1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478
\documentclass[b5paper]{book}
\usepackage{makeidx}
\usepackage{amssymb}
\usepackage{color}
\usepackage{alltt}
\usepackage{graphicx}
\usepackage{layout}
\def\union{\cup}
\def\intersect{\cap}
\def\getsrandom{\stackrel{\rm R}{\gets}}
\def\cross{\times}
\def\cat{\hspace{0.5em} \| \hspace{0.5em}}
\def\catn{$\|$}
\def\divides{\hspace{0.3em} | \hspace{0.3em}}
\def\nequiv{\not\equiv}
\def\approx{\raisebox{0.2ex}{\mbox{\small $\sim$}}}
\def\lcm{{\rm lcm}}
\def\gcd{{\rm gcd}}
\def\log{{\rm log}}
\def\ord{{\rm ord}}
\def\abs{{\mathit abs}}
\def\rep{{\mathit rep}}
\def\mod{{\mathit\ mod\ }}
\renewcommand{\pmod}[1]{\ ({\rm mod\ }{#1})}
\newcommand{\floor}[1]{\left\lfloor{#1}\right\rfloor}
\newcommand{\ceil}[1]{\left\lceil{#1}\right\rceil}
\def\Or{{\rm\ or\ }}
\def\And{{\rm\ and\ }}
\def\iff{\hspace{1em}\Longleftrightarrow\hspace{1em}}
\def\implies{\Rightarrow}
\def\undefined{{\rm ``undefined"}}
\def\Proof{\vspace{1ex}\noindent {\bf Proof:}\hspace{1em}}
\let\oldphi\phi
\def\phi{\varphi}
\def\Pr{{\rm Pr}}
\newcommand{\str}[1]{{\mathbf{#1}}}
\def\F{{\mathbb F}}
\def\N{{\mathbb N}}
\def\Z{{\mathbb Z}}
\def\R{{\mathbb R}}
\def\C{{\mathbb C}}
\def\Q{{\mathbb Q}}
\definecolor{DGray}{gray}{0.5}
\newcommand{\url}[1]{\mbox{$<${#1}$>$}}
\newcommand{\emailaddr}[1]{\mbox{$<${#1}$>$}}
\def\twiddle{\raisebox{0.3ex}{\mbox{\tiny $\sim$}}}
\def\gap{\vspace{0.5ex}}
\makeindex
\begin{document}
\frontmatter
\pagestyle{empty}
\title{Multiple-Precision Integer Arithmetic, \\ A Case Study Involving the LibTomMath Project \\ - DRAFT - }
\author{\mbox{
%\begin{small}
\begin{tabular}{c}
Tom St Denis \\
Algonquin College \\
\\
Mads Rasmussen \\
Open Communications Security \\
\\
Greg Rose \\
QUALCOMM Australia \\
\end{tabular}
%\end{small}
}
}
\maketitle
This text in its entirety is copyright \copyright{}2003 by Tom St Denis. It may not be redistributed
electronically or otherwise without the sole permission of the author. The text is freely redistributable as long as
it is packaged along with the LibTomMath library in a non-commercial project. Contact the
author for other redistribution rights.
This text corresponds to the v0.17 release of the LibTomMath project.
\begin{alltt}
Tom St Denis
111 Banning Rd
Ottawa, Ontario
K2L 1C3
Canada
Phone: 1-613-836-3160
Email: tomstdenis@iahu.ca
\end{alltt}
This text is formatted to the international B5 paper size of 176mm wide by 250mm tall using the \LaTeX{}
{\em book} macro package and the Perl {\em booker} package.
\tableofcontents
\listoffigures
\chapter*{Preface}
Blah.
\mainmatter
\pagestyle{headings}
\chapter{Introduction}
\section{Multiple Precision Arithmetic}
\subsection{The Need for Multiple Precision Arithmetic}
The most prevalent use for multiple precision arithmetic (\textit{often referred to as bignum math}) is within public
key cryptography. Algorithms such as RSA, Diffie-Hellman and Elliptic Curve Cryptography require large integers in order to
resist known cryptanalytic attacks. Typical modern programming languages such as C and Java only provide small
single-precision data types which are incapable of precisely representing integers which are often hundreds of bits long.
For example, consider multiplying $1,234,567$ by $9,876,543$ in C with an ``unsigned long'' data type. With an
x86 machine the result is $4,136,875,833$ while the true result is $12,193,254,061,881$. The original inputs
were approximately $21$ and $24$ bits respectively. If the C language cannot multiply two relatively small values
together precisely how does anyone expect it to multiply two values that are considerably larger?
Most advancements in fast multiple precision arithmetic stem from the desire for faster cryptographic primitives. However, cryptography
is not the only field of study that can benefit from fast large integer routines. Another auxiliary use for multiple precision integers is
high precision floating point data types. The basic IEEE standard floating point type is made up of an integer mantissa $q$ and an exponent $e$.
Numbers are given in the form $n = q \cdot b^e$ where $b = 2$ is specified. Since IEEE is meant to be implemented in
hardware the precision of the mantissa is often fairly small (\textit{23, 48 and 64 bits}). Since the mantissa is merely an
integer a large multiple precision integer could be used. In effect very high precision floating point arithmetic
could be performed. This would be useful where scientific applications must minimize the total output error over long simulations.
\subsection{Multiple Precision Arithmetic}
\index{multiple precision}
Multiple precision arithmetic attempts to the solve the shortcomings of single precision data types such as those from
the C and Java programming languages. In essence multiple precision arithmetic is a set of operations that can be
performed on members of an algebraic group whose precision is not fixed. The algorithms when implemented to be multiple
precision can allow a developer to work with any practical precision required.
Typically the arithmetic over the ring of integers denoted by $\Z$ is performed by routines that are collectively and
casually referred to as ``bignum'' routines. However, it is possible to have rings of polynomials as well typically
denoted by $\Z/p\Z \left [ X \right ]$ which could have variable precision (\textit{or degree}). This text will
discuss implementation of the former, however implementing polynomial basis routines should be relatively easy after reading this text.
\subsection{Benefits of Multiple Precision Arithmetic}
\index{precision} \index{accuracy}
Precision of the real value to a given precision is defined loosely as the proximity of the real value to a given representation.
Accuracy is defined as the reproducibility of the result. For example, the calculation $1/3 = 0.25$ is imprecise but can be accurate provided
it is reproducible.
The benefit of multiple precision representations over single precision representations is that
often no precision is lost while representing the result of an operation which requires excess precision. For example,
the multiplication of two $n$-bit integers requires at least $2n$ bits to represent the result. A multiple precision
system would augment the precision of the destination to accomodate the result while a single precision system would
truncate excess bits to maintain a fixed level of precision.
Multiple precision representations allow for the precision to be very high (\textit{if not exacting}) but at a cost of
modest computer resources. The only reasonable case where a multiple precision system will lose precision is when
emulating a floating point data type. However, with multiple precision integer arithmetic no precision is lost.
\subsection{Basis of Operations}
At the heart of all multiple precision integer operations are the ``long-hand'' algorithms we all learned as children
in grade school. For example, to multiply $1,234$ by $981$ the student is not taught to memorize the times table for
$1,234$, instead they are taught how to long-multiply. That is to multiply each column using simple single digit
multiplications, line up the partial results, and add the resulting products by column. The representation that most
are familiar with is known as decimal or formally as radix-10. A radix-$n$ representation simply means there are
$n$ possible values per digit. For example, binary would be a radix-2 representation.
In essence computer based multiple precision arithmetic is very much the same. The most notable difference is the usage
of a binary friendly radix. That is to use a radix of the form $2^k$ where $k$ is typically the size of a machine
register. Also occasionally more optimal algorithms are used to perform certain operations such as multiplication and
squaring instead of traditional long-hand algorithms.
\section{Purpose of This Text}
The purpose of this text is to instruct the reader regarding how to implement multiple precision algorithms. That is
to not only explain the core theoretical algorithms but also the various ``house keeping'' tasks that are neglected by
authors of other texts on the subject. Texts such as \cite[HAC]{HAC} and \cite{TAOCPV2} give considerably detailed
explanations of the theoretical aspects of the algorithms and very little regarding the practical aspects.
How an algorithm is explained and how it is actually implemented are two very different
realities. For example, algorithm 14.7 on page 594 of HAC lists a relatively simple algorithm for performing multiple
precision integer addition. However, what the description lacks is any discussion concerning the fact that the two
integer inputs may be of differing magnitudes. Similarly the division routine (\textit{Algorithm 14.20, pp. 598})
does not discuss how to handle sign or handle the dividend's decreasing magnitude in the main loop (\textit{Step \#3}).
As well as the numerous practical oversights both of the texts do not discuss several key optimal algorithms required
such as ``Comba'' and Karatsuba multipliers and fast modular inversion. These optimal algorithms are vital to achieve
any form of useful performance in non-trivial applications.
To solve this problem the focus of this text is on the practical aspects of implementing the algorithms that
constitute a multiple precision integer package with light discussions on the theoretical aspects. As a case
study the ``LibTomMath''\footnote{Available freely at http://math.libtomcrypt.org} package is used to demonstrate
algorithms with implementations that have been field tested and work very well.
\section{Discussion and Notation}
\subsection{Notation}
A multiple precision integer of $n$-digits shall be denoted as $x = (x_n ... x_1 x_0)_{ \beta }$ to be the
multiple precision notation for the integer $x \equiv \sum_{i=0}^{n} x_i\beta^i$. The elements of the array $x$ are
said to be the radix $\beta$ digits of the integer. For example, $x = (1,2,3)_{10}$ would represent the
integer $1\cdot 10^2 + 2\cdot10^1 + 3\cdot10^0 = 123$.
A ``mp\_int'' shall refer to a composite structure which contains the digits of the integer as well as auxilary data
required to manipulate the data. These additional members are discussed in chapter three. For the purposes of this text
a ``multiple precision integer'' and a ``mp\_int'' are synonymous.
\index{single-precision} \index{double-precision} \index{mp\_digit} \index{mp\_word}
For the purposes of this text a single-precision variable must be able to represent integers in the range $0 \le x < 2 \beta$ while
a double-precision variable must be able to represent integers in the range $0 \le x < 2 \beta^2$. Within the source code that will be
presented the data type \textbf{mp\_digit} will represent a single-precision type while \textbf{mp\_word} will represent a
double-precision type. In several algorithms (\textit{notably the Comba routines}) temporary results
will be stored in a double-precision arrays. For the purposes of this text $x_j$ will refer to the
$j$'th digit of a single-precision array and $\hat x_j$ will refer to the $j$'th digit of a double-precision
array.
The $\lfloor \mbox{ } \rfloor$ brackets represent a value truncated and rounded down to the nearest integer. The $\lceil \mbox{ } \rceil$ brackets
represent a value truncated and rounded up to the nearest integer. Typically when the $/$ division symbol is used the intention is to perform an integer
division. For example, $5/2 = 2$ which will often be written as $\lfloor 5/2 \rfloor = 2$ for clarity. When a value is presented as a fraction
such as $5 \over 2$ a real value division is implied.
\subsection{Work Effort}
\index{big-O}
To measure the efficiency of various algorithms a modified big-O notation is used. In this system all
single precision operations are considered to have the same cost\footnote{Except where explicitly noted.}.
That is a single precision addition, multiplication and division are assumed to take the same time to
complete. While this is generally not true in practice it will simplify the discussions considerably.
Some algorithms have slight advantages over others which is why some constants will not be removed in
the notation. For example, a normal multiplication requires $O(n^2)$ work while a squaring requires
$O({{n^2 + n}\over 2})$ work. In standard big-O notation these would be said to be equivalent. However, in the
context of the this text the magnitude of the inputs will not approach an infinite size. This means the conventional limit
notation wisdom does not apply to the cancellation of constants.
Throughout the discussions various ``work levels'' will be discussed. These levels are the $O(1)$,
$O(n)$, $O(n^2)$, ..., $O(n^k)$ work efforts. For example, operations at the $O(n^k)$ ``level'' are said to be
executed more frequently than operations at the $O(n^m)$ ``level'' when $k > m$. Obviously most optimizations will pay
off the most at the higher levels since they represent the bulk of the effort required.
\section{Exercises}
Within the more advanced chapters a section will be set aside to give the reader some challenging exercises. These exercises are not
designed to be prize winning problems, but to be thought provoking. Wherever possible the problems are forward minded stating
problems that will be answered in subsequent chapters. The reader is encouraged to finish the exercises as they appear to get a
better understanding of the subject material.
Similar to the exercises of \cite{TAOCPV2} as explained on pp.\textit{ix} these exercises are given a scoring system. However, unlike
\cite{TAOCPV2} the problems do not get nearly as hard as often. The scoring of these exercises ranges from one (\textit{the easiest}) to
five (\textit{the hardest}). The following table sumarizes the scoring.
\vspace{5mm}
\begin{tabular}{cl}
$\left [ 1 \right ]$ & An easy problem that should only take the reader a manner of \\
& minutes to solve. Usually does not involve much computer time. \\
& \\
$\left [ 2 \right ]$ & An easy problem that involves a marginal amount of computer \\
& time usage. Usually requires a program to be written to \\
& solve the problem. \\
& \\
$\left [ 3 \right ]$ & A moderately hard problem that requires a non-trivial amount \\
& of work. Usually involves trivial research and development of \\
& new theory from the perspective of a student. \\
& \\
$\left [ 4 \right ]$ & A moderately hard problem that involves a non-trivial amount \\
& of work and research. The solution to which will demonstrate \\
& a higher mastery of the subject matter. \\
& \\
$\left [ 5 \right ]$ & A hard problem that involves concepts that are non-trivial. \\
& Solutions to these problems will demonstrate a complete mastery \\
& of the given subject. \\
& \\
\end{tabular}
Essentially problems at the first level are meant to be simple questions that the reader can answer quickly without programming a solution or
devising new theory. These problems are quick tests to see if the material is understood. Problems at the second level are also
designed to be easy but will require a program or algorithm to be implemented to arrive at the answer.
Problems at the third level are meant to be a bit more difficult. Often the answer is fairly obvious but arriving at an exacting solution
requires some thought and skill. These problems will almost always involve devising a new algorithm or implementing a variation of
another algorithm.
Problems at the fourth level are meant to be even more difficult as well as involve some research. The reader will most likely not know
the answer right away nor will this text provide the exact details of the answer (\textit{or at least not until a subsequent chapter}). Problems
at the fifth level are meant to be the hardest problems relative to all the other problems in the chapter. People who can correctly
answer fifth level problems have a mastery of the subject matter at hand.
Often problems will be tied together. The purpose of this is to start a chain of thought that will be discussed in future chapters. The reader
is encouraged to answer the follow-up problems and try to draw the relevence of problems.
\chapter{Introduction to LibTomMath}
\section{What is LibTomMath?}
LibTomMath is a free and open source multiple precision library written in portable ISO C source code. By portable it is
meant that the library does not contain any code that is computer platform dependent or otherwise problematic to use on any
given platform. The library has been successfully tested under numerous operating systems including Solaris, MacOS, Windows,
Linux, PalmOS and on standalone hardware such as the Gameboy Advance. The library is designed to contain enough
functionality to be able to develop applications such as public key cryptosystems.
\section{Goals of LibTomMath}
Even though the library is written entirely in portable ISO C considerable care has been taken to
optimize the algorithm implementations within the library. Specifically the code has been written to work well with
the GNU C Compiler (\textit{GCC}) on both x86 and ARMv4 processors. Wherever possible highly efficient
algorithms (\textit{such as Karatsuba multiplication, sliding window exponentiation and Montgomery reduction}) have
been provided to make the library as efficient as possible. Even with the optimal and sometimes specialized
algorithms that have been included the Application Programing Interface (\textit{API}) has been kept as simple as possible.
Often generic place holder routines will make use of specialized algorithms automatically without the developer's
attention. One such example is the generic multiplication algorithm \textbf{mp\_mul()} which will automatically use
Karatsuba multiplication if the inputs are of a specific size.
Making LibTomMath as efficient as possible is not the only goal of the LibTomMath project. Ideally the library should
be source compatible with another popular library which makes it more attractive for developers to use. In this case the
MPI library was used as a API template for all the basic functions.
The project is also meant to act as a learning tool for students. The logic being that no easy-to-follow ``bignum''
library exists which can be used to teach computer science students how to perform fast and reliable multiple precision
arithmetic. To this end the source code has been given quite a few comments and algorithm discussion points. Often routines have
more comments than lines of code.
\section{Choice of LibTomMath}
LibTomMath was chosen as the case study of this text not only because the author of both projects is one and the same but
for more worthy reasons. Other libraries such as GMP, MPI, LIP and OpenSSL have multiple precision
integer arithmetic routines but would not be ideal for this text for reasons as will be explained in the
following sub-sections.
\subsection{Code Base}
The LibTomMath code base is all portable ISO C source code. This means that there are no platform dependent conditional
segments of code littered throughout the source. This clean and uncluttered approach to the library means that a
developer can more readily ascertain the true intent of a given section of source code without trying to keep track of
what conditional code will be used.
The code base of LibTomMath is also well organized. Each function is in its own separate source code file
which allows the reader to find a given function very fast. When compiled with GCC for the x86 processor the entire
library is a mere 87,760 bytes (\textit{$116,182$ bytes for ARMv4 processors}). This includes every single function
LibTomMath provides from basic arithmetic to various number theoretic functions such as modular exponentiation, various
reduction algorithms and Jacobi symbol computation.
By comparison MPI which has fewer functions than LibTomMath compiled with the same conditions is 45,429 bytes
(\textit{$54,536$ for ARMv4}). GMP which has rather large collection of functions with the default configuration on an
x86 Athlon is 2,950,688 bytes. Note that while LibTomMath has fewer functions than GMP it has been used as the sole basis
for several public key cryptosystems without having to seek additional outside functions to supplement the library.
\subsection{API Simplicity}
LibTomMath is designed after the MPI library and shares the API design. Quite often programs that use MPI will build
with LibTomMath without change. The function names are relatively straight forward as to what they perform. Almost all of the
functions except for a few minor exceptions which as will be discussed are for good reasons share the same parameter passing
convention. The learning curve is fairly shallow with the API provided which is an extremely valuable benefit for the
student and developer alike.
The LIP library is an example of a library with an API that is awkward to work with. LIP uses function names that are often ``compressed'' to
illegible short hand. LibTomMath does not share this fault.
\subsection{Optimizations}
While LibTomMath is certainly not the fastest library (\textit{GMP often beats LibTomMath by a factor of two}) it does
feature a set of optimal algorithms for tasks ranging from modular reduction to squaring. GMP and LIP also feature
such optimizations while MPI only uses baseline algorithms with no optimizations.
