mp_digit) * a->used)) == NULL) {
+ return MP_MEM;
+ }
+ a->alloc = a->used;
+ }
+ return MP_OKAY;
+}
+
+/* End: bn_mp_shrink.c */
+
+/* Start: bn_mp_signed_bin_size.c */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* get the size for an signed equivalent */
+int
+mp_signed_bin_size (mp_int * a)
+{
+ return 1 + mp_unsigned_bin_size (a);
+}
+
+/* End: bn_mp_signed_bin_size.c */
+
+/* Start: bn_mp_sqr.c */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* computes b = a*a */
+int
+mp_sqr (mp_int * a, mp_int * b)
+{
+ int res;
+ if (a->used > KARATSUBA_SQR_CUTOFF) {
+ res = mp_karatsuba_sqr (a, b);
+ } else {
+
+ /* can we use the fast multiplier? */
+ if (((a->used * 2 + 1) < 512)
+ && a->used < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT) - 1))) {
+ res = fast_s_mp_sqr (a, b);
+ } else {
+ res = s_mp_sqr (a, b);
+ }
+ }
+ b->sign = MP_ZPOS;
+ return res;
+}
+
+/* End: bn_mp_sqr.c */
+
+/* Start: bn_mp_sqrmod.c */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* c = a * a (mod b) */
+int
+mp_sqrmod (mp_int * a, mp_int * b, mp_int * c)
+{
+ int res;
+ mp_int t;
+
+
+ if ((res = mp_init (&t)) != MP_OKAY) {
+ return res;
+ }
+
+ if ((res = mp_sqr (a, &t)) != MP_OKAY) {
+ mp_clear (&t);
+ return res;
+ }
+ res = mp_mod (&t, b, c);
+ mp_clear (&t);
+ return res;
+}
+
+/* End: bn_mp_sqrmod.c */
+
+/* Start: bn_mp_sub.c */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* high level subtraction (handles signs) */
+int
+mp_sub (mp_int * a, mp_int * b, mp_int * c)
+{
+ int sa, sb, res;
+
+
+ sa = a->sign;
+ sb = b->sign;
+
+ /* handle four cases */
+ if (sa == MP_ZPOS && sb == MP_ZPOS) {
+ /* both positive, a - b, but if b>a then we do -(b - a) */
+ if (mp_cmp_mag (a, b) == MP_LT) {
+ /* b>a */
+ res = s_mp_sub (b, a, c);
+ c->sign = MP_NEG;
+ } else {
+ res = s_mp_sub (a, b, c);
+ c->sign = MP_ZPOS;
+ }
+ } else if (sa == MP_ZPOS && sb == MP_NEG) {
+ /* a - -b == a + b */
+ res = s_mp_add (a, b, c);
+ c->sign = MP_ZPOS;
+ } else if (sa == MP_NEG && sb == MP_ZPOS) {
+ /* -a - b == -(a + b) */
+ res = s_mp_add (a, b, c);
+ c->sign = MP_NEG;
+ } else {
+ /* -a - -b == b - a, but if a>b == -(a - b) */
+ if (mp_cmp_mag (a, b) == MP_GT) {
+ res = s_mp_sub (a, b, c);
+ c->sign = MP_NEG;
+ } else {
+ res = s_mp_sub (b, a, c);
+ c->sign = MP_ZPOS;
+ }
+ }
+
+ return res;
+}
+
+/* End: bn_mp_sub.c */
+
+/* Start: bn_mp_submod.c */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* d = a - b (mod c) */
+int
+mp_submod (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
+{
+ int res;
+ mp_int t;
+
+
+ if ((res = mp_init (&t)) != MP_OKAY) {
+ return res;
+ }
+
+ if ((res = mp_sub (a, b, &t)) != MP_OKAY) {
+ mp_clear (&t);
+ return res;
+ }
+ res = mp_mod (&t, c, d);
+ mp_clear (&t);
+ return res;
+}
+
+/* End: bn_mp_submod.c */
+
+/* Start: bn_mp_sub_d.c */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* single digit subtraction */
+int
+mp_sub_d (mp_int * a, mp_digit b, mp_int * c)
+{
+ mp_int t;
+ int res;
+
+
+ if ((res = mp_init (&t)) != MP_OKAY) {
