Hash :
68a360ab
Author :
Date :
2015-12-12T18:15:04
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
#include <tommath.h>
#include <time.h>
#include <unistd.h>
ulong64 _tt;
#ifdef IOWNANATHLON
#include <unistd.h>
#define SLEEP sleep(4)
#else
#define SLEEP
#endif
#ifdef LTM_TIMING_REAL_RAND
#define LTM_TIMING_RAND_SEED time(NULL)
#else
#define LTM_TIMING_RAND_SEED 23
#endif
void ndraw(mp_int * a, char *name)
{
char buf[4096];
printf("%s: ", name);
mp_toradix(a, buf, 64);
printf("%s\n", buf);
}
static void draw(mp_int * a)
{
ndraw(a, "");
}
unsigned long lfsr = 0xAAAAAAAAUL;
int lbit(void)
{
if (lfsr & 0x80000000UL) {
lfsr = ((lfsr << 1) ^ 0x8000001BUL) & 0xFFFFFFFFUL;
return 1;
} else {
lfsr <<= 1;
return 0;
}
}
/* RDTSC from Scott Duplichan */
static ulong64 TIMFUNC(void)
{
#if defined __GNUC__
#if defined(__i386__) || defined(__x86_64__)
/* version from http://www.mcs.anl.gov/~kazutomo/rdtsc.html
* the old code always got a warning issued by gcc, clang did not complain...
*/
unsigned hi, lo;
__asm__ __volatile__ ("rdtsc" : "=a"(lo), "=d"(hi));
return ((ulong64)lo)|( ((ulong64)hi)<<32);
#else /* gcc-IA64 version */
unsigned long result;
__asm__ __volatile__("mov %0=ar.itc":"=r"(result)::"memory");
while (__builtin_expect((int) result == -1, 0))
__asm__ __volatile__("mov %0=ar.itc":"=r"(result)::"memory");
return result;
#endif
// Microsoft and Intel Windows compilers
#elif defined _M_IX86
__asm rdtsc
#elif defined _M_AMD64
return __rdtsc();
#elif defined _M_IA64
#if defined __INTEL_COMPILER
#include <ia64intrin.h>
#endif
return __getReg(3116);
#else
#error need rdtsc function for this build
#endif
}
#define DO(x) x; x;
//#define DO4(x) DO2(x); DO2(x);
//#define DO8(x) DO4(x); DO4(x);
//#define DO(x) DO8(x); DO8(x);
#ifdef TIMING_NO_LOGS
#define FOPEN(a, b) NULL
#define FPRINTF(a,b,c,d)
#define FFLUSH(a)
#define FCLOSE(a) (void)(a)
#else
#define FOPEN(a,b) fopen(a,b)
#define FPRINTF(a,b,c,d) fprintf(a,b,c,d)
#define FFLUSH(a) fflush(a)
#define FCLOSE(a) fclose(a)
#endif
int main(void)
{
ulong64 tt, gg, CLK_PER_SEC;
FILE *log, *logb, *logc, *logd;
mp_int a, b, c, d, e, f;
int n, cnt, ix, old_kara_m, old_kara_s, old_toom_m, old_toom_s;
unsigned rr;
mp_init(&a);
mp_init(&b);
mp_init(&c);
mp_init(&d);
mp_init(&e);
mp_init(&f);
srand(LTM_TIMING_RAND_SEED);
CLK_PER_SEC = TIMFUNC();
sleep(1);
CLK_PER_SEC = TIMFUNC() - CLK_PER_SEC;
printf("CLK_PER_SEC == %llu\n", CLK_PER_SEC);
log = FOPEN("logs/add.log", "w");
for (cnt = 8; cnt <= 128; cnt += 8) {
SLEEP;
mp_rand(&a, cnt);
mp_rand(&b, cnt);
rr = 0;
tt = -1;
do {
gg = TIMFUNC();
DO(mp_add(&a, &b, &c));
gg = (TIMFUNC() - gg) >> 1;
if (tt > gg)
tt = gg;
} while (++rr < 100000);
printf("Adding\t\t%4d-bit => %9llu/sec, %9llu cycles\n",
mp_count_bits(&a), CLK_PER_SEC / tt, tt);
FPRINTF(log, "%d %9llu\n", cnt * DIGIT_BIT, tt);
FFLUSH(log);
}
FCLOSE(log);
log = FOPEN("logs/sub.log", "w");
for (cnt = 8; cnt <= 128; cnt += 8) {
SLEEP;
mp_rand(&a, cnt);
mp_rand(&b, cnt);
rr = 0;
tt = -1;
do {
gg = TIMFUNC();
DO(mp_sub(&a, &b, &c));
gg = (TIMFUNC() - gg) >> 1;
if (tt > gg)
tt = gg;
} while (++rr < 100000);
printf("Subtracting\t\t%4d-bit => %9llu/sec, %9llu cycles\n",
mp_count_bits(&a), CLK_PER_SEC / tt, tt);
FPRINTF(log, "%d %9llu\n", cnt * DIGIT_BIT, tt);
FFLUSH(log);
}
FCLOSE(log);
/* do mult/square twice, first without karatsuba and second with */
old_kara_m = KARATSUBA_MUL_CUTOFF;
old_kara_s = KARATSUBA_SQR_CUTOFF;
/* currently toom-cook cut-off is too high to kick in, so we just use the karatsuba values */
old_toom_m = old_kara_m;
old_toom_s = old_kara_m;
for (ix = 0; ix < 3; ix++) {
printf("With%s Karatsuba, With%s Toom\n", (ix == 0) ? "out" : "", (ix == 1) ? "out" : "");
KARATSUBA_MUL_CUTOFF = (ix == 1) ? old_kara_m : 9999;
KARATSUBA_SQR_CUTOFF = (ix == 1) ? old_kara_s : 9999;
TOOM_MUL_CUTOFF = (ix == 2) ? old_toom_m : 9999;
TOOM_SQR_CUTOFF = (ix == 2) ? old_toom_s : 9999;
log = FOPEN((ix == 0) ? "logs/mult.log" : (ix == 1) ? "logs/mult_kara.log" : "logs/mult_toom.log", "w");
for (cnt = 4; cnt <= 10240 / DIGIT_BIT; cnt += 2) {
SLEEP;
mp_rand(&a, cnt);
mp_rand(&b, cnt);
rr = 0;
tt = -1;
do {
gg = TIMFUNC();
DO(mp_mul(&a, &b, &c));
gg = (TIMFUNC() - gg) >> 1;