LibTomMath is almost always an order of magnitude faster than the MPI library at computationally expensive tasks such as modular
exponentiation. In the grand scheme of ``bignum'' libraries LibTomMath is faster than the average library and usually
slower than the best libraries such as GMP and OpenSSL by a small factor.
\subsection{Portability and Stability}
LibTomMath will build ``out of the box'' on any platform equipped with a modern version of the GNU C Compiler
(\textit{GCC}). This means that without changes the library will build without configuration or setting up any
variables. LIP and MPI will build ``out of the box'' as well but have numerous known bugs. Most notably the author of
MPI is not working on his library anymore.
GMP requires a configuration script to run and will not build out of the box. GMP and LibTomMath are still in active
development and are very stable across a variety of platforms.
\subsection{Choice}
LibTomMath is a relatively compact, well documented, highly optimized and portable library which seems only natural for
the case study of this text. Various source files from the LibTomMath project will be included within the text. However, the
reader is encouraged to download their own copy of the library to actually be able to work with the library.
\chapter{Getting Started}
\section{Library Basics}
To begin the design of a multiple precision integer library a primitive data type and a series of primitive algorithms must be established. A data
type that will hold the information required to maintain a multiple precision integer must be designed. With this basic data type of a series
of low level algorithms for initializing, clearing, growing and optimizing multiple precision integers can be developed to form the basis of
the entire library of algorithms.
\section{What is a Multiple Precision Integer?}
Recall that most programming languages (\textit{in particular C}) only have fixed precision data types that on their own cannot be used
to represent values larger than their precision alone will allow. The purpose of multiple precision algorithms is to use these fixed precision
data types to create multiple precision integers which may represent values that are much larger.
As a well known analogy, school children are taught how to form numbers larger than nine by prepending more radix ten digits. In the decimal system
the largest value is only $9$ since the digits may only have values from $0$ to $9$. However, by concatenating digits together larger numbers
may be represented. Computer based multiple precision arithmetic is essentially the same concept except with a different radix.
What most people probably do not think about explicitly are the various other attributes that describe a multiple precision integer. For example,
the integer $154_{10}$ has two immediately obvious properties. First, the integer is positive, that is the sign of this particular integer
is positive as oppose to negative. Second, the integer has three digits in its representation. There is an additional property that the integer
posesses that does not concern pencil-and-paper arithmetic. The third property is how many digits are allowed for the integer.
The human analogy of this third property is ensuring there is enough space on the paper to right the integer. Computers must maintain a
strict control on memory usage with respect to the digits of a multiple precision integer. These three properties make up what is known
as a multiple precision integer or mp\_int for short.
\subsection{The mp\_int structure}
The mp\_int structure is the ISO C based manifestation of what represents a multiple precision integer. The ISO C standard does not provide for
any such data type but it does provide for making composite data types known as structures. The following is the structure definition
used within LibTomMath.
\index{mp\_int}
\begin{verbatim}
typedef struct {
int used, alloc, sign;
mp_digit *dp;
} mp_int;
\end{verbatim}
The mp\_int structure can be broken down as follows.
\begin{enumerate}
\item The \textbf{used} parameter denotes how many digits of the array \textbf{dp} contain the digits used to represent
a given integer. The \textbf{used} count must not exceed the \textbf{alloc} count.
\item The array \textbf{dp} holds the digits that represent the given integer. It is padded with $\textbf{alloc} - \textbf{used}$ zero
digits.
\item The \textbf{alloc} parameter denotes how
many digits are available in the array to use by functions before it has to increase in size. When the \textbf{used} count
of a result would exceed the \textbf{alloc} count all of the algorithms will automatically increase the size of the
array to accommodate the precision of the result.
\item The \textbf{sign} parameter denotes the sign as either zero/positive (\textbf{MP\_ZPOS}) or negative (\textbf{MP\_NEG}).
\end{enumerate}
\section{Argument Passing}
A convention of argument passing must be adopted early on in the development of any library. Making the function prototypes
consistent will help eliminate many headaches in the future as the library grows to significant complexity. In LibTomMath the multiple precision
integer functions accept parameters from left to right as pointers to mp\_int structures. That means that the source operands are
placed on the left and the destination on the right. Consider the following examples.
\begin{verbatim}
mp_mul(&a, &b, &c); /* c = a * b */
mp_add(&a, &b, &a); /* a = a + b */
mp_sqr(&a, &b); /* b = a * a */
\end{verbatim}
The left to right order is a fairly natural way to implement the functions since it lets the developer read aloud the
functions and make sense of them. For example, the first function would read ``multiply a and b and store in c''.
Certain libraries (\textit{LIP by Lenstra for instance}) accept parameters the other way around. That is the destination
on the left and arguments on the right. In truth it is entirely a matter of preference. In the case of LibTomMath the
convention from the MPI library has been adopted.
Another very useful design consideration is whether to allow argument sources to also be a destination. For example, the
second example (\textit{mp\_add}) adds $a$ to $b$ and stores in $a$. This is an important feature to implement since it
allows the higher up functions to cut down on the number of variables. However, to implement this feature specific
care has to be given to ensure the destination is not modified before the source is fully read.
\section{Return Values}
A well implemented library, no matter what its purpose, should trap as many runtime errors as possible and return them to the
caller. By catching runtime errors a library can be guaranteed to prevent undefined behaviour. In a multiple precision
library the only errors that can occur occur are related to inappropriate inputs (\textit{division by zero for instance}) or
memory allocation errors.
In LibTomMath any function that can cause a runtime error will return an error as an \textbf{int} data type with one of the
following values.
\index{MP\_OKAY} \index{MP\_VAL} \index{MP\_MEM}
\begin{center}
\begin{tabular}{|l|l|}
\hline \textbf{Value} & \textbf{Meaning} \\
\hline \textbf{MP\_OKAY} & The function was successful \\
\hline \textbf{MP\_VAL} & One of the input value(s) was invalid \\
\hline \textbf{MP\_MEM} & The function ran out of heap memory \\
\hline
\end{tabular}
\end{center}
When an error is detected within a function it should free any memory it allocated and return as soon as possible. The goal
is to leave the system in the same state the system was when the function was called. Error checking with this style of API is fairly simple.
\begin{verbatim}
int err;
if ((err = mp_add(&a, &b, &c)) != MP_OKAY) {
printf("Error: %d\n", err);
exit(EXIT_FAILURE);
}
\end{verbatim}
The GMP library uses C style \textit{signals} to flag errors which is of questionable use. Not all errors are fatal
and it was not deemed ideal by the author of LibTomMath to force developers to have signal handlers for such cases.
\section{Initialization and Clearing}
The logical starting point when actually writing multiple precision integer functions is the initialization and
clearing of the integers. These two functions will be used by far the most throughout the algorithms whenever
temporary integers are required.
Given the basic mp\_int structure an initialization routine must first allocate memory to hold the digits of
the integer. Often it is optimal to allocate a sufficiently large pre-set number of digits even considering
the initial integer will represent zero. If only a single digit were allocated quite a few re-allocations
would occur for the majority of inputs. There is a tradeoff between how many default digits to allocate
and how many re-allocations are tolerable.
If the memory for the digits has been successfully allocated then the rest of the members of the structure must
be initialized. Since the initial state is to represent a zero integer the digits allocated must all be zeroed. The
\textbf{used} count set to zero and \textbf{sign} set to \textbf{MP\_ZPOS}.
\subsection{Initializing an mp\_int}
To initialize an mp\_int the mp\_init algorithm shall be used. The purpose of this algorithm is to allocate
the memory required and initialize the integer to a default representation of zero.
\begin{figure}[here]
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_init}. \\
\textbf{Input}. An mp\_int $a$ \\
\textbf{Output}. Allocate memory for the digits and set to a zero state. \\
\hline \\
1. Allocate memory for \textbf{MP\_PREC} digits. \\
2. If the allocation failed then return(\textit{MP\_MEM}) \\
3. for $n$ from $0$ to $MP\_PREC - 1$ do \\
\hspace{3mm}3.1 $a_n \leftarrow 0$\\
4. $a.sign \leftarrow MP\_ZPOS$\\
5. $a.used \leftarrow 0$\\
6. $a.alloc \leftarrow MP\_PREC$\\
7. Return(\textit{MP\_OKAY})\\
\hline
\end{tabular}
\end{center}
\caption{Algorithm mp\_init}
\end{figure}
\textbf{Algorithm mp\_init.}
The \textbf{MP\_PREC} variable is a simple constant used to dictate minimal precision of allocated integers. It is ideally at least equal to $32$ but
can be any reasonable power of two. Steps one and two allocate the memory and account for it. If the allocation fails the algorithm returns
immediately to signal the failure. Step three will ensure that all the digits are in the default state of zero. Finally steps
four through six set the default settings of the \textbf{sign}, \textbf{used} and \textbf{alloc} members of the mp\_int structure.
\index{bn\_mp\_init.c}
\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_init.c
\vspace{-3mm}
\begin{alltt}
016
017 /* init a new bigint */
018 int
019 mp_init (mp_int * a)
020 \{
021 /* allocate ram required and clear it */
022 a->dp = OPT_CAST calloc (sizeof (mp_digit), MP_PREC);
023 if (a->dp == NULL) \{
024 return MP_MEM;
025 \}
026
027 /* set the used to zero, allocated digits to the default precision
028 * and sign to positive */
029 a->used = 0;
030 a->alloc = MP_PREC;
031 a->sign = MP_ZPOS;
032
033 return MP_OKAY;
034 \}
\end{alltt}
\end{small}
The \textbf{OPT\_CAST} type cast on line 22 is designed to allow C++ compilers to build the code out of
the box. Microsoft C V5.00 is known to cause problems without the cast. Also note that if the memory
allocation fails the other members of the mp\_int will be in an undefined state. The code from
line 29 to line 31 sets the default state for a mp\_int which is zero, positive and no used digits.
\subsection{Clearing an mp\_int}
When an mp\_int is no longer required the memory allocated for it can be cleared from the heap with
the mp\_clear algorithm.
\begin{figure}[here]
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_clear}. \\
\textbf{Input}. An mp\_int $a$ \\
\textbf{Output}. The memory for $a$ is cleared. \\
\hline \\
1. If $a$ has been previously freed then return(\textit{MP\_OKAY}). \\
2. Free the digits of $a$ and mark $a$ as freed. \\
3. $a.used \leftarrow 0$ \\
4. $a.alloc \leftarrow 0$ \\
5. Return(\textit{MP\_OKAY}). \\
\hline
\end{tabular}
\end{center}
\caption{Algorithm mp\_clear}
\end{figure}
\textbf{Algorithm mp\_clear.}
In steps one and two the memory for the digits are only free'd if they had not been previously released before.
This is more of concern for the implementation since it is used to prevent ``double-free'' errors. It also helps catch
code errors where mp\_ints are used after being cleared. Similarly steps three and four set the
\textbf{used} and \textbf{alloc} to known values which would be easy to spot during debugging. For example, if an mp\_int is expected
to be non-zero and its \textbf{used} member is observed to be zero (\textit{due to being cleared}) then an obvious bug in the code has been
spotted.
\index{bn\_mp\_clear.c}
\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_clear.c
\vspace{-3mm}
\begin{alltt}
016
017 /* clear one (frees) */
018 void
019 mp_clear (mp_int * a)
020 \{
021 if (a->dp != NULL) \{
022
023 /* first zero the digits */
024 memset (a->dp, 0, sizeof (mp_digit) * a->used);
025
026 /* free ram */
027 free (a->dp);
028
029 /* reset members to make debugging easier */
030 a->dp = NULL;
031 a->alloc = a->used = 0;
032 \}
033 \}
\end{alltt}
\end{small}
The \textbf{if} statement on line 21 prevents the heap from being corrupted if a user double-frees an
mp\_int. For example, a trivial case of this bug would be as follows.
\begin{verbatim}
mp_int a;
mp_init(&a);
mp_clear(&a);
mp_clear(&a);
\end{verbatim}
Without that check the code would try to free the memory allocated for the digits twice which will cause most standard C
libraries to cause a fault. Also by setting the pointer to \textbf{NULL} it helps debug code that may inadvertently
free the mp\_int before it is truly not needed. The allocated digits are set to zero before being freed on line 24.
This is ideal for cryptographic situations where the mp\_int is a secret parameter.
The following snippet is an example of using both the init and clear functions.
\begin{small}
\begin{verbatim}
#include <tommath.h>
#include <stdio.h>
#include <stdlib.h>
int main(void)
{
mp_int num;
int err;
/* init the bignum */
if ((err = mp_init(&num)) != MP_OKAY) {
printf("Error: %d\n", err);
return EXIT_FAILURE;
}
/* do work with it ... */
/* clear up */
mp_clear(&num);
return EXIT_SUCCESS;
}
\end{verbatim}
\end{small}
\section{Other Initialization Routines}
It is often helpful to have specialized initialization algorithms to simplify the design of other algorithms. For example, an
initialization followed by a copy is a common operation when temporary copies of integers are required. It is quite
beneficial to have a series of simple helper functions available.
\subsection{Initializing Variable Sized mp\_int Structures}
Occasionally the number of digits required will be known in advance of an initialization. In these
cases the mp\_init\_size algorithm can be of use. The purpose of this algorithm is similar to mp\_init except that
it will allocate \textit{at least} a specified number of digits. This is ideal to prevent re-allocations when the
input size is known.
\newpage\begin{figure}[here]
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_init\_size}. \\
\textbf{Input}. An mp\_int $a$ and the requested number of digits $b$\\
\textbf{Output}. $a$ is initialized to hold at least $b$ digits. \\
\hline \\
1. $u \leftarrow b\mbox{ (mod }MP\_PREC\mbox{)}$ \\
2. $v \leftarrow b + 2 \cdot MP\_PREC - u$ \\
3. Allocate $v$ digits. \\
4. If the allocation failed then return(\textit{MP\_MEM}). \\
5. for $n$ from $0$ to $v - 1$ do \\
\hspace{3mm}5.1 $a_n \leftarrow 0$ \\
6. $a.sign \leftarrow MP\_ZPOS$\\
7. $a.used \leftarrow 0$\\
8. $a.alloc \leftarrow v$\\
9. Return(\textit{MP\_OKAY})\\
\hline
\end{tabular}
\end{center}
\caption{Algorithm mp\_init\_size}
\end{figure}
\textbf{Algorithm mp\_init\_size.}
The value of $v$ is calculated to be at least the requested amount of digits $b$ plus additional padding. The padding is calculated
to be at least \textbf{MP\_PREC} digits plus enough digits to make the digit count a multiple of \textbf{MP\_PREC}. This padding is used to
prevent trivial allocations from becoming a bottleneck in the rest of the algorithms that depend on this.
\index{bn\_mp\_init\_size.c}
\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_init\_size.c
\vspace{-3mm}
\begin{alltt}
016
017 /* init a mp_init and grow it to a given size */
018 int
019 mp_init_size (mp_int * a, int size)
020 \{
021
022 /* pad size so there are always extra digits */
023 size += (MP_PREC * 2) - (size & (MP_PREC - 1));
024
025 /* alloc mem */
026 a->dp = OPT_CAST calloc (sizeof (mp_digit), size);
027 if (a->dp == NULL) \{
028 return MP_MEM;
029 \}
030 a->used = 0;
031 a->alloc = size;
032 a->sign = MP_ZPOS;
033
034 return MP_OKAY;
035 \}
\end{alltt}
\end{small}
Line 23 will ensure that the number of digits actually allocated is padded up to the next multiple of
\textbf{MP\_PREC} plus an additional \textbf{MP\_PREC}. This ensures that the number of allocated digit is
always greater than the amount requested. As a result it prevents many trivial memory allocations. The value of
\textbf{MP\_PREC} is defined in ``tommath.h'' and must be a power of two.
\subsection{Creating a Clone}
Another common sequence of operations is to make a local temporary copy of an argument. To initialize then copy a mp\_int will be known as
creating a clone. This is useful within functions that need to modify an integer argument but do not wish to actually modify the original copy.
The mp\_init\_copy algorithm will perform this very task.
\begin{figure}[here]
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_init\_copy}. \\
\textbf{Input}. An mp\_int $a$ and $b$\\
\textbf{Output}. $a$ is initialized to be a copy of $b$. \\
\hline \\
1. Init $a$. (\textit{mp\_init}) \\
2. If the init of $a$ was unsuccessful return(\textit{MP\_MEM}) \\
3. Copy $b$ to $a$. (\textit{mp\_copy}) \\
4. Return the status of the copy operation. \\
\hline
\end{tabular}
\end{center}
\caption{Algorithm mp\_init\_copy}
\end{figure}
\textbf{Algorithm mp\_init\_copy.}
This algorithm will initialize a mp\_int variable and copy another previously initialized mp\_int variable into it. The algorithm will
detect when the initialization fails and returns the error to the calling algorithm. As such this algorithm will perform two operations
in one step.
\index{bn\_mp\_init\_copy.c}
\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_init\_copy.c
\vspace{-3mm}
\begin{alltt}
016
017 /* creates "a" then copies b into it */
018 int
019 mp_init_copy (mp_int * a, mp_int * b)
020 \{
021 int res;
022
023 if ((res = mp_init (a)) != MP_OKAY) \{
024 return res;
025 \}
026 return mp_copy (b, a);
027 \}
\end{alltt}
\end{small}
This will initialize \textbf{a} and make it a verbatim copy of the contents of \textbf{b}. Note that
\textbf{a} will have its own memory allocated which means that \textbf{b} may be cleared after the call
and \textbf{a} will be left intact.
\subsection{Multiple Integer Initializations And Clearings}
Occasionally a function will require a series of mp\_int data types to be made available. The mp\_init\_multi algorithm
is provided to simplify such cases. The purpose of this algorithm is to initialize a variable length array of mp\_int
structures at once. As a result algorithms that require multiple integers only has to use
one algorithm to initialize all the mp\_int variables.
\begin{figure}[here]
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_init\_multi}. \\
\textbf{Input}. Variable length array of mp\_int variables of length $k$. \\
\textbf{Output}. The array is initialized such that each each mp\_int is ready to use. \\
\hline \\
1. for $n$ from 0 to $k - 1$ do \\
\hspace{+3mm}1.1. Initialize the $n$'th mp\_int (\textit{mp\_init}) \\
\hspace{+3mm}1.2. If initialization failed then do \\
\hspace{+6mm}1.2.1. for $j$ from $0$ to $n$ do \\
\hspace{+9mm}1.2.1.1. Free the $j$'th mp\_int (\textit{mp\_clear}) \\
\hspace{+6mm}1.2.2. Return(\textit{MP\_MEM}) \\
2. Return(\textit{MP\_OKAY}) \\
\hline
\end{tabular}
\end{center}
\caption{Algorithm mp\_init\_multi}
\end{figure}
\textbf{Algorithm mp\_init\_multi.}
The algorithm will initialize the array of mp\_int variables one at a time. As soon as an runtime error is detected (\textit{step 1.2}) all of
the previously initialized variables are cleared. The goal is an ``all or nothing'' initialization which allows for quick recovery from runtime
errors.