+ return res;
+ }
+ mp_set (&t, b);
+ res = mp_sub (a, &t, c);
+
+ mp_clear (&t);
+ return res;
+}
+
+/* End: bn_mp_sub_d.c */
+
+/* Start: bn_mp_to_signed_bin.c */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* store in signed [big endian] format */
+int
+mp_to_signed_bin (mp_int * a, unsigned char *b)
+{
+ int res;
+
+ if ((res = mp_to_unsigned_bin (a, b + 1)) != MP_OKAY) {
+ return res;
+ }
+ b[0] = (unsigned char) ((a->sign == MP_ZPOS) ? 0 : 1);
+ return MP_OKAY;
+}
+
+/* End: bn_mp_to_signed_bin.c */
+
+/* Start: bn_mp_to_unsigned_bin.c */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* store in unsigned [big endian] format */
+int
+mp_to_unsigned_bin (mp_int * a, unsigned char *b)
+{
+ int x, res;
+ mp_int t;
+
+ if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
+ return res;
+ }
+
+ x = 0;
+ while (mp_iszero (&t) == 0) {
+ if (DIGIT_BIT != 7) {
+ b[x++] = (unsigned char) (t.dp[0] & 255);
+ } else {
+ b[x++] = (unsigned char) (t.dp[0] | ((t.dp[1] & 0x01) << 7));
+ }
+ if ((res = mp_div_2d (&t, 8, &t, NULL)) != MP_OKAY) {
+ mp_clear (&t);
+ return res;
+ }
+ }
+ bn_reverse (b, x);
+ mp_clear (&t);
+ return MP_OKAY;
+}
+
+/* End: bn_mp_to_unsigned_bin.c */
+
+/* Start: bn_mp_unsigned_bin_size.c */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* get the size for an unsigned equivalent */
+int
+mp_unsigned_bin_size (mp_int * a)
+{
+ int size = mp_count_bits (a);
+ return (size / 8 + ((size & 7) != 0 ? 1 : 0));
+}
+
+/* End: bn_mp_unsigned_bin_size.c */
+
+/* Start: bn_mp_xor.c */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* XOR two ints together */
+int
+mp_xor (mp_int * a, mp_int * b, mp_int * c)
+{
+ int res, ix, px;
+ mp_int t, *x;
+
+ if (a->used > b->used) {
+ if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
+ return res;
+ }
+ px = b->used;
+ x = b;
+ } else {
+ if ((res = mp_init_copy (&t, b)) != MP_OKAY) {
+ return res;
+ }
+ px = a->used;
+ x = a;
+ }
+
+ for (ix = 0; ix < px; ix++) {
+ t.dp[ix] ^= x->dp[ix];
+ }
+ mp_clamp (&t);
+ mp_exch (c, &t);
+ mp_clear (&t);
+ return MP_OKAY;
+}
+
+/* End: bn_mp_xor.c */
+
+/* Start: bn_mp_zero.c */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* set to zero */
+void
+mp_zero (mp_int * a)
+{
+ a->sign = MP_ZPOS;
+ a->used = 0;
+ memset (a->dp, 0, sizeof (mp_digit) * a->alloc);
+}
+
+/* End: bn_mp_zero.c */
+
+/* Start: bn_prime_tab.c */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+const mp_digit __prime_tab[] = {
+ 0x0002, 0x0003, 0x0005, 0x0007, 0x000B, 0x000D, 0x0011, 0x0013,
+ 0x0017, 0x001D, 0x001F, 0x0025, 0x0029, 0x002B, 0x002F, 0x0035,
+ 0x003B, 0x003D, 0x0043, 0x0047, 0x0049, 0x004F, 0x0053, 0x0059,
+ 0x0061, 0x0065, 0x0067, 0x006B, 0x006D, 0x0071, 0x007F, 0x0083,
+ 0x0089, 0x008B, 0x0095, 0x0097, 0x009D, 0x00A3, 0x00A7, 0x00AD,
+ 0x00B3, 0x00B5, 0x00BF, 0x00C1, 0x00C5, 0x00C7, 0x00D3, 0x00DF,
+ 0x00E3, 0x00E5, 0x00E9, 0x00EF, 0x00F1, 0x00FB, 0x0101, 0x0107,
+ 0x010D, 0x010F, 0x0115, 0x0119, 0x011B, 0x0125, 0x0133, 0x0137,
+