if (tt > gg)
tt = gg;
} while (++rr < 100);
printf("Multiplying\t%4d-bit => %9llu/sec, %9llu cycles\n",
mp_count_bits(&a), CLK_PER_SEC / tt, tt);
FPRINTF(log, "%d %9llu\n", mp_count_bits(&a), tt);
FFLUSH(log);
}
FCLOSE(log);
log = FOPEN((ix == 0) ? "logs/sqr.log" : (ix == 1) ? "logs/sqr_kara.log" : "logs/sqr_toom.log", "w");
for (cnt = 4; cnt <= 10240 / DIGIT_BIT; cnt += 2) {
SLEEP;
mp_rand(&a, cnt);
rr = 0;
tt = -1;
do {
gg = TIMFUNC();
DO(mp_sqr(&a, &b));
gg = (TIMFUNC() - gg) >> 1;
if (tt > gg)
tt = gg;
} while (++rr < 100);
printf("Squaring\t%4d-bit => %9llu/sec, %9llu cycles\n",
mp_count_bits(&a), CLK_PER_SEC / tt, tt);
FPRINTF(log, "%d %9llu\n", mp_count_bits(&a), tt);
FFLUSH(log);
}
FCLOSE(log);
}
{
char *primes[] = {
/* 2K large moduli */
"179769313486231590772930519078902473361797697894230657273430081157732675805500963132708477322407536021120113879871393357658789768814416622492847430639474124377767893424865485276302219601246094119453082952085005768838150682342462881473913110540827237163350510684586239334100047359817950870678242457666208137217",
"32317006071311007300714876688669951960444102669715484032130345427524655138867890893197201411522913463688717960921898019494119559150490921095088152386448283120630877367300996091750197750389652106796057638384067568276792218642619756161838094338476170470581645852036305042887575891541065808607552399123930385521914333389668342420684974786564569494856176035326322058077805659331026192708460314150258592864177116725943603718461857357598351152301645904403697613233287231227125684710820209725157101726931323469678542580656697935045997268352998638099733077152121140120031150424541696791951097529546801429027668869927491725169",
"1044388881413152506691752710716624382579964249047383780384233483283953907971557456848826811934997558340890106714439262837987573438185793607263236087851365277945956976543709998340361590134383718314428070011855946226376318839397712745672334684344586617496807908705803704071284048740118609114467977783598029006686938976881787785946905630190260940599579453432823469303026696443059025015972399867714215541693835559885291486318237914434496734087811872639496475100189041349008417061675093668333850551032972088269550769983616369411933015213796825837188091833656751221318492846368125550225998300412344784862595674492194617023806505913245610825731835380087608622102834270197698202313169017678006675195485079921636419370285375124784014907159135459982790513399611551794271106831134090584272884279791554849782954323534517065223269061394905987693002122963395687782878948440616007412945674919823050571642377154816321380631045902916136926708342856440730447899971901781465763473223850267253059899795996090799469201774624817718449867455659250178329070473119433165550807568221846571746373296884912819520317457002440926616910874148385078411929804522981857338977648103126085902995208257421855249796721729039744118165938433694823325696642096892124547425283",
/* 2K moduli mersenne primes */
"6864797660130609714981900799081393217269435300143305409394463459185543183397656052122559640661454554977296311391480858037121987999716643812574028291115057151",
"531137992816767098689588206552468627329593117727031923199444138200403559860852242739162502265229285668889329486246501015346579337652707239409519978766587351943831270835393219031728127",
"10407932194664399081925240327364085538615262247266704805319112350403608059673360298012239441732324184842421613954281007791383566248323464908139906605677320762924129509389220345773183349661583550472959420547689811211693677147548478866962501384438260291732348885311160828538416585028255604666224831890918801847068222203140521026698435488732958028878050869736186900714720710555703168729087",
"1475979915214180235084898622737381736312066145333169775147771216478570297878078949377407337049389289382748507531496480477281264838760259191814463365330269540496961201113430156902396093989090226259326935025281409614983499388222831448598601834318536230923772641390209490231836446899608210795482963763094236630945410832793769905399982457186322944729636418890623372171723742105636440368218459649632948538696905872650486914434637457507280441823676813517852099348660847172579408422316678097670224011990280170474894487426924742108823536808485072502240519452587542875349976558572670229633962575212637477897785501552646522609988869914013540483809865681250419497686697771007",