Similarly to clear a variable length array of mp\_int structures the mp\_clear\_multi algorithm will be used.
Consider the following snippet which demonstrates how to use both routines.
\begin{small}
\begin{verbatim}
#include <tommath.h>
#include <stdio.h>
#include <stdlib.h>
int main(void)
{
mp_int num1, num2, num3;
int err;
if ((err = mp_init_multi(&num1, &num2, &num3, NULL)) !- MP_OKAY) {
printf("Error: %d\n", err);
return EXIT_FAILURE;
}
/* at this point num1/num2/num3 are ready */
/* free them */
mp_clear_multi(&num1, &num2, &num3, NULL);
return EXIT_SUCCESS;
}
\end{verbatim}
\end{small}
Note how both lists are terminated with the \textbf{NULL} variable. This indicates to the algorithms to stop fetching parameters off
of the stack. If it is not present the functions will most likely cause a segmentation fault.
\index{bn\_mp\_multi.c}
\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_multi.c
\vspace{-3mm}
\begin{alltt}
016 #include <stdarg.h>
017
018 int mp_init_multi(mp_int *mp, ...)
019 \{
020 mp_err res = MP_OKAY; /* Assume ok until proven otherwise */
021 int n = 0; /* Number of ok inits */
022 mp_int* cur_arg = mp;
023 va_list args;
024
025 va_start(args, mp); /* init args to next argument from caller */
026 while (cur_arg != NULL) \{
027 if (mp_init(cur_arg) != MP_OKAY) \{
028 /* Oops - error! Back-track and mp_clear what we already
029 succeeded in init-ing, then return error.
030 */
031 va_list clean_args;
032
033 /* end the current list */
034 va_end(args);
035
036 /* now start cleaning up */
037 cur_arg = mp;
038 va_start(clean_args, mp);
039 while (n--) \{
040 mp_clear(cur_arg);
041 cur_arg = va_arg(clean_args, mp_int*);
042 \}
043 va_end(clean_args);
044 res = MP_MEM;
045 break;
046 \}
047 n++;
048 cur_arg = va_arg(args, mp_int*);
049 \}
050 va_end(args);
051 return res; /* Assumed ok, if error flagged above. */
052 \}
053
054 void mp_clear_multi(mp_int *mp, ...)
055 \{
056 mp_int* next_mp = mp;
057 va_list args;
058 va_start(args, mp);
059 while (next_mp != NULL) \{
060 mp_clear(next_mp);
061 next_mp = va_arg(args, mp_int*);
062 \}
063 va_end(args);
064 \}
\end{alltt}
\end{small}
Both routines are implemented in the same source file since they are typically used in conjunction with each other.
\section{Maintenance}
A small useful collection of mp\_int maintenance functions will also prove useful.
\subsection{Augmenting Integer Precision}
When storing a value in an mp\_int sufficient digits must be available to accomodate the entire value without
loss of precision. Quite often the size of the array given by the \textbf{alloc} member is large enough to simply
increase the \textbf{used} digit count. However, when the size of the array is too small it must be re-sized
appropriately to accomodate the result. The mp\_grow algorithm will provide this functionality.
\begin{figure}[here]
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_grow}. \\
\textbf{Input}. An mp\_int $a$ and an integer $b$. \\
\textbf{Output}. $a$ is expanded to accomodate $b$ digits. \\
\hline \\
1. if $a.alloc \ge b$ then return(\textit{MP\_OKAY}) \\
2. $u \leftarrow b\mbox{ (mod }MP\_PREC\mbox{)}$ \\
3. $v \leftarrow b + 2 \cdot MP\_PREC - u$ \\
4. Re-Allocate the array of digits $a$ to size $v$ \\
5. If the allocation failed then return(\textit{MP\_MEM}). \\
6. for n from a.alloc to $v - 1$ do \\
\hspace{+3mm}6.1 $a_n \leftarrow 0$ \\
7. $a.alloc \leftarrow v$ \\
8. Return(\textit{MP\_OKAY}) \\
\hline
\end{tabular}
\end{center}
\caption{Algorithm mp\_grow}
\end{figure}
\textbf{Algorithm mp\_grow.}
Step one will prevent a re-allocation from being performed if it was not required. This is useful to prevent mp\_ints
from growing excessively in code that erroneously calls mp\_grow. Similar to mp\_init\_size the requested digit count
is padded to provide more digits than requested.
In step four it is assumed that the reallocation leaves the lower $a.alloc$ digits intact. This is much akin to how the
\textit{realloc} function from the standard C library works. Since the newly allocated digits are assumed to contain
undefined values they are also initially zeroed.
\index{bn\_mp\_grow.c}
\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_grow.c
\vspace{-3mm}
\begin{alltt}
016
017 /* grow as required */
018 int
019 mp_grow (mp_int * a, int size)
020 \{
021 int i;
022
023 /* if the alloc size is smaller alloc more ram */
024 if (a->alloc < size) \{
025 /* ensure there are always at least MP_PREC digits extra on top */
026 size += (MP_PREC * 2) - (size & (MP_PREC - 1));
027
028 a->dp = OPT_CAST realloc (a->dp, sizeof (mp_digit) * size);
029 if (a->dp == NULL) \{
030 return MP_MEM;
031 \}
032
033 /* zero excess digits */
034 i = a->alloc;
035 a->alloc = size;
036 for (; i < a->alloc; i++) \{
037 a->dp[i] = 0;
038 \}
039 \}
040 return MP_OKAY;
041 \}
\end{alltt}
\end{small}
The first step is to see if we actually need to perform a re-allocation at all. This is tested for on line
24. Similar to mp\_init\_size the same code on line 26 was used to resize the
digits requested. A simple for loop from line 34 to line 38 will zero all digits that were above the
old \textbf{alloc} limit to make sure the integer is in a known state.
\subsection{Clamping Excess Digits}
When a function anticipates a result will be $n$ digits it is simpler to assume this is true within the body of
the function. For example, a multiplication of a $i$ digit number by a $j$ digit produces a result of at most
$i + j$ digits. It is entirely possible that the result is $i + j - 1$ though, with no final carry into the last
position. However, suppose the destination had to be first expanded (\textit{via mp\_grow}) to accomodate $i + j - 1$
digits than further expanded to accomodate the final carry. That would be a considerable waste of time since heap
operations are relatively slow.
The ideal solution is to always assume the result is $i + j$ and fix up the \textbf{used} count after the function
terminates. This way a single heap operation (\textit{at most}) is required. However, if the result was not checked
there would be an excess high order zero digit.
For example, suppose the product of two integers was $x_n = (0x_{n-1}x_{n-2}...x_0)_{\beta}$. The leading zero digit
will not contribute to the precision of the result. In fact, through subsequent operations more leading zero digits would
accumulate to the point the size of the integer would be prohibitive. As a result even though the precision is very
low the representation is excessively large.
The mp\_clamp algorithm is designed to solve this very problem. It will trim leading zeros by decrementing the
\textbf{used} count until a non-zero leading digit is found. Also in this system, zero is considered to be a positive
number which means that if the \textbf{used} count is decremented to zero the sign must be set to \textbf{MP\_ZPOS}.
\begin{figure}[here]
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_clamp}. \\
\textbf{Input}. An mp\_int $a$ \\
\textbf{Output}. Any excess leading zero digits of $a$ are removed \\
\hline \\
1. while $a.used > 0$ and $a_{a.used - 1} = 0$ do \\
\hspace{+3mm}1.1 $a.used \leftarrow a.used - 1$ \\
2. if $a.used = 0$ then do \\
\hspace{+3mm}2.1 $a.sign \leftarrow MP\_ZPOS$ \\
\hline \\
\end{tabular}
\end{center}
\caption{Algorithm mp\_clamp}
\end{figure}
\textbf{Algorithm mp\_clamp.}
As can be expected this algorithm is very simple. The loop on step one is expected to iterate only once or twice at
the most. For example, this will happen in cases where there is not a carry to fill the last position. Step two fixes the sign for
when all of the digits are zero to ensure that the mp\_int is valid at all times.
\index{bn\_mp\_clamp.c}
\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_clamp.c
\vspace{-3mm}
\begin{alltt}
016
017 /* trim unused digits
018 *
019 * This is used to ensure that leading zero digits are
020 * trimed and the leading "used" digit will be non-zero
021 * Typically very fast. Also fixes the sign if there
022 * are no more leading digits
023 */
024 void
025 mp_clamp (mp_int * a)
026 \{
027 while (a->used > 0 && a->dp[a->used - 1] == 0) \{
028 --(a->used);
029 \}
030 if (a->used == 0) \{
031 a->sign = MP_ZPOS;
032 \}
033 \}
\end{alltt}
\end{small}
Note on line 27 how to test for the \textbf{used} count is made on the left of the \&\& operator. In the C programming
language the terms to \&\& are evaluated left to right with a boolean short-circuit if any condition fails. This is
important since if the \textbf{used} is zero the test on the right would fetch below the array. That is obviously
undesirable. The parenthesis on line 28 is used to make sure the \textbf{used} count is decremented and not
the pointer ``a''.
\section*{Exercises}
\begin{tabular}{cl}
$\left [ 1 \right ]$ & Discuss the relevance of the \textbf{used} member of the mp\_int structure. \\
& \\
$\left [ 1 \right ]$ & Discuss the consequences of not using padding when performing allocations. \\
& \\
$\left [ 2 \right ]$ & Estimate an ideal value for \textbf{MP\_PREC} when performing 1024-bit RSA \\
& encryption when $\beta = 2^{28}$. \\
& \\
$\left [ 1 \right ]$ & Discuss the relevance of the algorithm mp\_clamp. What does it prevent? \\
& \\
$\left [ 1 \right ]$ & Give an example of when the algorithm mp\_init\_copy might be useful. \\
& \\
\end{tabular}
\chapter{Basic Operations}
\section{Copying an Integer}
After the various house-keeping routines are in place, simple algorithms can be designed to take advantage of them. Being able
to make a verbatim copy of an integer is a very useful function to have. To copy an integer the mp\_copy algorithm will be used.
\newpage\begin{figure}[here]
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_copy}. \\
\textbf{Input}. An mp\_int $a$ and $b$. \\
\textbf{Output}. Store a copy of $a$ in $b$. \\
\hline \\
1. Check if $a$ and $b$ point to the same location in memory. \\
2. If true then return(\textit{MP\_OKAY}). \\
3. If $b.alloc < a.used$ then grow $b$ to $a.used$ digits. (\textit{mp\_grow}) \\
4. If failed to grow then return(\textit{MP\_MEM}). \\
5. for $n$ from 0 to $a.used - 1$ do \\
\hspace{3mm}5.1 $b_{n} \leftarrow a_{n}$ \\
6. if $a.used < b.used - 1$ then \\
\hspace{3mm}6.1. for $n$ from $a.used$ to $b.used - 1$ do \\
\hspace{6mm}6.1.1 $b_{n} \leftarrow 0$ \\
7. $b.used \leftarrow a.used$ \\
8. $b.sign \leftarrow a.sign$ \\
9. return(\textit{MP\_OKAY}) \\
\hline
\end{tabular}
\end{center}
\caption{Algorithm mp\_copy}
\end{figure}
\textbf{Algorithm mp\_copy.}
Step 1 and 2 make sure that the two mp\_ints are unique. This allows the user to call the copy function with
potentially the same input and not waste time. Step 3 and 4 ensure that the destination is large enough to
hold a copy of the input $a$. Note that the \textbf{used} member of $b$ may be smaller than the \textbf{used}
member of $a$ but a memory re-allocation is only required if the \textbf{alloc} member of $b$ is smaller. This
prevents trivial memory reallocations.
Step 5 copies the digits from $a$ to $b$ while step 6 ensures that if initially $\vert b \vert > \vert a \vert$,
the more significant digits of $b$ will be zeroed. Finally steps 7 and 8 copies the \textbf{used} and \textbf{sign} members over
which completes the copy operation.
\index{bn\_mp\_copy.c}
\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_copy.c
\vspace{-3mm}
\begin{alltt}
016
017 /* copy, b = a */
018 int
019 mp_copy (mp_int * a, mp_int * b)
020 \{
021 int res, n;
022
023 /* if dst == src do nothing */
024 if (a == b) \{
025 return MP_OKAY;
026 \}
027
028 /* grow dest */
029 if ((res = mp_grow (b, a->used)) != MP_OKAY) \{
030 return res;
031 \}
032
033 /* zero b and copy the parameters over */
034 \{
035 register mp_digit *tmpa, *tmpb;
036
037 /* pointer aliases */
038 tmpa = a->dp;
039 tmpb = b->dp;
040
041 /* copy all the digits */
042 for (n = 0; n < a->used; n++) \{
043 *tmpb++ = *tmpa++;
044 \}
045
046 /* clear high digits */
047 for (; n < b->used; n++) \{
048 *tmpb++ = 0;
049 \}
050 \}
051 b->used = a->used;
052 b->sign = a->sign;
053 return MP_OKAY;
054 \}
\end{alltt}
\end{small}
Source lines 23-31 do the initial house keeping. That is to see if the input is unique and if so to
make sure there is enough room. If not enough space is available it returns the error and leaves the destination variable
intact.
The inner loop of the copy operation is contained between lines 34 and 50. Many LibTomMath routines are designed with this source code style
in mind, making aliases to shorten lengthy pointers (\textit{see line 38 and 39}) for rapid use. Also the
use of nested braces creates a simple way to denote various portions of code that reside on various work levels. Here, the copy loop is at the
$O(n)$ level.
\section{Zeroing an Integer}
Reseting an mp\_int to the default state is a common step in many algorithms. The mp\_zero algorithm will be the algorithm used to
perform this task.
\begin{figure}[here]
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_zero}. \\
\textbf{Input}. An mp\_int $a$ \\
\textbf{Output}. Zero the contents of $a$ \\
\hline \\
1. $a.used \leftarrow 0$ \\
2. $a.sign \leftarrow$ MP\_ZPOS \\
3. for $n$ from 0 to $a.alloc - 1$ do \\
\hspace{3mm}3.1 $a_n \leftarrow 0$ \\
\hline
\end{tabular}
\end{center}
\caption{Algorithm mp\_zero}
\end{figure}
\textbf{Algorithm mp\_zero.}
This algorithm simply resets a mp\_int to the default state.
\index{bn\_mp\_zero.c}
\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_zero.c
\vspace{-3mm}
\begin{alltt}
016
017 /* set to zero */
018 void
019 mp_zero (mp_int * a)
020 \{
021 a->sign = MP_ZPOS;
022 a->used = 0;
023 memset (a->dp, 0, sizeof (mp_digit) * a->alloc);
024 \}
\end{alltt}
\end{small}
After the function is completed, all of the digits are zeroed, the \textbf{used} count is zeroed and the
\textbf{sign} variable is set to \textbf{MP\_ZPOS}.
\section{Sign Manipulation}
\subsection{Absolute Value}
With the mp\_int representation of an integer, calculating the absolute value is trivial. The mp\_abs algorithm will compute
the absolute value of an mp\_int.
\begin{figure}[here]
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_abs}. \\
\textbf{Input}. An mp\_int $a$ \\
\textbf{Output}. Computes $b = \vert a \vert$ \\
\hline \\
1. Copy $a$ to $b$. (\textit{mp\_copy}) \\
2. If the copy failed return(\textit{MP\_MEM}). \\
3. $b.sign \leftarrow MP\_ZPOS$ \\
4. Return(\textit{MP\_OKAY}) \\
\hline
\end{tabular}
\end{center}
\caption{Algorithm mp\_abs}
\end{figure}
\textbf{Algorithm mp\_abs.}
This algorithm computes the absolute of an mp\_int input. As can be expected the algorithm is very trivial.
\index{bn\_mp\_abs.c}
\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_abs.c
\vspace{-3mm}
\begin{alltt}
016
017 /* b = |a|
018 *
019 * Simple function copies the input and fixes the sign to positive
020 */
021 int
022 mp_abs (mp_int * a, mp_int * b)
023 \{
024 int res;
025 if ((res = mp_copy (a, b)) != MP_OKAY) \{
026 return res;
027 \}
028 b->sign = MP_ZPOS;
029 return MP_OKAY;
030 \}
\end{alltt}
\end{small}
\subsection{Integer Negation}
With the mp\_int representation of an integer, calculating the negation is also trivial. The mp\_neg algorithm will compute
the negative of an mp\_int input.
\newpage\begin{figure}[here]
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_neg}. \\
\textbf{Input}. An mp\_int $a$ \\
\textbf{Output}. Computes $b = -a$ \\
\hline \\
1. Copy $a$ to $b$. (\textit{mp\_copy}) \\
2. If the copy failed return(\textit{MP\_MEM}). \\
3. If $a.sign = MP\_ZPOS$ then do \\
\hspace{3mm}3.1 $b.sign = MP\_NEG$. \\
4. else do \\
\hspace{3mm}4.1 $b.sign = MP\_ZPOS$. \\
5. Return(\textit{MP\_OKAY}) \\
\hline
\end{tabular}
\end{center}
\caption{Algorithm mp\_neg}
\end{figure}
\textbf{Algorithm mp\_neg.}
This algorithm computes the negation of an input.
\index{bn\_mp\_neg.c}
\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_neg.c
\vspace{-3mm}
\begin{alltt}
016
017 /* b = -a */
018 int
019 mp_neg (mp_int * a, mp_int * b)
020 \{
021 int res;
022 if ((res = mp_copy (a, b)) != MP_OKAY) \{
023 return res;
024 \}
025 b->sign = (a->sign == MP_ZPOS) ? MP_NEG : MP_ZPOS;
026 return MP_OKAY;
027 \}
\end{alltt}
\end{small}
\section{Small Constants}
\subsection{Setting Small Constants}
Often a mp\_int must be set to a relatively small value such as $1$ or $2$. For these cases the mp\_set algorithm is useful.
\newpage\begin{figure}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_set}. \\
\textbf{Input}. An mp\_int $a$ and a digit $b$ \\
\textbf{Output}. Make $a$ equivalent to $b$ \\
\hline \\
1. Zero $a$ (\textit{mp\_zero}). \\
2. $a_0 \leftarrow b \mbox{ (mod }\beta\mbox{)}$ \\
3. $a.used \leftarrow \left \lbrace \begin{array}{ll}
1 & \mbox{if }a_0 > 0 \\
0 & \mbox{if }a_0 = 0
\end{array} \right .$ \\
\hline
\end{tabular}
\end{center}
\caption{Algorithm mp\_set}
\end{figure}
\textbf{Algorithm mp\_set.}
This algorithm sets a mp\_int to a small single digit value. Step number 1 ensures that the integer is reset to the default state. The
single digit is set (\textit{modulo $\beta$}) and the \textbf{used} count is adjusted accordingly.
