Hash :
5c335f84
Author :
Date :
2019-10-30T17:26:27
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
#include "tommath_private.h"
#ifdef S_MP_MUL_HIGH_COMBA_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* this is a modified version of s_mp_mul_comba that only produces
* output digits *above* digs. See the comments for s_mp_mul_comba
* to see how it works.
*
* This is used in the Barrett reduction since for one of the multiplications
* only the higher digits were needed. This essentially halves the work.
*
* Based on Algorithm 14.12 on pp.595 of HAC.
*/
mp_err s_mp_mul_high_comba(const mp_int *a, const mp_int *b, mp_int *c, int digs)
{
int oldused, pa, ix;
mp_err err;
mp_digit W[MP_WARRAY];
mp_word _W;
/* grow the destination as required */
pa = a->used + b->used;
if ((err = mp_grow(c, pa)) != MP_OKAY) {
return err;
}
/* number of output digits to produce */
pa = a->used + b->used;
_W = 0;
for (ix = digs; ix < pa; ix++) {
int tx, ty, iy, iz;
/* get offsets into the two bignums */
ty = MP_MIN(b->used-1, ix);
tx = ix - ty;
/* this is the number of times the loop will iterrate, essentially its
while (tx++ < a->used && ty-- >= 0) { ... }
*/
iy = MP_MIN(a->used-tx, ty+1);
/* execute loop */
for (iz = 0; iz < iy; iz++) {
_W += (mp_word)a->dp[tx + iz] * (mp_word)b->dp[ty - iz];
}
/* store term */
W[ix] = (mp_digit)_W & MP_MASK;
/* make next carry */
_W = _W >> (mp_word)MP_DIGIT_BIT;
}
/* setup dest */
oldused = c->used;
c->used = pa;
for (ix = digs; ix < pa; ix++) {
/* now extract the previous digit [below the carry] */
c->dp[ix] = W[ix];
}
/* clear unused digits [that existed in the old copy of c] */
s_mp_zero_digs(c->dp + c->used, oldused - c->used);
mp_clamp(c);
return MP_OKAY;
}
#endif