+ 0x0139, 0x013D, 0x014B, 0x0151, 0x015B, 0x015D, 0x0161, 0x0167,
+ 0x016F, 0x0175, 0x017B, 0x017F, 0x0185, 0x018D, 0x0191, 0x0199,
+ 0x01A3, 0x01A5, 0x01AF, 0x01B1, 0x01B7, 0x01BB, 0x01C1, 0x01C9,
+ 0x01CD, 0x01CF, 0x01D3, 0x01DF, 0x01E7, 0x01EB, 0x01F3, 0x01F7,
+ 0x01FD, 0x0209, 0x020B, 0x021D, 0x0223, 0x022D, 0x0233, 0x0239,
+ 0x023B, 0x0241, 0x024B, 0x0251, 0x0257, 0x0259, 0x025F, 0x0265,
+ 0x0269, 0x026B, 0x0277, 0x0281, 0x0283, 0x0287, 0x028D, 0x0293,
+ 0x0295, 0x02A1, 0x02A5, 0x02AB, 0x02B3, 0x02BD, 0x02C5, 0x02CF,
+
+ 0x02D7, 0x02DD, 0x02E3, 0x02E7, 0x02EF, 0x02F5, 0x02F9, 0x0301,
+ 0x0305, 0x0313, 0x031D, 0x0329, 0x032B, 0x0335, 0x0337, 0x033B,
+ 0x033D, 0x0347, 0x0355, 0x0359, 0x035B, 0x035F, 0x036D, 0x0371,
+ 0x0373, 0x0377, 0x038B, 0x038F, 0x0397, 0x03A1, 0x03A9, 0x03AD,
+ 0x03B3, 0x03B9, 0x03C7, 0x03CB, 0x03D1, 0x03D7, 0x03DF, 0x03E5,
+ 0x03F1, 0x03F5, 0x03FB, 0x03FD, 0x0407, 0x0409, 0x040F, 0x0419,
+ 0x041B, 0x0425, 0x0427, 0x042D, 0x043F, 0x0443, 0x0445, 0x0449,
+ 0x044F, 0x0455, 0x045D, 0x0463, 0x0469, 0x047F, 0x0481, 0x048B,
+
+ 0x0493, 0x049D, 0x04A3, 0x04A9, 0x04B1, 0x04BD, 0x04C1, 0x04C7,
+ 0x04CD, 0x04CF, 0x04D5, 0x04E1, 0x04EB, 0x04FD, 0x04FF, 0x0503,
+ 0x0509, 0x050B, 0x0511, 0x0515, 0x0517, 0x051B, 0x0527, 0x0529,
+ 0x052F, 0x0551, 0x0557, 0x055D, 0x0565, 0x0577, 0x0581, 0x058F,
+ 0x0593, 0x0595, 0x0599, 0x059F, 0x05A7, 0x05AB, 0x05AD, 0x05B3,
+ 0x05BF, 0x05C9, 0x05CB, 0x05CF, 0x05D1, 0x05D5, 0x05DB, 0x05E7,
+ 0x05F3, 0x05FB, 0x0607, 0x060D, 0x0611, 0x0617, 0x061F, 0x0623,
+ 0x062B, 0x062F, 0x063D, 0x0641, 0x0647, 0x0649, 0x064D, 0x0653
+};
+
+/* End: bn_prime_tab.c */
+
+/* Start: bn_radix.c */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* chars used in radix conversions */
+static const char *s_rmap = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+/";
+
+
+/* read a string [ASCII] in a given radix */
+int
+mp_read_radix (mp_int * a, char *str, int radix)
+{
+ int y, res, neg;
+ char ch;
+
+ if (radix < 2 || radix > 64) {
+ return MP_VAL;
+ }
+
+ if (*str == '-') {
+ ++str;
+ neg = MP_NEG;
+ } else {
+ neg = MP_ZPOS;
+ }
+
+ mp_zero (a);
+ while (*str) {
+ ch = (char) ((radix < 36) ? toupper (*str) : *str);
+ for (y = 0; y < 64; y++) {
+ if (ch == s_rmap[y]) {
+ break;
+ }
+ }
+
+ if (y < radix) {
+ if ((res = mp_mul_d (a, (mp_digit) radix, a)) != MP_OKAY) {
+ return res;
+ }
+ if ((res = mp_add_d (a, (mp_digit) y, a)) != MP_OKAY) {
+ return res;
+ }
+ } else {
+ break;
+ }
+ ++str;
+ }
+ a->sign = neg;
+ return MP_OKAY;
+}
+
+/* stores a bignum as a ASCII string in a given radix (2..64) */
+int
+mp_toradix (mp_int * a, char *str, int radix)
+{
+ int res, digs;
+ mp_int t;
+ mp_digit d;
+ char *_s = str;
+
+ if (radix < 2 || radix > 64) {
+ return MP_VAL;
+ }
+
+ if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
+ return res;
+ }
+
+ if (t.sign == MP_NEG) {
+ ++_s;
+ *str++ = '-';
+ t.sign = MP_ZPOS;
+ }
+
+ digs = 0;
+ while (mp_iszero (&t) == 0) {
+ if ((res = mp_div_d (&t, (mp_digit) radix, &t, &d)) != MP_OKAY) {