\index{bn\_mp\_set.c}
\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_set.c
\vspace{-3mm}
\begin{alltt}
016
017 /* set to a digit */
018 void
019 mp_set (mp_int * a, mp_digit b)
020 \{
021 mp_zero (a);
022 a->dp[0] = b & MP_MASK;
023 a->used = (a->dp[0] != 0) ? 1 : 0;
024 \}
\end{alltt}
\end{small}
Line 21 calls mp\_zero() to clear the mp\_int and reset the sign. Line 22 copies the digit
into the least significant location. Note the usage of a new constant \textbf{MP\_MASK}. This constant is used to quickly
reduce an integer modulo $\beta$. Since $\beta$ is of the form $2^k$ for any suitable $k$ it suffices to perform a binary AND with
$MP\_MASK = 2^k - 1$ to perform the reduction. Finally line 23 will set the \textbf{used} member with respect to the
digit actually set. This function will always make the integer positive.
One important limitation of this function is that it will only set one digit. The size of a digit is not fixed, meaning source that uses
this function should take that into account. Meaning that only trivially small constants can be set using this function.
\subsection{Setting Large Constants}
To overcome the limitations of the mp\_set algorithm the mp\_set\_int algorithm is provided. It accepts a ``long''
data type as input and will always treat it as a 32-bit integer.
\begin{figure}[here]
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_set\_int}. \\
\textbf{Input}. An mp\_int $a$ and a ``long'' integer $b$ \\
\textbf{Output}. Make $a$ equivalent to $b$ \\
\hline \\
1. Zero $a$ (\textit{mp\_zero}) \\
2. for $n$ from 0 to 7 do \\
\hspace{3mm}2.1 $a \leftarrow a \cdot 16$ (\textit{mp\_mul2d}) \\
\hspace{3mm}2.2 $u \leftarrow \lfloor b / 2^{4(7 - n)} \rfloor \mbox{ (mod }16\mbox{)}$\\
\hspace{3mm}2.3 $a_0 \leftarrow a_0 + u$ \\
\hspace{3mm}2.4 $a.used \leftarrow a.used + 1$ \\
3. Clamp excess used digits (\textit{mp\_clamp}) \\
\hline
\end{tabular}
\end{center}
\caption{Algorithm mp\_set\_int}
\end{figure}
\textbf{Algorithm mp\_set\_int.}
The algorithm performs eight iterations of a simple loop where in each iteration four bits from the source are added to the
mp\_int. Step 2.1 will multiply the current result by sixteen making room for four more bits in the less significant positions. In step 2.2 the
next four bits from the source are extracted and are added to the mp\_int. The \textbf{used} digit count is
incremented to reflect the addition. The \textbf{used} digit counter is incremented since if any of the leading digits were zero the mp\_int would have
zero digits used and the newly added four bits would be ignored.
Excess zero digits are trimmed in steps 2.1 and 3 by using higher level algorithms mp\_mul2d and mp\_clamp.
\index{bn\_mp\_set\_int.c}
\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_set\_int.c
\vspace{-3mm}
\begin{alltt}
016
017 /* set a 32-bit const */
018 int
019 mp_set_int (mp_int * a, unsigned int b)
020 \{
021 int x, res;
022
023 mp_zero (a);
024 /* set four bits at a time */
025 for (x = 0; x < 8; x++) \{
026 /* shift the number up four bits */
027 if ((res = mp_mul_2d (a, 4, a)) != MP_OKAY) \{
028 return res;
029 \}
030
031 /* OR in the top four bits of the source */
032 a->dp[0] |= (b >> 28) & 15;
033
034 /* shift the source up to the next four bits */
035 b <<= 4;
036
037 /* ensure that digits are not clamped off */
038 a->used += 1;
039 \}
040 mp_clamp (a);
041 return MP_OKAY;
042 \}
\end{alltt}
\end{small}
This function sets four bits of the number at a time to handle all practical \textbf{DIGIT\_BIT} sizes. The weird
addition on line 38 ensures that the newly added in bits are added to the number of digits. While it may not
seem obvious as to why the digit counter does not grow exceedingly large it is because of the shift on line 27
as well as the call to mp\_clamp() on line 40. Both functions will clamp excess leading digits which keeps
the number of used digits low.
\section{Comparisons}
\subsection{Unsigned Comparisions}
Comparing a multiple precision integer is performed with the exact same algorithm used to compare two decimal numbers. For example,
to compare $1,234$ to $1,264$ the digits are extracted by their positions. That is we compare $1 \cdot 10^3 + 2 \cdot 10^2 + 3 \cdot 10^1 + 4 \cdot 10^0$
to $1 \cdot 10^3 + 2 \cdot 10^2 + 6 \cdot 10^1 + 4 \cdot 10^0$ by comparing single digits at a time starting with the highest magnitude
positions. If any leading digit of one integer is greater than a digit in the same position of another integer then obviously it must be greater.
The first comparision routine that will be developed is the unsigned magnitude compare which will perform a comparison based on the digits of two
mp\_int variables alone. It will ignore the sign of the two inputs. Such a function is useful when an absolute comparison is required or if the
signs are known to agree in advance.
To facilitate working with the results of the comparison functions three constants are required.
\begin{figure}[here]
\begin{center}
\begin{tabular}{|r|l|}
\hline \textbf{Constant} & \textbf{Meaning} \\
\hline \textbf{MP\_GT} & Greater Than \\
\hline \textbf{MP\_EQ} & Equal To \\
\hline \textbf{MP\_LT} & Less Than \\
\hline
\end{tabular}
\end{center}
\caption{Comparison Return Codes}
\end{figure}
\begin{figure}[here]
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_cmp\_mag}. \\
\textbf{Input}. Two mp\_ints $a$ and $b$. \\
\textbf{Output}. Unsigned comparison results ($a$ to the left of $b$). \\
\hline \\
1. If $a.used > b.used$ then return(\textit{MP\_GT}) \\
2. If $a.used < b.used$ then return(\textit{MP\_LT}) \\
3. for n from $a.used - 1$ to 0 do \\
\hspace{+3mm}3.1 if $a_n > b_n$ then return(\textit{MP\_GT}) \\
\hspace{+3mm}3.2 if $a_n < b_n$ then return(\textit{MP\_LT}) \\
4. Return(\textit{MP\_EQ}) \\
\hline
\end{tabular}
\end{center}
\caption{Algorithm mp\_cmp\_mag}
\end{figure}
\textbf{Algorithm mp\_cmp\_mag.}
By saying ``$a$ to the left of $b$'' it is meant that the comparison is with respect to $a$, that is if $a$ is greater than $b$ it will return
\textbf{MP\_GT} and similar with respect to when $a = b$ and $a < b$. The first two steps compare the number of digits used in both $a$ and $b$.
Obviously if the digit counts differ there would be an imaginary zero digit in the smaller number where the leading digit of the larger number is.
If both have the same number of digits than the actual digits themselves must be compared starting at the leading digit.
By step three both inputs must have the same number of digits so its safe to start from either $a.used - 1$ or $b.used - 1$ and count down to
the zero'th digit. If after all of the digits have been compared, no difference is found, the algorithm returns \textbf{MP\_EQ}.
\index{bn\_mp\_cmp\_mag.c}
\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_cmp\_mag.c
\vspace{-3mm}
\begin{alltt}
016
017 /* compare maginitude of two ints (unsigned) */
018 int
019 mp_cmp_mag (mp_int * a, mp_int * b)
020 \{
021 int n;
022
023 /* compare based on # of non-zero digits */
024 if (a->used > b->used) \{
025 return MP_GT;
026 \}
027
028 if (a->used < b->used) \{
029 return MP_LT;
030 \}
031
032 /* compare based on digits */
033 for (n = a->used - 1; n >= 0; n--) \{
034 if (a->dp[n] > b->dp[n]) \{
035 return MP_GT;
036 \}
037
038 if (a->dp[n] < b->dp[n]) \{
039 return MP_LT;
040 \}
041 \}
042 return MP_EQ;
043 \}
\end{alltt}
\end{small}
The two if statements on lines 24 and 28 compare the number of digits in the two inputs. These two are performed before all of the digits
are compared since it is a very cheap test to perform and can potentially save considerable time. The implementation given is also not valid
without those two statements. $b.alloc$ may be smaller than $a.used$, meaning that undefined values will be read from $b$ past the end of the
array of digits.
\subsection{Signed Comparisons}
Comparing with sign considerations is also fairly critical in several routines (\textit{division for example}). Based on an unsigned magnitude
comparison a trivial signed comparison algorithm can be written.
\begin{figure}[here]
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_cmp}. \\
\textbf{Input}. Two mp\_ints $a$ and $b$ \\
\textbf{Output}. Signed Comparison Results ($a$ to the left of $b$) \\
\hline \\
1. if $a.sign = MP\_NEG$ and $b.sign = MP\_ZPOS$ then return(\textit{MP\_LT}) \\
2. if $a.sign = MP\_ZPOS$ and $b.sign = MP\_NEG$ then return(\textit{MP\_GT}) \\
3. if $a.sign = MP\_NEG$ then \\
\hspace{+3mm}3.1 Return the unsigned comparison of $b$ and $a$ (\textit{mp\_cmp\_mag}) \\
4 Otherwise \\
\hspace{+3mm}4.1 Return the unsigned comparison of $a$ and $b$ \\
\hline
\end{tabular}
\end{center}
\caption{Algorithm mp\_cmp}
\end{figure}
\textbf{Algorithm mp\_cmp.}
The first two steps compare the signs of the two inputs. If the signs do not agree then it can return right away with the appropriate
comparison code. When the signs are equal the digits of the inputs must be compared to determine the correct result. In step
three the unsigned comparision flips the order of the arguments since they are both negative. For instance, if $-a > -b$ then
$\vert a \vert < \vert b \vert$. Step number four will compare the two when they are both positive.
\index{bn\_mp\_cmp.c}
\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_cmp.c
\vspace{-3mm}
\begin{alltt}
016
017 /* compare two ints (signed)*/
018 int
019 mp_cmp (mp_int * a, mp_int * b)
020 \{
021 /* compare based on sign */
022 if (a->sign == MP_NEG && b->sign == MP_ZPOS) \{
023 return MP_LT;
024 \}
025
026 if (a->sign == MP_ZPOS && b->sign == MP_NEG) \{
027 return MP_GT;
028 \}
029
030 /* compare digits */
031 if (a->sign == MP_NEG) \{
032 /* if negative compare opposite direction */
033 return mp_cmp_mag(b, a);
034 \} else \{
035 return mp_cmp_mag(a, b);
036 \}
037 \}
\end{alltt}
\end{small}
The two if statements on lines 22 and 26 perform the initial sign comparison. If the signs are not the equal then which ever
has the positive sign is larger. At line 31, the inputs are compared based on magnitudes. If the signs were both negative then
the unsigned comparison is performed in the opposite direction (\textit{line 33}). Otherwise, the signs are assumed to
be both positive and a forward direction unsigned comparison is performed.
\section*{Exercises}
\begin{tabular}{cl}
$\left [ 2 \right ]$ & Modify algorithm mp\_set\_int to accept as input a variable length array of bits. \\
& \\
$\left [ 3 \right ]$ & Give the probability that algorithm mp\_cmp\_mag will have to compare $k$ digits \\
& of two random digits (of equal magnitude) before a difference is found. \\
& \\
$\left [ 1 \right ]$ & Suggest a simple method to speed up the implementation of mp\_cmp\_mag based \\
& on the observations made in the previous problem. \\
&
\end{tabular}
\chapter{Basic Arithmetic}
\section{Building Blocks}
At this point algorithms for initialization, clearing, zeroing, copying, comparing and setting small constants have been
established. The next logical set of algorithms to develop are addition, subtraction and digit shifting algorithms. These
algorithms make use of the lower level algorithms and are the cruicial building block for the multiplication algorithms. It is very important
that these algorithms are highly optimized. On their own they are simple $O(n)$ algorithms but they can be called from higher level algorithms
which easily places them at $O(n^2)$ or even $O(n^3)$ work levels.
All nine algorithms within this chapter make use of the logical bit shift operations denoted by $<<$ and $>>$ for left and right
logical shifts respectively. A logical shift is analogous to sliding the decimal point of radix-10 representations. For example, the real
number $0.9345$ is equivalent to $93.45\%$ which is found by sliding the the decimal two places to the right (\textit{multiplying by $10^2$}).
Mathematically a logical shift is equivalent to a division or multiplication by a power of two.
For example, $a << k = a \cdot 2^k$ while $a >> k = \lfloor a/2^k \rfloor$.
One significant difference between a logical shift and the way decimals are shifted is that digits below the zero'th position are removed
from the number. For example, consider $1101_2 >> 1$ using decimal notation this would produce $110.1_2$. However, with a logical shift the
result is $110_2$.
\section{Addition and Subtraction}
In normal fixed precision arithmetic negative numbers are easily represented by subtraction from the modulus. For example, with 32-bit integers
$a - b\mbox{ (mod }2^{32}\mbox{)}$ is the same as $a + (2^{32} - b) \mbox{ (mod }2^{32}\mbox{)}$ since $2^{32} \equiv 0 \mbox{ (mod }2^{32}\mbox{)}$.
As a result subtraction can be performed with a trivial series of logical operations and an addition.
However, in multiple precision arithmetic negative numbers are not represented in the same way. Instead a sign flag is used to keep track of the
sign of the integer. As a result signed addition and subtraction are actually implemented as conditional usage of lower level addition or
subtraction algorithms with the sign fixed up appropriately.
The lower level algorithms will add or subtract integers without regard to the sign flag. That is they will add or subtract the magnitude of
the integers respectively.
\subsection{Low Level Addition}
An unsigned addition of multiple precision integers is performed with the same long-hand algorithm used to add decimal numbers. That is to add the
trailing digits first and propagate the resulting carry upwards. Since this is a lower level algorithm the name will have a ``s\_'' prefix.
Historically that convention stems from the MPI library where ``s\_'' stood for static functions that were hidden from the developer entirely.
\newpage
\begin{figure}[!here]
\begin{center}
\begin{small}
\begin{tabular}{l}
\hline Algorithm \textbf{s\_mp\_add}. \\
\textbf{Input}. Two mp\_ints $a$ and $b$ \\
\textbf{Output}. The unsigned addition $c = \vert a \vert + \vert b \vert$. \\
\hline \\
1. if $a.used > b.used$ then \\
\hspace{+3mm}1.1 $min \leftarrow b.used$ \\
\hspace{+3mm}1.2 $max \leftarrow a.used$ \\
\hspace{+3mm}1.3 $x \leftarrow a$ \\
2. else \\
\hspace{+3mm}2.1 $min \leftarrow a.used$ \\
\hspace{+3mm}2.2 $max \leftarrow b.used$ \\
\hspace{+3mm}2.3 $x \leftarrow b$ \\
3. If $c.alloc < max + 1$ then grow $c$ to hold at least $max + 1$ digits (\textit{mp\_grow}) \\
4. If failed to grow $c$ return(\textit{MP\_MEM}) \\
5. $oldused \leftarrow c.used$ \\
6. $c.used \leftarrow max + 1$ \\
7. $u \leftarrow 0$ \\
8. for $n$ from $0$ to $min - 1$ do \\
\hspace{+3mm}8.1 $c_n \leftarrow a_n + b_n + u$ \\
\hspace{+3mm}8.2 $u \leftarrow c_n >> lg(\beta)$ \\
\hspace{+3mm}8.3 $c_n \leftarrow c_n \mbox{ (mod }\beta\mbox{)}$ \\
9. if $min \ne max$ then do \\
\hspace{+3mm}9.1 for $n$ from $min$ to $max - 1$ do \\
\hspace{+6mm}9.1.1 $c_n \leftarrow x_n + u$ \\
\hspace{+6mm}9.1.2 $u \leftarrow c_n >> lg(\beta)$ \\
\hspace{+6mm}9.1.3 $c_n \leftarrow c_n \mbox{ (mod }\beta\mbox{)}$ \\
10. $c_{max} \leftarrow u$ \\
11. if $olduse > max$ then \\
\hspace{+3mm}11.1 for $n$ from $max + 1$ to $olduse - 1$ do \\
\hspace{+6mm}11.1.1 $c_n \leftarrow 0$ \\
12. Clamp excess digits in $c$. (\textit{mp\_clamp}) \\
13. Return(\textit{MP\_OKAY}) \\
\hline
\end{tabular}
\end{small}
\end{center}
\caption{Algorithm s\_mp\_add}
\end{figure}
\textbf{Algorithm s\_mp\_add.}
This algorithm is loosely based on algorithm 14.7 of HAC \cite[pp. 594]{HAC} but has been extended to allow the inputs to have different magnitudes.
Coincidentally the description of algorithm A in Knuth \cite[pp. 266]{TAOCPV2} shares the same deficiency as the algorithm from \cite{HAC}. Even the
MIX pseudo machine code presented by Knuth \cite[pp. 266-267]{TAOCPV2} is incapable of handling inputs which are of different magnitudes.
Steps 1 and 2 will sort the two inputs based on their \textbf{used} digit count. This allows the inputs to have varying magnitudes which not
only makes it more efficient than the trivial algorithm presented in the references but more flexible. The variable $min$ is given the lowest
digit count while $max$ is given the highest digit count. If both inputs have the same \textbf{used} digit count both $min$ and $max$ are
set to the same value. The variable $x$ is an \textit{alias} for the largest input and not meant to be a copy of it. After the inputs are sorted,
steps 3 and 4 will ensure that the destination $c$ can accommodate the result. The old \textbf{used} count from $c$ is copied to
$oldused$ so that excess digits can be cleared later, and the new \textbf{used} count is set to $max+1$, so that a carry from the most significant
word can be handled.
At step 7 the carry variable $u$ is set to zero and the first part of the addition loop can begin. The first step of the loop (\textit{8.1}) adds
digits from the two inputs together along with the carry variable $u$. The following step extracts the carry bit by shifting the result of the
preceding step right by $lg(\beta)$ positions. The shift to extract the carry is similar to how carry extraction works with decimal addition.
Consider adding $77$ to $65$, the first addition of the first column is $7 + 5$ which produces the result $12$. The trailing digit of the result
is $2 \equiv 12 \mbox{ (mod }10\mbox{)}$ and the carry is found by dividing (\textit{and ignoring the remainder}) $12$ by the radix or in this case $10$. The
division and multiplication of $10$ is simply a logical right or left shift, respectively, of the digits. In otherwords the carry can be extracted
by shifting one digit to the right.
Note that $lg()$ is simply the base two logarithm such that $lg(2^k) = k$. This implies that $lg(\beta)$ is the number of bits in a radix-$\beta$
digit. Therefore, a logical shift right of the summand by $lg(\beta)$ will extract the carry. The final step of the loop reduces the digit
modulo the radix $\beta$ to ensure it is in range.