"259117086013202627776246767922441530941818887553125427303974923161874019266586362086201209516800483406550695241733194177441689509238807017410377709597512042313066624082916353517952311186154862265604547691127595848775610568757931191017711408826252153849035830401185072116424747461823031471398340229288074545677907941037288235820705892351068433882986888616658650280927692080339605869308790500409503709875902119018371991620994002568935113136548829739112656797303241986517250116412703509705427773477972349821676443446668383119322540099648994051790241624056519054483690809616061625743042361721863339415852426431208737266591962061753535748892894599629195183082621860853400937932839420261866586142503251450773096274235376822938649407127700846077124211823080804139298087057504713825264571448379371125032081826126566649084251699453951887789613650248405739378594599444335231188280123660406262468609212150349937584782292237144339628858485938215738821232393687046160677362909315071",
"190797007524439073807468042969529173669356994749940177394741882673528979787005053706368049835514900244303495954950709725762186311224148828811920216904542206960744666169364221195289538436845390250168663932838805192055137154390912666527533007309292687539092257043362517857366624699975402375462954490293259233303137330643531556539739921926201438606439020075174723029056838272505051571967594608350063404495977660656269020823960825567012344189908927956646011998057988548630107637380993519826582389781888135705408653045219655801758081251164080554609057468028203308718724654081055323215860189611391296030471108443146745671967766308925858547271507311563765171008318248647110097614890313562856541784154881743146033909602737947385055355960331855614540900081456378659068370317267696980001187750995491090350108417050917991562167972281070161305972518044872048331306383715094854938415738549894606070722584737978176686422134354526989443028353644037187375385397838259511833166416134323695660367676897722287918773420968982326089026150031515424165462111337527431154890666327374921446276833564519776797633875503548665093914556482031482248883127023777039667707976559857333357013727342079099064400455741830654320379350833236245819348824064783585692924881021978332974949906122664421376034687815350484991",
/* DR moduli */
"14059105607947488696282932836518693308967803494693489478439861164411992439598399594747002144074658928593502845729752797260025831423419686528151609940203368612079",
"101745825697019260773923519755878567461315282017759829107608914364075275235254395622580447400994175578963163918967182013639660669771108475957692810857098847138903161308502419410142185759152435680068435915159402496058513611411688900243039",
"736335108039604595805923406147184530889923370574768772191969612422073040099331944991573923112581267542507986451953227192970402893063850485730703075899286013451337291468249027691733891486704001513279827771740183629161065194874727962517148100775228363421083691764065477590823919364012917984605619526140821797602431",
"38564998830736521417281865696453025806593491967131023221754800625044118265468851210705360385717536794615180260494208076605798671660719333199513807806252394423283413430106003596332513246682903994829528690198205120921557533726473585751382193953592127439965050261476810842071573684505878854588706623484573925925903505747545471088867712185004135201289273405614415899438276535626346098904241020877974002916168099951885406379295536200413493190419727789712076165162175783",
"542189391331696172661670440619180536749994166415993334151601745392193484590296600979602378676624808129613777993466242203025054573692562689251250471628358318743978285860720148446448885701001277560572526947619392551574490839286458454994488665744991822837769918095117129546414124448777033941223565831420390846864429504774477949153794689948747680362212954278693335653935890352619041936727463717926744868338358149568368643403037768649616778526013610493696186055899318268339432671541328195724261329606699831016666359440874843103020666106568222401047720269951530296879490444224546654729111504346660859907296364097126834834235287147",