+ mp_clear (&t);
+ return res;
+ }
+ *str++ = s_rmap[d];
+ ++digs;
+ }
+ bn_reverse ((unsigned char *)_s, digs);
+ *str++ = '\0';
+ mp_clear (&t);
+ return MP_OKAY;
+}
+
+/* returns size of ASCII reprensentation */
+int
+mp_radix_size (mp_int * a, int radix)
+{
+ int res, digs;
+ mp_int t;
+ mp_digit d;
+
+ /* special case for binary */
+ if (radix == 2) {
+ return mp_count_bits (a) + (a->sign == MP_NEG ? 1 : 0) + 1;
+ }
+
+ if (radix < 2 || radix > 64) {
+ return 0;
+ }
+
+ if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
+ return 0;
+ }
+
+ digs = 0;
+ if (t.sign == MP_NEG) {
+ ++digs;
+ t.sign = MP_ZPOS;
+ }
+
+ while (mp_iszero (&t) == 0) {
+ if ((res = mp_div_d (&t, (mp_digit) radix, &t, &d)) != MP_OKAY) {
+ mp_clear (&t);
+ return 0;
+ }
+ ++digs;
+ }
+ mp_clear (&t);
+ return digs + 1;
+}
+
+/* End: bn_radix.c */
+
+/* Start: bn_reverse.c */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* reverse an array, used for radix code */
+void
+bn_reverse (unsigned char *s, int len)
+{
+ int ix, iy;
+ unsigned char t;
+
+ ix = 0;
+ iy = len - 1;
+ while (ix < iy) {
+ t = s[ix];
+ s[ix] = s[iy];
+ s[iy] = t;
+ ++ix;
+ --iy;
+ }
+}
+
+/* End: bn_reverse.c */
+
+/* Start: bn_s_mp_add.c */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* low level addition, based on HAC pp.594, Algorithm 14.7 */
+int
+s_mp_add (mp_int * a, mp_int * b, mp_int * c)
+{
+ mp_int *x;
+ int olduse, res, min, max;
+
+ /* find sizes, we let |a| <= |b| which means we have to sort
+ * them. "x" will point to the input with the most digits
+ */
+ if (a->used > b->used) {
+ min = b->used;
+ max = a->used;
+ x = a;
+ } else if (a->used < b->used) {
+ min = a->used;
+ max = b->used;
+ x = b;
+ } else {
+ min = max = a->used;
+ x = NULL;
+ }
+
+ /* init result */
+ if (c->alloc < max + 1) {
+ if ((res = mp_grow (c, max + 1)) != MP_OKAY) {
+ return res;
+ }
+ }
+
+ olduse = c->used;
+ c->used = max + 1;
+
+ /* add digits from lower part */
+
+ /* set the carry to zero */
+ {
+ register mp_digit u, *tmpa, *tmpb, *tmpc;
+ register int i;
+
+ /* alias for digit pointers */
+
+ /* first input */
+ tmpa = a->dp;
+
+ /* second input */
+ tmpb = b->dp;
+
+ /* destination */
+ tmpc = c->dp;
+
+ u = 0;
+ for (i = 0; i < min; i++) {
+ /* Compute the sum at one digit, T[i] = A[i] + B[i] + U */
+ *tmpc = *tmpa++ + *tmpb++ + u;
+
+ /* U = carry bit of T[i] */
+ u = *tmpc >> DIGIT_BIT;
+
+ /* take away carry bit from T[i] */
+ *tmpc++ &= MP_MASK;
+ }
+
+ /* now copy higher words if any, that is in A+B if A or B has more digits add those in */
+ if (min != max) {
+ for (; i < max; i++) {
+ /* T[i] = X[i] + U */
+ *tmpc = x->dp[i] + u;
+
+ /* U = carry bit of T[i] */
+ u = *tmpc >> DIGIT_BIT;
+
+ /* take away carry bit from T[i] */
+ *tmpc++ &= MP_MASK;
+ }
+ }
+
+ /* add carry */
+ *tmpc++ = u;
+
+ /* clear digits above used (since we may not have grown result above) */
+ for (i = c->used; i < olduse; i++) {
+ *tmpc++ = 0;
+ }
+ }
+
+ mp_clamp (c);
+ return MP_OKAY;
+}
+
+/* End: bn_s_mp_add.c */