After step 8 the smallest input (\textit{or both if they are the same magnitude}) has been exhausted. Step 9 decides whether
the inputs were of equal magnitude. If not than another loop similar to that in step 8, must be executed. The loop at step
number 9.1 differs from the previous loop since it only adds the mp\_int $x$ along with the carry.
Step 10 finishes the addition phase by copying the final carry to the highest location in the result $c_{max}$. Step 11 ensures that
leading digits that were originally present in $c$ are cleared. Finally excess leading digits are clamped and the algorithm returns success.
\index{bn\_s\_mp\_add.c}
\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_s\_mp\_add.c
\vspace{-3mm}
\begin{alltt}
016
017 /* low level addition, based on HAC pp.594, Algorithm 14.7 */
018 int
019 s_mp_add (mp_int * a, mp_int * b, mp_int * c)
020 \{
021 mp_int *x;
022 int olduse, res, min, max;
023
024 /* find sizes, we let |a| <= |b| which means we have to sort
025 * them. "x" will point to the input with the most digits
026 */
027 if (a->used > b->used) \{
028 min = b->used;
029 max = a->used;
030 x = a;
031 \} else \{
032 min = a->used;
033 max = b->used;
034 x = b;
035 \}
036
037 /* init result */
038 if (c->alloc < max + 1) \{
039 if ((res = mp_grow (c, max + 1)) != MP_OKAY) \{
040 return res;
041 \}
042 \}
043
044 /* get old used digit count and set new one */
045 olduse = c->used;
046 c->used = max + 1;
047
048 \{
049 register mp_digit u, *tmpa, *tmpb, *tmpc;
050 register int i;
051
052 /* alias for digit pointers */
053
054 /* first input */
055 tmpa = a->dp;
056
057 /* second input */
058 tmpb = b->dp;
059
060 /* destination */
061 tmpc = c->dp;
062
063 /* zero the carry */
064 u = 0;
065 for (i = 0; i < min; i++) \{
066 /* Compute the sum at one digit, T[i] = A[i] + B[i] + U */
067 *tmpc = *tmpa++ + *tmpb++ + u;
068
069 /* U = carry bit of T[i] */
070 u = *tmpc >> ((mp_digit)DIGIT_BIT);
071
072 /* take away carry bit from T[i] */
073 *tmpc++ &= MP_MASK;
074 \}
075
076 /* now copy higher words if any, that is in A+B
077 * if A or B has more digits add those in
078 */
079 if (min != max) \{
080 for (; i < max; i++) \{
081 /* T[i] = X[i] + U */
082 *tmpc = x->dp[i] + u;
083
084 /* U = carry bit of T[i] */
085 u = *tmpc >> ((mp_digit)DIGIT_BIT);
086
087 /* take away carry bit from T[i] */
088 *tmpc++ &= MP_MASK;
089 \}
090 \}
091
092 /* add carry */
093 *tmpc++ = u;
094
095 /* clear digits above oldused */
096 for (i = c->used; i < olduse; i++) \{
097 *tmpc++ = 0;
098 \}
099 \}
100
101 mp_clamp (c);
102 return MP_OKAY;
103 \}
\end{alltt}
\end{small}
Lines 27 to 35 perform the initial sorting of the inputs and determine the $min$ and $max$ variables. Note that $x$ is a pointer to a
mp\_int assigned to the largest input, in effect it is a local alias. Lines 37 to 42 ensure that the destination is grown to
accomodate the result of the addition.
Similar to the implementation of mp\_copy this function uses the braced code and local aliases coding style. The three aliases that are on
lines 55, 58 and 61 represent the two inputs and destination variables respectively. These aliases are used to ensure the
compiler does not have to dereference $a$, $b$ or $c$ (respectively) to access the digits of the respective mp\_int.
The initial carry $u$ is cleared on line 64, note that $u$ is of type mp\_digit which ensures type compatibility within the
implementation. The initial addition loop begins on line 65 and ends on line 74. Similarly the conditional addition loop
begins on line 80 and ends on line 90. The addition is finished with the final carry being stored in $tmpc$ on line 93.
Note the ``++'' operator on the same line. After line 93 $tmpc$ will point to the $c.used$'th digit of the mp\_int $c$. This is useful
for the next loop on lines 96 to 99 which set any old upper digits to zero.
\subsection{Low Level Subtraction}
The low level unsigned subtraction algorithm is very similar to the low level unsigned addition algorithm. The principle difference is that the
unsigned subtraction algorithm requires the result to be positive. That is when computing $a - b$ the condition $\vert a \vert \ge \vert b\vert$ must
be met for this algorithm to function properly. Keep in mind this low level algorithm is not meant to be used in higher level algorithms directly.
This algorithm as will be shown can be used to create functional signed addition and subtraction algorithms.
For this algorithm a new variable is required to make the description simpler. Recall from section 1.3.1 that a mp\_digit must be able to represent
the range $0 \le x < 2\beta$ for the algorithms to work correctly. However, it is allowable that a mp\_digit represent a larger range of values. For
this algorithm we will assume that the variable $\gamma$ represents the number of bits available in a
mp\_digit (\textit{this implies $2^{\gamma} > \beta$}).
For example, the default for LibTomMath is to use a ``unsigned long'' for the mp\_digit ``type'' while $\beta = 2^{28}$. In ISO C an ``unsigned long''
data type must be able to represent $0 \le x < 2^{32}$ meaning that in this case $\gamma = 32$.
\newpage\begin{figure}[!here]
\begin{center}
\begin{small}
\begin{tabular}{l}
\hline Algorithm \textbf{s\_mp\_sub}. \\
\textbf{Input}. Two mp\_ints $a$ and $b$ ($\vert a \vert \ge \vert b \vert$) \\
\textbf{Output}. The unsigned subtraction $c = \vert a \vert - \vert b \vert$. \\
\hline \\
1. $min \leftarrow b.used$ \\
2. $max \leftarrow a.used$ \\
3. If $c.alloc < max$ then grow $c$ to hold at least $max$ digits. (\textit{mp\_grow}) \\
4. If the reallocation failed return(\textit{MP\_MEM}). \\
5. $oldused \leftarrow c.used$ \\
6. $c.used \leftarrow max$ \\
7. $u \leftarrow 0$ \\
8. for $n$ from $0$ to $min - 1$ do \\
\hspace{3mm}8.1 $c_n \leftarrow a_n - b_n - u$ \\
\hspace{3mm}8.2 $u \leftarrow c_n >> (\gamma - 1)$ \\
\hspace{3mm}8.3 $c_n \leftarrow c_n \mbox{ (mod }\beta\mbox{)}$ \\
9. if $min < max$ then do \\
\hspace{3mm}9.1 for $n$ from $min$ to $max - 1$ do \\
\hspace{6mm}9.1.1 $c_n \leftarrow a_n - u$ \\
\hspace{6mm}9.1.2 $u \leftarrow c_n >> (\gamma - 1)$ \\
\hspace{6mm}9.1.3 $c_n \leftarrow c_n \mbox{ (mod }\beta\mbox{)}$ \\
10. if $oldused > max$ then do \\
\hspace{3mm}10.1 for $n$ from $max$ to $oldused - 1$ do \\
\hspace{6mm}10.1.1 $c_n \leftarrow 0$ \\
11. Clamp excess digits of $c$. (\textit{mp\_clamp}). \\
12. Return(\textit{MP\_OKAY}). \\
\hline
\end{tabular}
\end{small}
\end{center}
\caption{Algorithm s\_mp\_sub}
\end{figure}
\textbf{Algorithm s\_mp\_sub.}
This algorithm performs the unsigned subtraction of two mp\_int variables under the restriction that the result must be positive. That is when
passing variables $a$ and $b$ the condition that $\vert a \vert \ge \vert b \vert$ must be met for the algorithm to function correctly. This
algorithm is loosely based on algorithm 14.9 \cite[pp. 595]{HAC} and is similar to algorithm S in \cite[pp. 267]{TAOCPV2} as well. As was the case
of the algorithm s\_mp\_add both other references lack discussion concerning various practical details such as when the inputs differ in magnitude.
The initial sorting of the inputs is trivial in this algorithm since $a$ is guaranteed to have at least the same magnitude of $b$. Steps 1 and 2
set the $min$ and $max$ variables. Unlike the addition routine there is guaranteed to be no carry which means that the final result can be at
most $max$ digits in length as opposed to $max + 1$. Similar to the addition algorithm the \textbf{used} count of $c$ is copied locally and
set to the maximal count for the operation.
The subtraction loop that begins on step 8 is essentially the same as the addition loop of algorithm s\_mp\_add except single precision
subtraction is used instead. Note the use of the $\gamma$ variable to extract the carry (\textit{also known as the borrow}) within the subtraction
loops. Under the assumption that two's complement single precision arithmetic is used this will successfully extract the desired carry.
For example, consider subtracting $0101_2$ from $0100_2$ where $\gamma = 4$ and $\beta = 2$. The least significant bit will force a carry upwards to
the third bit which will be set to zero after the borrow. After the very first bit has been subtracted $4 - 1 \equiv 0011_2$ will remain, When the
third bit of $0101_2$ is subtracted from the result it will cause another carry. In this case though the carry will be forced to propagate all the
way to the most significant bit.
Recall that $\beta < 2^{\gamma}$. This means that if a carry does occur just before the $lg(\beta)$'th bit it will propagate all the way to the most
significant bit. Thus, the high order bits of the mp\_digit that are not part of the actual digit will either be all zero, or all one. All that
is needed is a single zero or one bit for the carry. Therefore a single logical shift right by $\gamma - 1$ positions is sufficient to extract the
carry. This method of carry extraction may seem awkward but the reason for it becomes apparent when the implementation is discussed.
If $b$ has a smaller magnitude than $a$ then step 9 will force the carry and copy operation to propagate through the larger input $a$ into $c$. Step
10 will ensure that any leading digits of $c$ above the $max$'th position are zeroed.
\index{bn\_s\_mp\_sub.c}
\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_s\_mp\_sub.c
\vspace{-3mm}
\begin{alltt}
016
017 /* low level subtraction (assumes |a| > |b|), HAC pp.595 Algorithm 14.9 */
018 int
019 s_mp_sub (mp_int * a, mp_int * b, mp_int * c)
020 \{
021 int olduse, res, min, max;
022
023 /* find sizes */
024 min = b->used;
025 max = a->used;
026
027 /* init result */
028 if (c->alloc < max) \{
029 if ((res = mp_grow (c, max)) != MP_OKAY) \{
030 return res;
031 \}
032 \}
033 olduse = c->used;
034 c->used = max;
035
036 \{
037 register mp_digit u, *tmpa, *tmpb, *tmpc;
038 register int i;
039
040 /* alias for digit pointers */
041 tmpa = a->dp;
042 tmpb = b->dp;
043 tmpc = c->dp;
044
045 /* set carry to zero */
046 u = 0;
047 for (i = 0; i < min; i++) \{
048 /* T[i] = A[i] - B[i] - U */
049 *tmpc = *tmpa++ - *tmpb++ - u;
050
051 /* U = carry bit of T[i]
052 * Note this saves performing an AND operation since
053 * if a carry does occur it will propagate all the way to the
054 * MSB. As a result a single shift is enough to get the carry
055 */
056 u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1));
057
058 /* Clear carry from T[i] */
059 *tmpc++ &= MP_MASK;
060 \}
061
062 /* now copy higher words if any, e.g. if A has more digits than B */
063 for (; i < max; i++) \{
064 /* T[i] = A[i] - U */
065 *tmpc = *tmpa++ - u;
066
067 /* U = carry bit of T[i] */
068 u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1));
069
070 /* Clear carry from T[i] */
071 *tmpc++ &= MP_MASK;
072 \}
073
074 /* clear digits above used (since we may not have grown result above) */
075 for (i = c->used; i < olduse; i++) \{
076 *tmpc++ = 0;
077 \}
078 \}
079
080 mp_clamp (c);
081 return MP_OKAY;
082 \}
083
\end{alltt}
\end{small}
Line 24 and 25 perform the initial hardcoded sorting of the inputs. In reality the $min$ and $max$ variables are only aliases and are only
used to make the source code easier to read. Again the pointer alias optimization is used within this algorithm. Lines 41, 42 and 43 initialize the aliases for
$a$, $b$ and $c$ respectively.
The first subtraction loop occurs on lines 46 through 60. The theory behind the subtraction loop is exactly the same as that for
the addition loop. As remarked earlier there is an implementation reason for using the ``awkward'' method of extracting the carry
(\textit{see line 56}). The traditional method for extracting the carry would be to shift by $lg(\beta)$ positions and logically AND
the least significant bit. The AND operation is required because all of the bits above the $\lg(\beta)$'th bit will be set to one after a carry
occurs from subtraction. This carry extraction requires two relatively cheap operations to extract the carry. The other method is to simply
shift the most significant bit to the least significant bit thus extracting the carry with a single cheap operation. This optimization only works on
twos compliment machines which is a safe assumption to make.
If $a$ has a larger magnitude than $b$ an additional loop (\textit{see lines 63 through 72}) is required to propagate the carry through
$a$ and copy the result to $c$.
\subsection{High Level Addition}
Now that both lower level addition and subtraction algorithms have been established an effective high level signed addition algorithm can be
established. This high level addition algorithm will be what other algorithms and developers will use to perform addition of mp\_int data
types.
Recall from section 5.2 that an mp\_int represents an integer with an unsigned mantissa (\textit{the array of digits}) and a \textbf{sign}
flag. A high level addition is actually performed as a series of eight separate cases which can be optimized down to three unique cases.
\begin{figure}[!here]
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_add}. \\
\textbf{Input}. Two mp\_ints $a$ and $b$ \\
\textbf{Output}. The signed addition $c = a + b$. \\
\hline \\
1. if $a.sign = b.sign$ then do \\
\hspace{3mm}1.1 $c.sign \leftarrow a.sign$ \\
\hspace{3mm}1.2 $c \leftarrow \vert a \vert + \vert b \vert$ (\textit{s\_mp\_add})\\
2. else do \\
\hspace{3mm}2.1 if $\vert a \vert < \vert b \vert$ then do (\textit{mp\_cmp\_mag}) \\
\hspace{6mm}2.1.1 $c.sign \leftarrow b.sign$ \\
\hspace{6mm}2.1.2 $c \leftarrow \vert b \vert - \vert a \vert$ (\textit{s\_mp\_sub}) \\
\hspace{3mm}2.2 else do \\
\hspace{6mm}2.2.1 $c.sign \leftarrow a.sign$ \\
\hspace{6mm}2.2.2 $c \leftarrow \vert a \vert - \vert b \vert$ \\
3. If any of the lower level operations failed return(\textit{MP\_MEM}) \\
4. Return(\textit{MP\_OKAY}). \\
\hline
\end{tabular}
\end{center}
\caption{Algorithm mp\_add}
\end{figure}
\textbf{Algorithm mp\_add.}
This algorithm performs the signed addition of two mp\_int variables. There is no reference algorithm to draw upon from either \cite{TAOCPV2} or
\cite{HAC} since they both only provide unsigned operations. The algorithm is fairly straightforward but restricted since subtraction can only
produce positive results.
\begin{figure}[here]
\begin{small}
\begin{center}
\begin{tabular}{|c|c|c|c|c|}
\hline \textbf{Sign of $a$} & \textbf{Sign of $b$} & \textbf{$\vert a \vert > \vert b \vert $} & \textbf{Unsigned Operation} & \textbf{Result Sign Flag} \\
\hline $+$ & $+$ & Yes & $c = a + b$ & $a.sign$ \\
\hline $+$ & $+$ & No & $c = a + b$ & $a.sign$ \\
\hline $-$ & $-$ & Yes & $c = a + b$ & $a.sign$ \\
\hline $-$ & $-$ & No & $c = a + b$ & $a.sign$ \\
\hline &&&&\\
\hline $+$ & $-$ & No & $c = b - a$ & $b.sign$ \\
\hline $-$ & $+$ & No & $c = b - a$ & $b.sign$ \\
\hline &&&&\\
\hline $+$ & $-$ & Yes & $c = a - b$ & $a.sign$ \\
\hline $-$ & $+$ & Yes & $c = a - b$ & $a.sign$ \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Addition Guide Chart}
\label{fig:AddChart}
\end{figure}
Figure~\ref{fig:AddChart} lists all of the eight possible input combinations and is sorted to show that only three specific cases need to be handled. The
return code of the unsigned operations at step 1.2, 2.1.2 and 2.2.2 are forwarded to step 3 to check for errors. This simplifies the description
of the algorithm considerably and best follows how the implementation actually was achieved.
Also note how the \textbf{sign} is set before the unsigned addition or subtraction is performed. Recall from the descriptions of algorithms
s\_mp\_add and s\_mp\_sub that the mp\_clamp function is used at the end to trim excess digits. The mp\_clamp algorithm will set the \textbf{sign}
to \textbf{MP\_ZPOS} when the \textbf{used} digit count reaches zero.
For example, consider performing $-a + a$ with algorithm mp\_add. By the description of the algorithm the sign is set to \textbf{MP\_NEG} which would
produce a result of $-0$. However, since the sign is set first then the unsigned addition is performed the subsequent usage of algorithm mp\_clamp
within algorithm s\_mp\_add will force $-0$ to become $0$.
\index{bn\_mp\_add.c}
\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_add.c
\vspace{-3mm}
\begin{alltt}
016
017 /* high level addition (handles signs) */
018 int
019 mp_add (mp_int * a, mp_int * b, mp_int * c)
020 \{
021 int sa, sb, res;
022
023 /* get sign of both inputs */
024 sa = a->sign;
025 sb = b->sign;
026
027 /* handle two cases, not four */
028 if (sa == sb) \{
029 /* both positive or both negative */
030 /* add their magnitudes, copy the sign */
031 c->sign = sa;
032 res = s_mp_add (a, b, c);
033 \} else \{
034 /* one positive, the other negative */
035 /* subtract the one with the greater magnitude from */
036 /* the one of the lesser magnitude. The result gets */
037 /* the sign of the one with the greater magnitude. */
038 if (mp_cmp_mag (a, b) == MP_LT) \{
039 c->sign = sb;
040 res = s_mp_sub (b, a, c);
041 \} else \{
042 c->sign = sa;
043 res = s_mp_sub (a, b, c);
044 \}
045 \}
046 return res;
047 \}
048
\end{alltt}
\end{small}
The source code follows the algorithm fairly closely. The most notable new source code addition is the usage of the $res$ integer variable which
is used to pass result of the unsigned operations forward. Unlike in the algorithm, the variable $res$ is merely returned as is without
explicitly checking it and returning the constant \textbf{MP\_OKAY}. The observation is this algorithm will succeed or fail only if the lower
level functions do so. Returning their return code is sufficient.