"1487259134814709264092032648525971038895865645148901180585340454985524155135260217788758027400478312256339496385275012465661575576202252063145698732079880294664220579764848767704076761853197216563262660046602703973050798218246170835962005598561669706844469447435461092542265792444947706769615695252256130901271870341005768912974433684521436211263358097522726462083917939091760026658925757076733484173202927141441492573799914240222628795405623953109131594523623353044898339481494120112723445689647986475279242446083151413667587008191682564376412347964146113898565886683139407005941383669325997475076910488086663256335689181157957571445067490187939553165903773554290260531009121879044170766615232300936675369451260747671432073394867530820527479172464106442450727640226503746586340279816318821395210726268291535648506190714616083163403189943334431056876038286530365757187367147446004855912033137386225053275419626102417236133948503",
"1095121115716677802856811290392395128588168592409109494900178008967955253005183831872715423151551999734857184538199864469605657805519106717529655044054833197687459782636297255219742994736751541815269727940751860670268774903340296040006114013971309257028332849679096824800250742691718610670812374272414086863715763724622797509437062518082383056050144624962776302147890521249477060215148275163688301275847155316042279405557632639366066847442861422164832655874655824221577849928863023018366835675399949740429332468186340518172487073360822220449055340582568461568645259954873303616953776393853174845132081121976327462740354930744487429617202585015510744298530101547706821590188733515880733527449780963163909830077616357506845523215289297624086914545378511082534229620116563260168494523906566709418166011112754529766183554579321224940951177394088465596712620076240067370589036924024728375076210477267488679008016579588696191194060127319035195370137160936882402244399699172017835144537488486396906144217720028992863941288217185353914991583400421682751000603596655790990815525126154394344641336397793791497068253936771017031980867706707490224041075826337383538651825493679503771934836094655802776331664261631740148281763487765852746577808019633679",
/* generic unrestricted moduli */
"17933601194860113372237070562165128350027320072176844226673287945873370751245439587792371960615073855669274087805055507977323024886880985062002853331424203",
"2893527720709661239493896562339544088620375736490408468011883030469939904368086092336458298221245707898933583190713188177399401852627749210994595974791782790253946539043962213027074922559572312141181787434278708783207966459019479487",
"347743159439876626079252796797422223177535447388206607607181663903045907591201940478223621722118173270898487582987137708656414344685816179420855160986340457973820182883508387588163122354089264395604796675278966117567294812714812796820596564876450716066283126720010859041484786529056457896367683122960411136319",
"47266428956356393164697365098120418976400602706072312735924071745438532218237979333351774907308168340693326687317443721193266215155735814510792148768576498491199122744351399489453533553203833318691678263241941706256996197460424029012419012634671862283532342656309677173602509498417976091509154360039893165037637034737020327399910409885798185771003505320583967737293415979917317338985837385734747478364242020380416892056650841470869294527543597349250299539682430605173321029026555546832473048600327036845781970289288898317888427517364945316709081173840186150794397479045034008257793436817683392375274635794835245695887",
"436463808505957768574894870394349739623346440601945961161254440072143298152040105676491048248110146278752857839930515766167441407021501229924721335644557342265864606569000117714935185566842453630868849121480179691838399545644365571106757731317371758557990781880691336695584799313313687287468894148823761785582982549586183756806449017542622267874275103877481475534991201849912222670102069951687572917937634467778042874315463238062009202992087620963771759666448266532858079402669920025224220613419441069718482837399612644978839925207109870840278194042158748845445131729137117098529028886770063736487420613144045836803985635654192482395882603511950547826439092832800532152534003936926017612446606135655146445620623395788978726744728503058670046885876251527122350275750995227",