+
+/* Start: bn_s_mp_mul_digs.c */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* multiplies |a| * |b| and only computes upto digs digits of result
+ * HAC pp. 595, Algorithm 14.12 Modified so you can control how many digits of
+ * output are created.
+ */
+int
+s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
+{
+ mp_int t;
+ int res, pa, pb, ix, iy;
+ mp_digit u;
+ mp_word r;
+ mp_digit tmpx, *tmpt, *tmpy;
+
+ if ((res = mp_init_size (&t, digs)) != MP_OKAY) {
+ return res;
+ }
+ t.used = digs;
+
+ /* compute the digits of the product directly */
+ pa = a->used;
+ for (ix = 0; ix < pa; ix++) {
+ /* set the carry to zero */
+ u = 0;
+
+ /* limit ourselves to making digs digits of output */
+ pb = MIN (b->used, digs - ix);
+
+ /* setup some aliases */
+ tmpx = a->dp[ix];
+ tmpt = &(t.dp[ix]);
+ tmpy = b->dp;
+
+ /* compute the columns of the output and propagate the carry */
+ for (iy = 0; iy < pb; iy++) {
+ /* compute the column as a mp_word */
+ r = ((mp_word) * tmpt) + ((mp_word) tmpx) * ((mp_word) * tmpy++) + ((mp_word) u);
+
+ /* the new column is the lower part of the result */
+ *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
+
+ /* get the carry word from the result */
+ u = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
+ }
+ if (ix + iy < digs)
+ *tmpt = u;
+ }
+
+ mp_clamp (&t);
+ mp_exch (&t, c);
+
+ mp_clear (&t);
+ return MP_OKAY;
+}
+
+/* End: bn_s_mp_mul_digs.c */
+
+/* Start: bn_s_mp_mul_high_digs.c */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* multiplies |a| * |b| and does not compute the lower digs digits
+ * [meant to get the higher part of the product]
+ */
+int
+s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
+{
+ mp_int t;
+ int res, pa, pb, ix, iy;
+ mp_digit u;
+ mp_word r;
+ mp_digit tmpx, *tmpt, *tmpy;
+
+
+ /* can we use the fast multiplier? */
+ if (((a->used + b->used + 1) < 512)
+ && MAX (a->used, b->used) < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
+ return fast_s_mp_mul_high_digs (a, b, c, digs);
+ }
+
+ if ((res = mp_init_size (&t, a->used + b->used + 1)) != MP_OKAY) {
+ return res;
+ }
+ t.used = a->used + b->used + 1;
+
+ pa = a->used;
+ pb = b->used;
+ for (ix = 0; ix < pa; ix++) {
+ /* clear the carry */
+ u = 0;
+
+ /* left hand side of A[ix] * B[iy] */
+ tmpx = a->dp[ix];
+
+ /* alias to the address of where the digits will be stored */
+ tmpt = &(t.dp[digs]);
+
+ /* alias for where to read the right hand side from */
+ tmpy = b->dp + (digs - ix);
+
+ for (iy = digs - ix; iy < pb; iy++) {
+ /* calculate the double precision result */
+ r = ((mp_word) * tmpt) + ((mp_word) tmpx) * ((mp_word) * tmpy++) + ((mp_word) u);
+
+ /* get the lower part */
+ *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
+
+ /* carry the carry */
+ u = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
+ }
+ *tmpt = u;
+ }
+ mp_clamp (&t);
+ mp_exch (&t, c);
+ mp_clear (&t);
+ return MP_OKAY;
+}
+
+/* End: bn_s_mp_mul_high_digs.c */
+