\subsection{High Level Subtraction}
The high level signed subtraction algorithm is essentially the same as the high level signed addition algorithm.
\newpage\begin{figure}[!here]
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_sub}. \\
\textbf{Input}. Two mp\_ints $a$ and $b$ \\
\textbf{Output}. The signed subtraction $c = a - b$. \\
\hline \\
1. if $a.sign \ne b.sign$ then do \\
\hspace{3mm}1.1 $c.sign \leftarrow a.sign$ \\
\hspace{3mm}1.2 $c \leftarrow \vert a \vert + \vert b \vert$ (\textit{s\_mp\_add}) \\
2. else do \\
\hspace{3mm}2.1 if $\vert a \vert \ge \vert b \vert$ then do (\textit{mp\_cmp\_mag}) \\
\hspace{6mm}2.1.1 $c.sign \leftarrow a.sign$ \\
\hspace{6mm}2.1.2 $c \leftarrow \vert a \vert - \vert b \vert$ (\textit{s\_mp\_sub}) \\
\hspace{3mm}2.2 else do \\
\hspace{6mm}2.2.1 $c.sign \leftarrow \left \lbrace \begin{array}{ll}
MP\_ZPOS & \mbox{if }a.sign = MP\_NEG \\
MP\_NEG & \mbox{otherwise} \\
\end{array} \right .$ \\
\hspace{6mm}2.2.2 $c \leftarrow \vert b \vert - \vert a \vert$ \\
3. If any of the lower level operations failed return(\textit{MP\_MEM}). \\
4. Return(\textit{MP\_OKAY}). \\
\hline
\end{tabular}
\end{center}
\caption{Algorithm mp\_sub}
\end{figure}
\textbf{Algorithm mp\_sub.}
This algorithm performs the signed subtraction of two inputs. Similar to algorithm mp\_add there is no reference in either \cite{TAOCPV2} or
\cite{HAC}. Also this algorithm is restricted by algorithm s\_mp\_sub. The following chart lists the eight possible inputs and
the operations required.
\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{|c|c|c|c|c|}
\hline \textbf{Sign of $a$} & \textbf{Sign of $b$} & \textbf{$\vert a \vert \ge \vert b \vert $} & \textbf{Unsigned Operation} & \textbf{Result Sign Flag} \\
\hline $+$ & $-$ & Yes & $c = a + b$ & $a.sign$ \\
\hline $+$ & $-$ & No & $c = a + b$ & $a.sign$ \\
\hline $-$ & $+$ & Yes & $c = a + b$ & $a.sign$ \\
\hline $-$ & $+$ & No & $c = a + b$ & $a.sign$ \\
\hline &&&& \\
\hline $+$ & $+$ & Yes & $c = a - b$ & $a.sign$ \\
\hline $-$ & $-$ & Yes & $c = a - b$ & $a.sign$ \\
\hline &&&& \\
\hline $+$ & $+$ & No & $c = b - a$ & $\mbox{opposite of }a.sign$ \\
\hline $-$ & $-$ & No & $c = b - a$ & $\mbox{opposite of }a.sign$ \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Subtraction Guide Chart}
\end{figure}
Similar to the case of algorithm mp\_add the \textbf{sign} is set first before the unsigned addition or subtraction. That is to prevent the
algorithm from producing $-a - -a = -0$ as a result.
\index{bn\_mp\_sub.c}
\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_sub.c
\vspace{-3mm}
\begin{alltt}
016
017 /* high level subtraction (handles signs) */
018 int
019 mp_sub (mp_int * a, mp_int * b, mp_int * c)
020 \{
021 int sa, sb, res;
022
023 sa = a->sign;
024 sb = b->sign;
025
026 if (sa != sb) \{
027 /* subtract a negative from a positive, OR */
028 /* subtract a positive from a negative. */
029 /* In either case, ADD their magnitudes, */
030 /* and use the sign of the first number. */
031 c->sign = sa;
032 res = s_mp_add (a, b, c);
033 \} else \{
034 /* subtract a positive from a positive, OR */
035 /* subtract a negative from a negative. */
036 /* First, take the difference between their */
037 /* magnitudes, then... */
038 if (mp_cmp_mag (a, b) != MP_LT) \{
039 /* Copy the sign from the first */
040 c->sign = sa;
041 /* The first has a larger or equal magnitude */
042 res = s_mp_sub (a, b, c);
043 \} else \{
044 /* The result has the *opposite* sign from */
045 /* the first number. */
046 c->sign = (sa == MP_ZPOS) ? MP_NEG : MP_ZPOS;
047 /* The second has a larger magnitude */
048 res = s_mp_sub (b, a, c);
049 \}
050 \}
051 return res;
052 \}
053
\end{alltt}
\end{small}
Much like the implementation of algorithm mp\_add the variable $res$ is used to catch the return code of the unsigned addition or subtraction operations
and forward it to the end of the function. On line 38 the ``not equal to'' \textbf{MP\_LT} expression is used to emulate a
``greater than or equal to'' comparison.
\section{Bit and Digit Shifting}
It is quite common to think of a multiple precision integer as a polynomial in $x$, that is $y = f(\beta)$ where $f(x) = \sum_{i=0}^{n-1} a_i x^i$.
This notation arises within discussion of Montgomery and Diminished Radix Reduction as well as Karatsuba multiplication and squaring.
In order to facilitate operations on polynomials in $x$ as above a series of simple ``digit'' algorithms have to be established. That is to shift
the digits left or right as well to shift individual bits of the digits left and right. It is important to note that not all ``shift'' operations
are on radix-$\beta$ digits.
\subsection{Multiplication by Two}
In a binary system where the radix is a power of two multiplication by two not only arises often in other algorithms it is a fairly efficient
operation to perform. A single precision logical shift left is sufficient to multiply a single digit by two.
\newpage\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_mul\_2}. \\
\textbf{Input}. One mp\_int $a$ \\
\textbf{Output}. $b = 2a$. \\
\hline \\
1. If $b.alloc < a.used + 1$ then grow $b$ to hold $a.used + 1$ digits. (\textit{mp\_grow}) \\
2. If the reallocation failed return(\textit{MP\_MEM}). \\
3. $oldused \leftarrow b.used$ \\
4. $b.used \leftarrow a.used$ \\
5. $r \leftarrow 0$ \\
6. for $n$ from 0 to $a.used - 1$ do \\
\hspace{3mm}6.1 $rr \leftarrow a_n >> (lg(\beta) - 1)$ \\
\hspace{3mm}6.2 $b_n \leftarrow (a_n << 1) + r \mbox{ (mod }\beta\mbox{)}$ \\
\hspace{3mm}6.3 $r \leftarrow rr$ \\
7. If $r \ne 0$ then do \\
\hspace{3mm}7.1 $b_{n + 1} \leftarrow r$ \\
\hspace{3mm}7.2 $b.used \leftarrow b.used + 1$ \\
8. If $b.used < oldused - 1$ then do \\
\hspace{3mm}8.1 for $n$ from $b.used$ to $oldused - 1$ do \\
\hspace{6mm}8.1.1 $b_n \leftarrow 0$ \\
9. $b.sign \leftarrow a.sign$ \\
10. Return(\textit{MP\_OKAY}).\\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm mp\_mul\_2}
\end{figure}
\textbf{Algorithm mp\_mul\_2.}
This algorithm will quickly multiply a mp\_int by two provided $\beta$ is a power of two. Neither \cite{TAOCPV2} nor \cite{HAC} describe such
an algorithm despite the fact it arises often in other algorithms. The algorithm is setup much like the lower level algorithm s\_mp\_add since
it is for all intents and purposes equivalent to the operation $b = \vert a \vert + \vert a \vert$.
Step 1 and 2 grow the input as required to accomodate the maximum number of \textbf{used} digits in the result. The initial \textbf{used} count
is set to $a.used$ at step 4. Only if there is a final carry will the \textbf{used} count require adjustment.
Step 6 is an optimization implementation of the addition loop for this specific case. That is since the two values being added together
are the same there is no need to perform two reads from the digits of $a$. Step 6.1 performs a single precision shift on the current digit $a_n$ to
obtain what will be the carry for the next iteration. Step 6.2 calculates the $n$'th digit of the result as single precision shift of $a_n$ plus
the previous carry. Recall from section 5.1 that $a_n << 1$ is equivalent to $a_n \cdot 2$. An iteration of the addition loop is finished with
forwarding the carry to the next iteration.
Step 7 takes care of any final carry by setting the $a.used$'th digit of the result to the carry and augmenting the \textbf{used} count of $b$.
Step 8 clears any leading digits of $b$ in case it originally had a larger magnitude than $a$.
\index{bn\_mp\_mul\_2.c}
\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_mul\_2.c
\vspace{-3mm}
\begin{alltt}
016
017 /* b = a*2 */
018 int
019 mp_mul_2 (mp_int * a, mp_int * b)
020 \{
021 int x, res, oldused;
022
023 /* grow to accomodate result */
024 if (b->alloc < a->used + 1) \{
025 if ((res = mp_grow (b, a->used + 1)) != MP_OKAY) \{
026 return res;
027 \}
028 \}
029
030 oldused = b->used;
031 b->used = a->used;
032
033 \{
034 register mp_digit r, rr, *tmpa, *tmpb;
035
036 /* alias for source */
037 tmpa = a->dp;
038
039 /* alias for dest */
040 tmpb = b->dp;
041
042 /* carry */
043 r = 0;
044 for (x = 0; x < a->used; x++) \{
045
046 /* get what will be the *next* carry bit from the
047 * MSB of the current digit
048 */
049 rr = *tmpa >> ((mp_digit)(DIGIT_BIT - 1));
050
051 /* now shift up this digit, add in the carry [from the previous] */
052 *tmpb++ = ((*tmpa++ << ((mp_digit)1)) | r) & MP_MASK;
053
054 /* copy the carry that would be from the source
055 * digit into the next iteration
056 */
057 r = rr;
058 \}
059
060 /* new leading digit? */
061 if (r != 0) \{
062 /* add a MSB which is always 1 at this point */
063 *tmpb = 1;
064 ++b->used;
065 \}
066
067 /* now zero any excess digits on the destination
068 * that we didn't write to
069 */
070 tmpb = b->dp + b->used;
071 for (x = b->used; x < oldused; x++) \{
072 *tmpb++ = 0;
073 \}
074 \}
075 b->sign = a->sign;
076 return MP_OKAY;
077 \}
\end{alltt}
\end{small}
This implementation is essentially an optimized implementation of s\_mp\_add for the case of doubling an input. The only noteworthy difference
is the use of the logical shift operator on line 52 to perform a single precision doubling.
\subsection{Division by Two}
A division by two can just as easily be accomplished with a logical shift right as multiplication by two can be with a logical shift left.
\newpage\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_div\_2}. \\
\textbf{Input}. One mp\_int $a$ \\
\textbf{Output}. $b = a/2$. \\
\hline \\
1. If $b.alloc < a.used$ then grow $b$ to hold $a.used$ digits. (\textit{mp\_grow}) \\
2. If the reallocation failed return(\textit{MP\_MEM}). \\
3. $oldused \leftarrow b.used$ \\
4. $b.used \leftarrow a.used$ \\
5. $r \leftarrow 0$ \\
6. for $n$ from $b.used - 1$ to $0$ do \\
\hspace{3mm}6.1 $rr \leftarrow a_n \mbox{ (mod }2\mbox{)}$\\
\hspace{3mm}6.2 $b_n \leftarrow (a_n >> 1) + (r << (lg(\beta) - 1)) \mbox{ (mod }\beta\mbox{)}$ \\
\hspace{3mm}6.3 $r \leftarrow rr$ \\
7. If $b.used < oldused - 1$ then do \\
\hspace{3mm}7.1 for $n$ from $b.used$ to $oldused - 1$ do \\
\hspace{6mm}7.1.1 $b_n \leftarrow 0$ \\
8. $b.sign \leftarrow a.sign$ \\
9. Clamp excess digits of $b$. (\textit{mp\_clamp}) \\
10. Return(\textit{MP\_OKAY}).\\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm mp\_div\_2}
\end{figure}
\textbf{Algorithm mp\_div\_2.}
This algorithm will divide an mp\_int by two using logical shifts to the right. Like mp\_mul\_2 it uses a modified low level addition
core as the basis of the algorithm. Unlike mp\_mul\_2 the shift operations work from the leading digit to the trailing digit. The algorithm
could be written to work from the trailing digit to the leading digit however, it would have to stop one short of $a.used - 1$ digits to prevent
reading past the end of the array of digits.
Essentially the loop at step 6 is similar to that of mp\_mul\_2 except the logical shifts go in the opposite direction and the carry is at the
least significant bit not the most significant bit.
\index{bn\_mp\_div\_2.c}
\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_div\_2.c
\vspace{-3mm}
\begin{alltt}
016
017 /* b = a/2 */
018 int
019 mp_div_2 (mp_int * a, mp_int * b)
020 \{
021 int x, res, oldused;
022
023 /* copy */
024 if (b->alloc < a->used) \{
025 if ((res = mp_grow (b, a->used)) != MP_OKAY) \{
026 return res;
027 \}
028 \}
029
030 oldused = b->used;
031 b->used = a->used;
032 \{
033 register mp_digit r, rr, *tmpa, *tmpb;
034
035 /* source alias */
036 tmpa = a->dp + b->used - 1;
037
038 /* dest alias */
039 tmpb = b->dp + b->used - 1;
040
041 /* carry */
042 r = 0;
043 for (x = b->used - 1; x >= 0; x--) \{
044 /* get the carry for the next iteration */
045 rr = *tmpa & 1;
046
047 /* shift the current digit, add in carry and store */
048 *tmpb-- = (*tmpa-- >> 1) | (r << (DIGIT_BIT - 1));
049
050 /* forward carry to next iteration */
051 r = rr;
052 \}
053
054 /* zero excess digits */
055 tmpb = b->dp + b->used;
056 for (x = b->used; x < oldused; x++) \{
057 *tmpb++ = 0;
058 \}
059 \}
060 b->sign = a->sign;
061 mp_clamp (b);
062 return MP_OKAY;
063 \}
\end{alltt}
\end{small}
\section{Polynomial Basis Operations}
Recall from section 5.3 that any integer can be represented as a polynomial in $x$ as $y = f(\beta)$. Such a representation is also known as
the polynomial basis \cite[pp. 48]{ROSE}. Given such a notation a multiplication or division by $x$ amounts to shifting whole digits a single
place. The need for such operations arises in several other higher level algorithms such as Barrett and Montgomery reduction, integer
division and Karatsuba multiplication.
Converting from an array of digits to polynomial basis is very simple. Consider the integer $y \equiv (a_2, a_1, a_0)_{\beta}$ and recall that
$y = \sum_{i=0}^{2} a_i \beta^i$. Simply replace $\beta$ with $x$ and the expression is in polynomial basis. For example, $f(x) = 8x + 9$ is the
polynomial basis representation for $89$ using radix ten. That is, $f(10) = 8(10) + 9 = 89$.
\subsection{Multiplication by $x$}
Given a polynomial in $x$ such as $f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_0$ multiplying by $x$ amounts to shifting the coefficients up one
degree. In this case $f(x) \cdot x = a_n x^{n+1} + a_{n-1} x^n + ... + a_0 x$. From a scalar basis point of view multiplying by $x$ is equivalent to
multiplying by the integer $\beta$.
\newpage\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_lshd}. \\
\textbf{Input}. One mp\_int $a$ and an integer $b$ \\
\textbf{Output}. $a \leftarrow a \cdot \beta^b$ (equivalent to multiplication by $x^b$). \\
\hline \\
1. If $b \le 0$ then return(\textit{MP\_OKAY}). \\
2. If $a.alloc < a.used + b$ then grow $a$ to at least $a.used + b$ digits. (\textit{mp\_grow}). \\
3. If the reallocation failed return(\textit{MP\_MEM}). \\
4. $a.used \leftarrow a.used + b$ \\
5. $i \leftarrow a.used - 1$ \\
6. $j \leftarrow a.used - 1 - b$ \\
7. for $n$ from $a.used - 1$ to $b$ do \\
\hspace{3mm}7.1 $a_{i} \leftarrow a_{j}$ \\
\hspace{3mm}7.2 $i \leftarrow i - 1$ \\
\hspace{3mm}7.3 $j \leftarrow j - 1$ \\
8. for $n$ from 0 to $b - 1$ do \\
\hspace{3mm}8.1 $a_n \leftarrow 0$ \\
9. Return(\textit{MP\_OKAY}). \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm mp\_lshd}
\end{figure}
\textbf{Algorithm mp\_lshd.}
This algorithm multiplies an mp\_int by the $b$'th power of $x$. This is equivalent to multiplying by $\beta^b$. The algorithm differs
from the other algorithms presented so far as it performs the operation in place instead storing the result in a separate location. The
motivation behind this change is due to the way this function is typically used. Algorithms such as mp\_add store the result in an optionally
different third mp\_int because the original inputs are often still required. Algorithm mp\_lshd (\textit{and similarly algorithm mp\_rshd}) is
typically used on values where the original value is no longer required. The algorithm will return success immediately if
$b \le 0$ since the rest of algorithm is only valid when $b > 0$.
First the destination $a$ is grown as required to accomodate the result. The counters $i$ and $j$ are used to form a \textit{sliding window} over
the digits of $a$ of length $b$. The head of the sliding window is at $i$ (\textit{the leading digit}) and the tail at $j$ (\textit{the trailing digit}).
The loop on step 7 copies the digit from the tail to the head. In each iteration the window is moved down one digit. The last loop on
step 8 sets the lower $b$ digits to zero.
\newpage
\begin{center}
\begin{figure}[here]
\includegraphics{pics/sliding_window.ps}
\caption{Sliding Window Movement}
\end{figure}
\end{center}
\index{bn\_mp\_lshd.c}
\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_lshd.c
\vspace{-3mm}
\begin{alltt}
016
017 /* shift left a certain amount of digits */
018 int
019 mp_lshd (mp_int * a, int b)
020 \{
021 int x, res;
022
023 /* if its less than zero return */
024 if (b <= 0) \{
025 return MP_OKAY;
026 \}
027
028 /* grow to fit the new digits */
029 if (a->alloc < a->used + b) \{
030 if ((res = mp_grow (a, a->used + b)) != MP_OKAY) \{
031 return res;
032 \}
033 \}
034
035 \{
036 register mp_digit *top, *bottom;
037
038 /* increment the used by the shift amount then copy upwards */
039 a->used += b;
040
041 /* top */
042 top = a->dp + a->used - 1;
043
044 /* base */
045 bottom = a->dp + a->used - 1 - b;
046
047 /* much like mp_rshd this is implemented using a sliding window
048 * except the window goes the otherway around. Copying from
049 * the bottom to the top. see bn_mp_rshd.c for more info.