"11424167473351836398078306042624362277956429440521137061889702611766348760692206243140413411077394583180726863277012016602279290144126785129569474909173584789822341986742719230331946072730319555984484911716797058875905400999504305877245849119687509023232790273637466821052576859232452982061831009770786031785669030271542286603956118755585683996118896215213488875253101894663403069677745948305893849505434201763745232895780711972432011344857521691017896316861403206449421332243658855453435784006517202894181640562433575390821384210960117518650374602256601091379644034244332285065935413233557998331562749140202965844219336298970011513882564935538704289446968322281451907487362046511461221329799897350993370560697505809686438782036235372137015731304779072430260986460269894522159103008260495503005267165927542949439526272736586626709581721032189532726389643625590680105784844246152702670169304203783072275089194754889511973916207",
"1214855636816562637502584060163403830270705000634713483015101384881871978446801224798536155406895823305035467591632531067547890948695117172076954220727075688048751022421198712032848890056357845974246560748347918630050853933697792254955890439720297560693579400297062396904306270145886830719309296352765295712183040773146419022875165382778007040109957609739589875590885701126197906063620133954893216612678838507540777138437797705602453719559017633986486649523611975865005712371194067612263330335590526176087004421363598470302731349138773205901447704682181517904064735636518462452242791676541725292378925568296858010151852326316777511935037531017413910506921922450666933202278489024521263798482237150056835746454842662048692127173834433089016107854491097456725016327709663199738238442164843147132789153725513257167915555162094970853584447993125488607696008169807374736711297007473812256272245489405898470297178738029484459690836250560495461579533254473316340608217876781986188705928270735695752830825527963838355419762516246028680280988020401914551825487349990306976304093109384451438813251211051597392127491464898797406789175453067960072008590614886532333015881171367104445044718144312416815712216611576221546455968770801413440778423979",
NULL
};
log = FOPEN("logs/expt.log", "w");
logb = FOPEN("logs/expt_dr.log", "w");
logc = FOPEN("logs/expt_2k.log", "w");
logd = FOPEN("logs/expt_2kl.log", "w");
for (n = 0; primes[n]; n++) {
SLEEP;
mp_read_radix(&a, primes[n], 10);
mp_zero(&b);
for (rr = 0; rr < (unsigned) mp_count_bits(&a); rr++) {
mp_mul_2(&b, &b);
b.dp[0] |= lbit();
b.used += 1;
}
mp_sub_d(&a, 1, &c);
mp_mod(&b, &c, &b);
mp_set(&c, 3);
rr = 0;
tt = -1;
do {
gg = TIMFUNC();
DO(mp_exptmod(&c, &b, &a, &d));
gg = (TIMFUNC() - gg) >> 1;
if (tt > gg)
tt = gg;
} while (++rr < 10);
mp_sub_d(&a, 1, &e);
mp_sub(&e, &b, &b);
mp_exptmod(&c, &b, &a, &e); /* c^(p-1-b) mod a */
mp_mulmod(&e, &d, &a, &d); /* c^b * c^(p-1-b) == c^p-1 == 1 */
if (mp_cmp_d(&d, 1)) {
printf("Different (%d)!!!\n", mp_count_bits(&a));
draw(&d);
exit(0);
}
printf("Exponentiating\t%4d-bit => %9llu/sec, %9llu cycles\n",
mp_count_bits(&a), CLK_PER_SEC / tt, tt);
FPRINTF(n < 4 ? logd : (n < 9) ? logc : (n < 16) ? logb : log,
"%d %9llu\n", mp_count_bits(&a), tt);
}
}
FCLOSE(log);
FCLOSE(logb);
FCLOSE(logc);
FCLOSE(logd);
log = FOPEN("logs/invmod.log", "w");
for (cnt = 4; cnt <= 32; cnt += 4) {
SLEEP;
mp_rand(&a, cnt);
mp_rand(&b, cnt);
do {
mp_add_d(&b, 1, &b);
mp_gcd(&a, &b, &c);
} while (mp_cmp_d(&c, 1) != MP_EQ);
rr = 0;
tt = -1;
do {
gg = TIMFUNC();
DO(mp_invmod(&b, &a, &c));
gg = (TIMFUNC() - gg) >> 1;
if (tt > gg)
tt = gg;
} while (++rr < 1000);
mp_mulmod(&b, &c, &a, &d);
if (mp_cmp_d(&d, 1) != MP_EQ) {
printf("Failed to invert\n");
return 0;
}
printf("Inverting mod\t%4d-bit => %9llu/sec, %9llu cycles\n",
mp_count_bits(&a), CLK_PER_SEC / tt, tt);
FPRINTF(log, "%d %9llu\n", cnt * DIGIT_BIT, tt);
}
FCLOSE(log);
return 0;
}
/* $Source$ */
/* $Revision$ */
/* $Date$ */