+/* Start: bn_s_mp_sqr.c */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* low level squaring, b = a*a, HAC pp.596-597, Algorithm 14.16 */
+int
+s_mp_sqr (mp_int * a, mp_int * b)
+{
+ mp_int t;
+ int res, ix, iy, pa;
+ mp_word r, u;
+ mp_digit tmpx, *tmpt;
+
+ pa = a->used;
+ if ((res = mp_init_size (&t, pa + pa + 1)) != MP_OKAY) {
+ return res;
+ }
+ t.used = pa + pa + 1;
+
+ for (ix = 0; ix < pa; ix++) {
+ /* first calculate the digit at 2*ix */
+ /* calculate double precision result */
+ r = ((mp_word) t.dp[ix + ix]) + ((mp_word) a->dp[ix]) * ((mp_word) a->dp[ix]);
+
+ /* store lower part in result */
+ t.dp[ix + ix] = (mp_digit) (r & ((mp_word) MP_MASK));
+
+ /* get the carry */
+ u = (r >> ((mp_word) DIGIT_BIT));
+
+ /* left hand side of A[ix] * A[iy] */
+ tmpx = a->dp[ix];
+
+ /* alias for where to store the results */
+ tmpt = &(t.dp[ix + ix + 1]);
+ for (iy = ix + 1; iy < pa; iy++) {
+ /* first calculate the product */
+ r = ((mp_word) tmpx) * ((mp_word) a->dp[iy]);
+
+ /* now calculate the double precision result, note we use
+ * addition instead of *2 since its easier to optimize
+ */
+ r = ((mp_word) * tmpt) + r + r + ((mp_word) u);
+
+ /* store lower part */
+ *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
+
+ /* get carry */
+ u = (r >> ((mp_word) DIGIT_BIT));
+ }
+ r = ((mp_word) * tmpt) + u;
+ *tmpt = (mp_digit) (r & ((mp_word) MP_MASK));
+ u = (r >> ((mp_word) DIGIT_BIT));
+ /* propagate upwards */
+ ++tmpt;
+ while (u != ((mp_word) 0)) {
+ r = ((mp_word) * tmpt) + ((mp_word) 1);
+ *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
+ u = (r >> ((mp_word) DIGIT_BIT));
+ }
+ }
+
+ mp_clamp (&t);
+ mp_exch (&t, b);
+ mp_clear (&t);
+ return MP_OKAY;
+}
+
+/* End: bn_s_mp_sqr.c */
+
+/* Start: bn_s_mp_sub.c */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* low level subtraction (assumes a > b), HAC pp.595 Algorithm 14.9 */
+int
+s_mp_sub (mp_int * a, mp_int * b, mp_int * c)
+{
+ int olduse, res, min, max;
+
+ /* find sizes */
+ min = b->used;
+ max = a->used;
+
+ /* init result */
+ if (c->alloc < max) {
+ if ((res = mp_grow (c, max)) != MP_OKAY) {
+ return res;
+ }
+ }
+ olduse = c->used;
+ c->used = max;
+
+ /* sub digits from lower part */
+
+ {
+ register mp_digit u, *tmpa, *tmpb, *tmpc;
+ register int i;
+
+ /* alias for digit pointers */
+ tmpa = a->dp;
+ tmpb = b->dp;
+ tmpc = c->dp;
+
+ /* set carry to zero */
+ u = 0;
+ for (i = 0; i < min; i++) {
+ /* T[i] = A[i] - B[i] - U */
+ *tmpc = *tmpa++ - *tmpb++ - u;
+
+ /* U = carry bit of T[i]
+ * Note this saves performing an AND operation since
+ * if a carry does occur it will propagate all the way to the
+ * MSB. As a result a single shift is required to get the carry
+ */
+ u = *tmpc >> (CHAR_BIT * sizeof (mp_digit) - 1);
+
+ /* Clear carry from T[i] */
+ *tmpc++ &= MP_MASK;
+ }
+
+ /* now copy higher words if any, e.g. if A has more digits than B */
+ for (; i < max; i++) {
+ /* T[i] = A[i] - U */
+ *tmpc = *tmpa++ - u;
+
+ /* U = carry bit of T[i] */
+ u = *tmpc >> (CHAR_BIT * sizeof (mp_digit) - 1);