050 */
051 for (x = a->used - 1; x >= b; x--) \{
052 *top-- = *bottom--;
053 \}
054
055 /* zero the lower digits */
056 top = a->dp;
057 for (x = 0; x < b; x++) \{
058 *top++ = 0;
059 \}
060 \}
061 return MP_OKAY;
062 \}
\end{alltt}
\end{small}
The if statement on line 24 ensures that the $b$ variable is greater than zero. The \textbf{used} count is incremented by $b$ before
the copy loop begins. This elminates the need for an additional variable in the for loop. The variable $top$ on line 42 is an alias
for the leading digit while $bottom$ on line 45 is an alias for the trailing edge. The aliases form a window of exactly $b$ digits
over the input.
\subsection{Division by $x$}
Division by powers of $x$ is easily achieved by shifting the digits right and removing any that will end up to the right of the zero'th digit.
\newpage\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_rshd}. \\
\textbf{Input}. One mp\_int $a$ and an integer $b$ \\
\textbf{Output}. $a \leftarrow a / \beta^b$ (Divide by $x^b$). \\
\hline \\
1. If $b \le 0$ then return. \\
2. If $a.used \le b$ then do \\
\hspace{3mm}2.1 Zero $a$. (\textit{mp\_zero}). \\
\hspace{3mm}2.2 Return. \\
3. $i \leftarrow 0$ \\
4. $j \leftarrow b$ \\
5. for $n$ from 0 to $a.used - b - 1$ do \\
\hspace{3mm}5.1 $a_i \leftarrow a_j$ \\
\hspace{3mm}5.2 $i \leftarrow i + 1$ \\
\hspace{3mm}5.3 $j \leftarrow j + 1$ \\
6. for $n$ from $a.used - b$ to $a.used - 1$ do \\
\hspace{3mm}6.1 $a_n \leftarrow 0$ \\
7. $a.used \leftarrow a.used - b$ \\
8. Return. \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm mp\_rshd}
\end{figure}
\textbf{Algorithm mp\_rshd.}
This algorithm divides the input in place by the $b$'th power of $x$. It is analogous to dividing by a $\beta^b$ but much quicker since
it does not require single precision division. This algorithm does not actually return an error code as it cannot fail.
If the input $b$ is less than one the algorithm quickly returns without performing any work. If the \textbf{used} count is less than or equal
to the shift count $b$ then it will simply zero the input and return.
After the trivial cases of inputs have been handled the sliding window is setup. Much like the case of algorithm mp\_lshd a sliding window that
is $b$ digits wide is used to copy the digits. Unlike mp\_lshd the window slides in the opposite direction from the trailing to the leading digit.
Also the digits are copied from the leading to the trailing edge.
Once the window copy is complete the upper digits must be zeroed and the \textbf{used} count decremented.
\index{bn\_mp\_rshd.c}
\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_rshd.c
\vspace{-3mm}
\begin{alltt}
016
017 /* shift right a certain amount of digits */
018 void
019 mp_rshd (mp_int * a, int b)
020 \{
021 int x;
022
023 /* if b <= 0 then ignore it */
024 if (b <= 0) \{
025 return;
026 \}
027
028 /* if b > used then simply zero it and return */
029 if (a->used <= b) \{
030 mp_zero (a);
031 return;
032 \}
033
034 \{
035 register mp_digit *bottom, *top;
036
037 /* shift the digits down */
038
039 /* bottom */
040 bottom = a->dp;
041
042 /* top [offset into digits] */
043 top = a->dp + b;
044
045 /* this is implemented as a sliding window where
046 * the window is b-digits long and digits from
047 * the top of the window are copied to the bottom
048 *
049 * e.g.
050
051 b-2 | b-1 | b0 | b1 | b2 | ... | bb | ---->
052 /\symbol{92} | ---->
053 \symbol{92}-------------------/ ---->
054 */
055 for (x = 0; x < (a->used - b); x++) \{
056 *bottom++ = *top++;
057 \}
058
059 /* zero the top digits */
060 for (; x < a->used; x++) \{
061 *bottom++ = 0;
062 \}
063 \}
064
065 /* remove excess digits */
066 a->used -= b;
067 \}
\end{alltt}
\end{small}
The only noteworthy element of this routine is the lack of a return type.
-- Will update later to give it a return type...Tom
\section{Powers of Two}
Now that algorithms for moving single bits as well as whole digits exist algorithms for moving the ``in between'' distances are required. For
example, to quickly multiply by $2^k$ for any $k$ without using a full multiplier algorithm would prove useful. Instead of performing single
shifts $k$ times to achieve a multiplication by $2^{\pm k}$ a mixture of whole digit shifting and partial digit shifting is employed.
\subsection{Multiplication by Power of Two}
\newpage\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_mul\_2d}. \\
\textbf{Input}. One mp\_int $a$ and an integer $b$ \\
\textbf{Output}. $c \leftarrow a \cdot 2^b$. \\
\hline \\
1. $c \leftarrow a$. (\textit{mp\_copy}) \\
2. If $c.alloc < c.used + \lfloor b / lg(\beta) \rfloor + 2$ then grow $c$ accordingly. \\
3. If the reallocation failed return(\textit{MP\_MEM}). \\
4. If $b \ge lg(\beta)$ then \\
\hspace{3mm}4.1 $c \leftarrow c \cdot \beta^{\lfloor b / lg(\beta) \rfloor}$ (\textit{mp\_lshd}). \\
\hspace{3mm}4.2 If step 4.1 failed return(\textit{MP\_MEM}). \\
5. $d \leftarrow b \mbox{ (mod }lg(\beta)\mbox{)}$ \\
6. If $d \ne 0$ then do \\
\hspace{3mm}6.1 $mask \leftarrow 2^d$ \\
\hspace{3mm}6.2 $r \leftarrow 0$ \\
\hspace{3mm}6.3 for $n$ from $0$ to $c.used - 1$ do \\
\hspace{6mm}6.3.1 $rr \leftarrow c_n >> (lg(\beta) - d) \mbox{ (mod }mask\mbox{)}$ \\
\hspace{6mm}6.3.2 $c_n \leftarrow (c_n << d) + r \mbox{ (mod }\beta\mbox{)}$ \\
\hspace{6mm}6.3.3 $r \leftarrow rr$ \\
\hspace{3mm}6.4 If $r > 0$ then do \\
\hspace{6mm}6.4.1 $c_{c.used} \leftarrow r$ \\
\hspace{6mm}6.4.2 $c.used \leftarrow c.used + 1$ \\
7. Return(\textit{MP\_OKAY}). \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm mp\_mul\_2d}
\end{figure}
\textbf{Algorithm mp\_mul\_2d.}
This algorithm multiplies $a$ by $2^b$ and stores the result in $c$. The algorithm uses algorithm mp\_lshd and a derivative of algorithm mp\_mul\_2 to
quickly compute the product.
First the algorithm will multiply $a$ by $x^{\lfloor b / lg(\beta) \rfloor}$ which will ensure that the remainder multiplicand is less than
$\beta$. For example, if $b = 37$ and $\beta = 2^{28}$ then this step will multiply by $x$ leaving a multiplication by $2^{37 - 28} = 2^{9}$
left.
After the digits have been shifted appropriately at most $lg(\beta) - 1$ shifts are left to perform. Step 5 calculates the number of remaining shifts
required. If it is non-zero a modified shift loop is used to calculate the remaining product.
Essentially the loop is a generic version of algorith mp\_mul2 designed to handle any shift count in the range $1 \le x < lg(\beta)$. The $mask$
variable is used to extract the upper $d$ bits to form the carry for the next iteration.
This algorithm is loosely measured as a $O(2n)$ algorithm which means that if the input is $n$-digits that it takes $2n$ ``time'' to
complete. It is possible to optimize this algorithm down to a $O(n)$ algorithm at a cost of making the algorithm slightly harder to follow.
\index{bn\_mp\_mul\_2d.c}
\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_mul\_2d.c
\vspace{-3mm}
\begin{alltt}
016
017 /* NOTE: This routine requires updating. For instance the c->used = c->all
oc bit
018 is wrong. We should just shift c->used digits then set the carry as c->d
p[c->used] = carry
019
020 To be fixed for LTM 0.18
021 */
022
023 /* shift left by a certain bit count */
024 int
025 mp_mul_2d (mp_int * a, int b, mp_int * c)
026 \{
027 mp_digit d;
028 int res;
029
030 /* copy */
031 if (a != c) \{
032 if ((res = mp_copy (a, c)) != MP_OKAY) \{
033 return res;
034 \}
035 \}
036
037 if (c->alloc < (int)(c->used + b/DIGIT_BIT + 2)) \{
038 if ((res = mp_grow (c, c->used + b / DIGIT_BIT + 2)) != MP_OKAY) \{
039 return res;
040 \}
041 \}
042
043 /* shift by as many digits in the bit count */
044 if (b >= (int)DIGIT_BIT) \{
045 if ((res = mp_lshd (c, b / DIGIT_BIT)) != MP_OKAY) \{
046 return res;
047 \}
048 \}
049 c->used = c->alloc;
050
051 /* shift any bit count < DIGIT_BIT */
052 d = (mp_digit) (b % DIGIT_BIT);
053 if (d != 0) \{
054 register mp_digit *tmpc, mask, r, rr;
055 register int x;
056
057 /* bitmask for carries */
058 mask = (((mp_digit)1) << d) - 1;
059
060 /* alias */
061 tmpc = c->dp;
062
063 /* carry */
064 r = 0;
065 for (x = 0; x < c->used; x++) \{
066 /* get the higher bits of the current word */
067 rr = (*tmpc >> (DIGIT_BIT - d)) & mask;
068
069 /* shift the current word and OR in the carry */
070 *tmpc = ((*tmpc << d) | r) & MP_MASK;
071 ++tmpc;
072
073 /* set the carry to the carry bits of the current word */
074 r = rr;
075 \}
076 \}
077 mp_clamp (c);
078 return MP_OKAY;
079 \}
\end{alltt}
\end{small}
Notes to be revised when code is updated. -- Tom
\subsection{Division by Power of Two}
\newpage\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_div\_2d}. \\
\textbf{Input}. One mp\_int $a$ and an integer $b$ \\
\textbf{Output}. $c \leftarrow \lfloor a / 2^b \rfloor, d \leftarrow a \mbox{ (mod }2^b\mbox{)}$. \\
\hline \\
1. If $b \le 0$ then do \\
\hspace{3mm}1.1 $c \leftarrow a$ (\textit{mp\_copy}) \\
\hspace{3mm}1.2 $d \leftarrow 0$ (\textit{mp\_zero}) \\
\hspace{3mm}1.3 Return(\textit{MP\_OKAY}). \\
2. $c \leftarrow a$ \\
3. $d \leftarrow a \mbox{ (mod }2^b\mbox{)}$ (\textit{mp\_mod\_2d}) \\
4. If $b \ge lg(\beta)$ then do \\
\hspace{3mm}4.1 $c \leftarrow \lfloor c/\beta^{\lfloor b/lg(\beta) \rfloor} \rfloor$ (\textit{mp\_rshd}). \\
5. $k \leftarrow b \mbox{ (mod }lg(\beta)\mbox{)}$ \\
6. If $k \ne 0$ then do \\
\hspace{3mm}6.1 $mask \leftarrow 2^k$ \\
\hspace{3mm}6.2 $r \leftarrow 0$ \\
\hspace{3mm}6.3 for $n$ from $c.used - 1$ to $0$ do \\
\hspace{6mm}6.3.1 $rr \leftarrow c_n \mbox{ (mod }mask\mbox{)}$ \\
\hspace{6mm}6.3.2 $c_n \leftarrow (c_n >> k) + (r << (lg(\beta) - k))$ \\
\hspace{6mm}6.3.3 $r \leftarrow rr$ \\
7. Clamp excess digits of $c$. (\textit{mp\_clamp}) \\
8. Return(\textit{MP\_OKAY}). \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm mp\_div\_2d}
\end{figure}
\textbf{Algorithm mp\_div\_2d.}
This algorithm will divide an input $a$ by $2^b$ and produce the quotient and remainder. The algorithm is designed much like algorithm
mp\_mul\_2d by first using whole digit shifts then single precision shifts. This algorithm will also produce the remainder of the division
by using algorithm mp\_mod\_2d.
\index{bn\_mp\_div\_2d.c}
\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_div\_2d.c
\vspace{-3mm}
\begin{alltt}
016
017 /* shift right by a certain bit count (store quotient in c, optional remaind
er in d) */
018 int
019 mp_div_2d (mp_int * a, int b, mp_int * c, mp_int * d)
020 \{
021 mp_digit D, r, rr;
022 int x, res;
023 mp_int t;
024
025
026 /* if the shift count is <= 0 then we do no work */
027 if (b <= 0) \{
028 res = mp_copy (a, c);
029 if (d != NULL) \{
030 mp_zero (d);
031 \}
032 return res;
033 \}
034
035 if ((res = mp_init (&t)) != MP_OKAY) \{
036 return res;
037 \}
038
039 /* get the remainder */
040 if (d != NULL) \{
041 if ((res = mp_mod_2d (a, b, &t)) != MP_OKAY) \{
042 mp_clear (&t);
043 return res;
044 \}
045 \}
046
047 /* copy */
048 if ((res = mp_copy (a, c)) != MP_OKAY) \{
049 mp_clear (&t);
050 return res;
051 \}
052
053 /* shift by as many digits in the bit count */
054 if (b >= (int)DIGIT_BIT) \{
055 mp_rshd (c, b / DIGIT_BIT);
056 \}
057
058 /* shift any bit count < DIGIT_BIT */
059 D = (mp_digit) (b % DIGIT_BIT);
060 if (D != 0) \{
061 register mp_digit *tmpc, mask;
062
063 /* mask */
064 mask = (((mp_digit)1) << D) - 1;
065
066 /* alias */
067 tmpc = c->dp + (c->used - 1);
068
069 /* carry */
070 r = 0;
071 for (x = c->used - 1; x >= 0; x--) \{
072 /* get the lower bits of this word in a temp */
073 rr = *tmpc & mask;
074
075 /* shift the current word and mix in the carry bits from the previous
word */
076 *tmpc = (*tmpc >> D) | (r << (DIGIT_BIT - D));
077 --tmpc;
078
079 /* set the carry to the carry bits of the current word found above */
080 r = rr;
081 \}
082 \}
083 mp_clamp (c);
084 if (d != NULL) \{
085 mp_exch (&t, d);
086 \}
087 mp_clear (&t);
088 return MP_OKAY;
089 \}
\end{alltt}
\end{small}
The implementation of algorithm mp\_div\_2d is slightly different than the algorithm specifies. The remainder $d$ may be optionally
ignored by passing \textbf{NULL} as the pointer to the mp\_int variable. The temporary mp\_int variable $t$ is used to hold the
result of the remainder operation until the end. This allows $d$ and $a$ to represent the same mp\_int without modifying $a$ before
the quotient is obtained.
The remainder of the source code is essentially the same as the source code for mp\_mul\_2d. (-- Fix this paragraph up later, Tom).
\subsection{Remainder of Division by Power of Two}
The last algorithm in the series of polynomial basis power of two algorithms is calculating the remainder of division by $2^b$. This
algorithm benefits from the fact that in twos complement arithmetic $a \mbox{ (mod }2^b\mbox{)}$ is the same as $a$ AND $2^b - 1$.
\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_mod\_2d}. \\
\textbf{Input}. One mp\_int $a$ and an integer $b$ \\
\textbf{Output}. $c \leftarrow a \mbox{ (mod }2^b\mbox{)}$. \\
\hline \\
1. If $b \le 0$ then do \\
\hspace{3mm}1.1 $c \leftarrow 0$ (\textit{mp\_zero}) \\
\hspace{3mm}1.2 Return(\textit{MP\_OKAY}). \\
2. If $b > a.used \cdot lg(\beta)$ then do \\
\hspace{3mm}2.1 $c \leftarrow a$ (\textit{mp\_copy}) \\
\hspace{3mm}2.2 Return the result of step 2.1. \\
3. $c \leftarrow a$ \\
4. If step 3 failed return(\textit{MP\_MEM}). \\
5. for $n$ from $\lceil b / lg(\beta) \rceil$ to $c.used$ do \\
\hspace{3mm}5.1 $c_n \leftarrow 0$ \\
6. $k \leftarrow b \mbox{ (mod }lg(\beta)\mbox{)}$ \\
7. $c_{\lfloor b / lg(\beta) \rfloor} \leftarrow c_{\lfloor b / lg(\beta) \rfloor} \mbox{ (mod }2^{k}\mbox{)}$. \\
8. Clamp excess digits of $c$. (\textit{mp\_clamp}) \\
9. Return(\textit{MP\_OKAY}). \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm mp\_mod\_2d}
\end{figure}
\textbf{Algorithm mp\_mod\_2d.}
This algorithm will quickly calculate the value of $a \mbox{ (mod }2^b\mbox{)}$. First if $b$ is less than or equal to zero the
result is set to zero. If $b$ is greater than the number of bits in $a$ then it simply copies $a$ to $c$ and returns. Otherwise, $a$
is copied to $b$, leading digits are removed and the remaining leading digit is trimed to the exact bit count.
\index{bn\_mp\_mod\_2d.c}
\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_mod\_2d.c
\vspace{-3mm}
\begin{alltt}
016
017 /* calc a value mod 2\b */
018 int
019 mp_mod_2d (mp_int * a, int b, mp_int * c)
020 \{
021 int x, res;
022
023
024 /* if b is <= 0 then zero the int */
025 if (b <= 0) \{
026 mp_zero (c);
027 return MP_OKAY;
028 \}
029
030 /* if the modulus is larger than the value than return */
031 if (b > (int) (a->used * DIGIT_BIT)) \{
032 res = mp_copy (a, c);
033 return res;
034 \}
035
036 /* copy */
037 if ((res = mp_copy (a, c)) != MP_OKAY) \{
038 return res;
039 \}
040
041 /* zero digits above the last digit of the modulus */
042 for (x = (b / DIGIT_BIT) + ((b % DIGIT_BIT) == 0 ? 0 : 1); x < c->used; x+
+) \{
043 c->dp[x] = 0;
044 \}
045 /* clear the digit that is not completely outside/inside the modulus */
046 c->dp[b / DIGIT_BIT] &=
047 (mp_digit) ((((mp_digit) 1) << (((mp_digit) b) % DIGIT_BIT)) - ((mp_digi
t) 1));
048 mp_clamp (c);
049 return MP_OKAY;
050 \}
\end{alltt}
\end{small}
-- Add comments later, Tom.