+
+ /* Clear carry from T[i] */
+ *tmpc++ &= MP_MASK;
+ }
+
+ /* clear digits above used (since we may not have grown result above) */
+ for (i = c->used; i < olduse; i++) {
+ *tmpc++ = 0;
+ }
+ }
+
+ mp_clamp (c);
+ return MP_OKAY;
+}
+
+/* End: bn_s_mp_sub.c */
+
+
+/* EOF */
diff --git a/tommath.h b/tommath.h
index eb8a488..d8f8d9d 100644
--- a/tommath.h
+++ b/tommath.h
@@ -28,8 +28,16 @@
#ifdef __cplusplus
extern "C" {
-#endif
+/* C++ compilers don't like assigning void * to mp_digit * */
+#define OPT_CAST (mp_digit *)
+
+#else
+
+/* C on the other hand dosen't care */
+#define OPT_CAST
+
+#endif
/* some default configurations.
*
@@ -202,7 +210,6 @@ int mp_cmp_mag(mp_int *a, mp_int *b);
/* c = a + b */
int mp_add(mp_int *a, mp_int *b, mp_int *c);
-
/* c = a - b */
int mp_sub(mp_int *a, mp_int *b, mp_int *c);
@@ -297,9 +304,52 @@ int mp_montgomery_calc_normalization(mp_int *a, mp_int *b);
/* computes xR^-1 == x (mod N) via Montgomery Reduction */
int mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp);
+/* returns 1 if a is a valid DR modulus */
+int mp_dr_is_modulus(mp_int *a);
+
+/* sets the value of "d" required for mp_dr_reduce */
+void mp_dr_setup(mp_int *a, mp_digit *d);
+
+/* reduces a modulo b using the Diminished Radix method */
+int mp_dr_reduce(mp_int *a, mp_int *b, mp_digit mp);
+
/* d = a^b (mod c) */
int mp_exptmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
+/* ---> Primes <--- */
+#define PRIME_SIZE 256 /* number of primes */
+
+/* table of first 256 primes */
+extern const mp_digit __prime_tab[];
+
+/* result=1 if a is divisible by one of the first 256 primes */
+int mp_prime_is_divisible(mp_int *a, int *result);
+
+/* performs one Fermat test of "a" using base "b".
+ * Sets result to 0 if composite or 1 if probable prime
+ */
+int mp_prime_fermat(mp_int *a, mp_int *b, int *result);
+
+/* performs one Miller-Rabin test of "a" using base "b".
+ * Sets result to 0 if composite or 1 if probable prime
+ */
+int mp_prime_miller_rabin(mp_int *a, mp_int *b, int *result);
+
+/* performs t rounds of Miller-Rabin on "a" using the first
+ * t prime bases. Also performs an initial sieve of trial
+ * division. Determines if "a" is prime with probability
+ * of error no more than (1/4)^t.
+ *
+ * Sets result to 1 if probably prime, 0 otherwise
+ */
+int mp_prime_is_prime(mp_int *a, int t, int *result);
+
+/* finds the next prime after the number "a" using "t" trials
+ * of Miller-Rabin.
+ */
+int mp_prime_next_prime(mp_int *a, int t);
+
+
/* ---> radix conversion <--- */
int mp_count_bits(mp_int *a);
@@ -341,7 +391,7 @@ int mp_karatsuba_mul(mp_int *a, mp_int *b, mp_int *c);
int mp_karatsuba_sqr(mp_int *a, mp_int *b);
int fast_mp_invmod(mp_int *a, mp_int *b, mp_int *c);
int fast_mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp);
-int mp_exptmod_fast(mp_int *G, mp_int *X, mp_int *P, mp_int *Y);
+int mp_exptmod_fast(mp_int *G, mp_int *X, mp_int *P, mp_int *Y, int mode);
void bn_reverse(unsigned char *s, int len);
#ifdef __cplusplus