\section*{Exercises}
\begin{tabular}{cl}
$\left [ 3 \right ] $ & Devise an algorithm that performs $a \cdot 2^b$ for generic values of $b$ \\
& in $O(n)$ time. \\
&\\
$\left [ 3 \right ] $ & Devise an efficient algorithm to multiply by small low hamming \\
& weight values such as $3$, $5$ and $9$. Extend it to handle all values \\
& upto $64$ with a hamming weight less than three. \\
&\\
$\left [ 2 \right ] $ & Modify the preceding algorithm to handle values of the form \\
& $2^k - 1$ as well. \\
&\\
$\left [ 3 \right ] $ & Using only algorithms mp\_mul\_2, mp\_div\_2 and mp\_add create an \\
& algorithm to multiply two integers in roughly $O(2n^2)$ time for \\
& any $n$-bit input. Note that the time of addition is ignored in the \\
& calculation. \\
& \\
$\left [ 5 \right ] $ & Improve the previous algorithm to have a working time of at most \\
& $O \left (2^{(k-1)}n + \left ({2n^2 \over k} \right ) \right )$ for an appropriate choice of $k$. Again ignore \\
& the cost of addition. \\
& \\
$\left [ 2 \right ] $ & Devise a chart to find optimal values of $k$ for the previous problem \\
& for $n = 64 \ldots 1024$ in steps of $64$. \\
& \\
$\left [ 2 \right ] $ & Using only algorithms mp\_abs and mp\_sub devise another method for \\
& calculating the result of a signed comparison. \\
&
\end{tabular}
\chapter{Multiplication and Squaring}
\section{The Multipliers}
For most number theoretic systems including public key cryptographic algorithms the set of algorithms collectively known as the
``multipliers'' form the most important subset of algorithms of any multiple precision integer package. The set of multipliers
include multiplication, squaring and modular reduction algorithms.
The importance of these algorithms is driven by the fact that most popular public key algorithms are based on modular
exponentiation. That is performing $d \equiv a^b \mbox{ (mod }c\mbox{)}$ for some arbitrary choice of $a$, $b$, $c$ and $d$. Roughly
speaking the a modular exponentiation will spend about 40\% of the time in modular reductions, 35\% of the time in squaring and 25\% of
the time in multiplications. Only a small trivial amount of time is spent on lower level algorithms such as mp\_clamp, mp\_init, etc...
This chapter will discuss only two of the multipliers algorithms, multiplication and squaring. As will be discussed shortly very efficient
multiplier algorithms are not always straightforward and deserve a lot of attention.
\section{Multiplication}
\subsection{The Baseline Multiplication}
\index{baseline multiplication}
Computing the product of two integers in software can be achieved using a trivial adaptation of the standard $O(n^2)$ long-hand multiplication
algorithm school children are taught. The ``baseline multiplication'' algorithm is designed to act as the ``catch-all'' algorithm only called
when the faster algorithms cannot be used. This algorithm does not use any particularly interesting optimizations.
The first algorithm to review is the unsigned multiplication algorithm from which a signed multiplication algorithm can be established. One important
facet of this algorithm to note is that it has been modified to only produce a certain amount of output digits as resolution. Recall that for
a $n$ and $m$ digit input the product will be at most $n + m + 1$ digits. Therefore, this algorithm can be reduced to a full multiplier by
telling it to produce $n + m + 1$ digits.
Recall from sub-section 5.2.2 the definition of $\gamma$ as the number of bits in the type \textbf{mp\_digit}. We shall now extend this variable set to
include $\alpha$ which shall represent the number of bits in the type \textbf{mp\_word}. This implies that $2^{\alpha} > 2 \cdot \beta^2$. The
constant $\delta = 2^{\alpha - 2lg(\beta)}$ will represent the maximal weight of any column in a product (\textit{see sub-section 6.2.2 for more information}).
\newpage\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{s\_mp\_mul\_digs}. \\
\textbf{Input}. mp\_int $a$, mp\_int $b$ and an integer $digs$ \\
\textbf{Output}. $c \leftarrow \vert a \vert \cdot \vert b \vert \mbox{ (mod }\beta^{digs}\mbox{)}$. \\
\hline \\
1. If min$(a.used, b.used) < \delta$ then do \\
\hspace{3mm}1.1 Calculate $c = \vert a \vert \cdot \vert b \vert$ by the Comba method. \\
\hspace{3mm}1.2 Return the result of step 1.1 \\
\\
Allocate and initialize a temporary mp\_int. \\
2. Init $t$ to be of size $digs$ \\
3. If step 2 failed return(\textit{MP\_MEM}). \\
4. $t.used \leftarrow digs$ \\
\\
Compute the product. \\
5. for $ix$ from $0$ to $a.used - 1$ do \\
\hspace{3mm}5.1 $u \leftarrow 0$ \\
\hspace{3mm}5.2 $pb \leftarrow \mbox{min}(b.used, digs - ix)$ \\
\hspace{3mm}5.3 If $pb < 1$ then goto step 6. \\
\hspace{3mm}5.4 for $iy$ from $0$ to $pb - 1$ do \\
\hspace{6mm}5.4.1 $\hat r \leftarrow t_{iy + ix} + a_{ix} \cdot b_{iy} + u$ \\
\hspace{6mm}5.4.2 $t_{iy + ix} \leftarrow \hat r \mbox{ (mod }\beta\mbox{)}$ \\
\hspace{6mm}5.4.3 $u \leftarrow \lfloor \hat r / \beta \rfloor$ \\
\hspace{3mm}5.5 if $ix + iy < digs$ then do \\
\hspace{6mm}5.5.1 $t_{ix + pb} \leftarrow u$ \\
6. Clamp excess digits of $t$. \\
7. Swap $c$ with $t$ \\
8. Clear $t$ \\
9. Return(\textit{MP\_OKAY}). \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm s\_mp\_mul\_digs}
\end{figure}
\textbf{Algorithm s\_mp\_mul\_digs.}
This algorithm computes the unsigned product of two inputs $a$ and $b$ limited to an output precision of $digs$ digits. While it may seem
a bit awkward to modify the function from its simple $O(n^2)$ description the usefulness of partial multipliers will arise in a future
algorithm. The algorithm is loosely based on algorithm 14.12 from \cite[pp. 595]{HAC} and is similar to Algorithm M \cite[pp. 268]{TAOCPV2}. The
algorithm differs from those cited references because it can produce a variable output precision regardless of the precision of the inputs.
The first thing this algorithm checks for is whether a Comba multiplier can be used instead. That is if the minimal digit count of either
input is less than $\delta$ the Comba method is used. After the Comba method is ruled out the baseline algorithm begins. A
temporary mp\_int variable $t$ is used to hold the intermediate result of the product. This allows the algorithm to be used to
compute products when either $a = c$ or $b = c$ without overwriting the inputs.
All of step 5 is the infamous $O(n^2)$ multiplication loop slightly modified to only produce upto $digs$ digits of output. The $pb$ variable
is given the count of digits to read from $b$ inside the nested loop. If $pb < 0$ then no more output digits can be produced and the algorithm
will exit the loop. The best way to think of the loops are as a series of $pb \times 1$ multiplication. That is, in each pass of the
innermost loop $a_{ix}$ is multiplied against $b$ and the result is added (\textit{with an appropriate shift}) to $t$.
For example, consider multiplying $576$ by $241$. That is equivalent to computing $10^0(1)(576) + 10^1(4)(576) + 10^2(2)(576)$ which is best
visualized as the following table.
\begin{figure}[here]
\begin{center}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline && & 5 & 7 & 6 & \\
\hline $\times$&& & 2 & 4 & 1 & \\
\hline &&&&&&\\
&& & 5 & 7 & 6 & $10^0(1)(576)$ \\
&2 & 3 & 0 & 4 & 0 & $10^1(4)(576)$ \\
1 & 1 & 5 & 2 & 0 & 0 & $10^2(2)(576)$ \\
\hline
\end{tabular}
\end{center}
\caption{Long-Hand Multiplication Diagram}
\end{figure}
Each row of the product is added to the result after being shifted to the left (\textit{multiplied by a power of the radix}) by the appropriate
count. That is in pass $ix$ of the inner loop the product is added starting at the $ix$'th digit of the reult.
Step 5.4.1 introduces the hat symbol (\textit{e.g. $\hat x$}) which represents a double precision variable. The multiplication on that step
is assumed to be a double wide output single precision multiplication. That is, two single precision variables are multiplied to produce a
double precision result. The step is somewhat optimized from a long-hand multiplication algorithm because the carry from the addition in step
5.4.1 is forwarded through the nested loop. If the carry was ignored it would overflow the single precision digit $t_{ix+iy}$ and the result
would be lost.
At step 5.5 the nested loop is finished and any carry that was left over should be forwarded. That is provided $ix + iy < digs$ otherwise the
carry is ignored since it will not be part of the result anyways.
\index{bn\_s\_mp\_mul\_digs.c}
\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_s\_mp\_mul\_digs.c
\vspace{-3mm}
\begin{alltt}
016
017 /* multiplies |a| * |b| and only computes upto digs digits of result
018 * HAC pp. 595, Algorithm 14.12 Modified so you can control how
019 * many digits of output are created.
020 */
021 int
022 s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
023 \{
024 mp_int t;
025 int res, pa, pb, ix, iy;
026 mp_digit u;
027 mp_word r;
028 mp_digit tmpx, *tmpt, *tmpy;
029
030 /* can we use the fast multiplier? */
031 if (((digs) < MP_WARRAY) &&
032 MIN (a->used, b->used) <
033 (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) \{
034 return fast_s_mp_mul_digs (a, b, c, digs);
035 \}
036
037 if ((res = mp_init_size (&t, digs)) != MP_OKAY) \{
038 return res;
039 \}
040 t.used = digs;
041
042 /* compute the digits of the product directly */
043 pa = a->used;
044 for (ix = 0; ix < pa; ix++) \{
045 /* set the carry to zero */
046 u = 0;
047
048 /* limit ourselves to making digs digits of output */
049 pb = MIN (b->used, digs - ix);
050
051 /* setup some aliases */
052 /* copy of the digit from a used within the nested loop */
053 tmpx = a->dp[ix];
054
055 /* an alias for the destination shifted ix places */
056 tmpt = t.dp + ix;
057
058 /* an alias for the digits of b */
059 tmpy = b->dp;
060
061 /* compute the columns of the output and propagate the carry */
062 for (iy = 0; iy < pb; iy++) \{
063 /* compute the column as a mp_word */
064 r = ((mp_word) *tmpt) +
065 ((mp_word) tmpx) * ((mp_word) * tmpy++) +
066 ((mp_word) u);
067
068 /* the new column is the lower part of the result */
069 *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
070
071 /* get the carry word from the result */
072 u = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
073 \}
074 /* set carry if it is placed below digs */
075 if (ix + iy < digs) \{
076 *tmpt = u;
077 \}
078 \}
079
080 mp_clamp (&t);
081 mp_exch (&t, c);
082
083 mp_clear (&t);
084 return MP_OKAY;
085 \}
\end{alltt}
\end{small}
Lines 31 to 35 determine if the Comba method can be used first. The conditions for using the Comba routine are that min$(a.used, b.used) < \delta$ and
the number of digits of output is less than \textbf{MP\_WARRAY}. This new constant is used to control the stack usage in the Comba routines. By
default it is set to $\delta$ but can be reduced when memory is at a premium.
Of particular importance is the calculation of the $ix+iy$'th column on lines 64, 65 and 66. Note how all of the
variables are cast to the type \textbf{mp\_word}. That is to ensure that double precision operations are used instead of single precision. The
multiplication on line 65 is a bit of a GCC optimization. On the outset it looks like the compiler will have to use a double precision
multiplication to produce the result required. Such an operation would be horribly slow on most processors and drag this to a crawl. However,
GCC is smart enough to realize that double wide output single precision multipliers can be used. For example, the instruction ``MUL'' on the
x86 processor can multiply two 32-bit values and produce a 64-bit result.
\subsection{Faster Multiplication by the ``Comba'' Method}
One of the huge drawbacks of the ``baseline'' algorithms is that at the $O(n^2)$ level the carry must be computed and propagated upwards. This
makes the nested loop very sequential and hard to unroll and implement in parallel. The ``Comba'' method is named after little known
(\textit{in cryptographic venues}) Paul G. Comba where in \cite{COMBA} a method of implementing fast multipliers that do not require nested
carry fixup operations was presented. As an interesting aside it seems that Paul Barrett describes a similar technique in
his 1986 paper \cite{BARRETT} which was written five years before \cite{COMBA}.
At the heart of algorithm is once again the long-hand algorithm for multiplication. Except in this case a slight twist is placed on how
the columns of the result are produced. In the standard long-hand algorithm rows of products are produced then added together to form the
final result. In the baseline algorithm the columns are added together to get the result instantaneously.
In the Comba algorithm however, the columns of the result are produced entirely independently of each other. That is at the $O(n^2)$ level a
simple multiplication and addition step is performed. Or more succintly that
\begin{equation}
x_n = \sum_{i+j = n} a_ib_j
\end{equation}
Where $x_n$ is the $n'th$ column of the output vector. To see how this works consider once again multiplying $576$ by $241$.
\begin{figure}[here]
\begin{small}
\begin{center}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & 5 & 7 & 6 & First Input\\
\hline $\times$ & & 2 & 4 & 1 & Second Input\\
\hline & & $1 \cdot 5 = 5$ & $1 \cdot 7 = 7$ & $1 \cdot 6 = 6$ & First pass \\
& $4 \cdot 5 = 20$ & $4 \cdot 7+5=33$ & $4 \cdot 6+7=31$ & 6 & Second pass \\
$2 \cdot 5 = 10$ & $2 \cdot 7 + 20 = 34$ & $2 \cdot 6+33=45$ & 31 & 6 & Third pass \\
\hline 10 & 34 & 45 & 31 & 6 & Final Result \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Comba Multiplication Diagram}
\end{figure}
At this point the vector $x = \left < 10, 34, 45, 31, 6 \right >$ is the result of the first step of the Comba multipler.
Now the columns must be fixed by propagating the carry upwards. The following trivial algorithm will accomplish this.
\begin{enumerate}
\item for $n$ from 0 to $k - 1$ do
\item \hspace{3mm} $x_{n+1} \leftarrow x_{n+1} + \lfloor x_{n}/\beta \rfloor$
\item \hspace{3mm} $x_{n} \leftarrow x_{n} \mbox{ (mod }\beta\mbox{)}$
\end{enumerate}
With that algorithm and $k = 5$ and $\beta = 10$ the following vector is produced $y = \left < 1, 3, 8, 8, 1, 6 \right >$. In this case
$241 \cdot 576$ is in fact $138816$ and the procedure succeeded. If the algorithm is correct and as will be demonstrated shortly more
efficient than the baseline algorithm why not simply always use this algorithm?
\subsubsection{Column Weight.}
At the nested $O(n^2)$ level the Comba method adds the product of two single precision variables to a each column of the output
independently. A serious obstacle is if the carry is lost due to lack of precision before the algorithm has a chance to fix
the carries. For example, in the multiplication of two three-digit numbers the third column of output will be the sum of
three single precision multiplications. If the precision of the accumulator for the output digits is less then $3 \cdot (\beta - 1)^2$ then
an overflow can occur and the carry information will be lost. For any $m$ and $n$ digit input the maximal weight of any column is
min$(m, n)$ which is fairly obvious.
The maximal number of terms in any column of a product is known as the ``column weight'' and strictly governs when the algorithm can be used. Recall
from earlier that a double precision type has $\alpha$ bits of resolution and a single precision digit has $lg(\beta)$ bits of precision. Given these
two quantities we may not violate the following
\begin{equation}
k \cdot \left (\beta - 1 \right )^2 < 2^{\alpha}
\end{equation}
Which reduces to
\begin{equation}
k \cdot \left ( \beta^2 - 2\beta + 1 \right ) < 2^{\alpha}
\end{equation}
Let $\rho = lg(\beta)$ represent the number of bits in a single precision digit. By further re-arrangement of the equation the final solution is
found.
\begin{equation}
k \cdot \left (2^{2\rho} - 2^{\rho + 1} + 1 \right ) < 2^{\alpha}
\end{equation}
The defaults for LibTomMath are $\beta = 2^{28}, \alpha = 2^{64}$ which simplies to $72057593501057025 \cdot k < 2^{64}$ which when divided out
result in $k < 257$. This implies that the smallest input may not have more than $256$ digits if the Comba method is to be used in
this configuration. This is quite satisfactory for most applications since $256$ digits would be allow for numbers in the range of $2^{7168}$
which is much larger than the typical $2^{100}$ to $2^{4000}$ range most public key cryptographic algorithms use.
\newpage\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{fast\_s\_mp\_mul\_digs}. \\
\textbf{Input}. mp\_int $a$, mp\_int $b$ and an integer $digs$ \\
\textbf{Output}. $c \leftarrow \vert a \vert \cdot \vert b \vert \mbox{ (mod }\beta^{digs}\mbox{)}$. \\
\hline \\
Place an array of \textbf{MP\_WARRAY} double precision digits named $\hat W$ on the stack. \\
1. If $c.alloc < digs$ then grow $c$ to $digs$ digits. (\textit{mp\_grow}) \\
2. If step 1 failed return(\textit{MP\_MEM}).\\
\\
Zero the temporary array $\hat W$. \\
3. for $n$ from $0$ to $digs - 1$ do \\
\hspace{3mm}3.1 $\hat W_n \leftarrow 0$ \\
\\
Compute the columns. \\
4. for $ix$ from $0$ to $a.used - 1$ do \\
\hspace{3mm}4.1 $pb \leftarrow \mbox{min}(b.used, digs - ix)$ \\
\hspace{3mm}4.2 If $pb < 1$ then goto step 5. \\
\hspace{3mm}4.3 for $iy$ from $0$ to $pb - 1$ do \\
\hspace{6mm}4.3.1 $\hat W_{ix+iy} \leftarrow \hat W_{ix+iy} + a_{ix}b_{iy}$ \\
\\
Propagate the carries upwards. \\
5. $oldused \leftarrow c.used$ \\
6. $c.used \leftarrow digs$ \\
7. If $digs > 1$ then do \\
\hspace{3mm}7.1. for $ix$ from $1$ to $digs - 1$ do \\
\hspace{6mm}7.1.1 $\hat W_{ix} \leftarrow \hat W_{ix} + \lfloor \hat W_{ix-1} / \beta \rfloor$ \\
\hspace{6mm}7.1.2 $c_{ix - 1} \leftarrow \hat W_{ix - 1} \mbox{ (mod }\beta\mbox{)}$ \\
8. else do \\
\hspace{3mm}8.1 $ix \leftarrow 0$ \\
9. $c_{ix} \leftarrow \hat W_{ix} \mbox{ (mod }\beta\mbox{)}$ \\
\\
Zero excess digits. \\
10. If $digs < oldused$ then do \\
\hspace{3mm}10.1 for $n$ from $digs$ to $oldused - 1$ do \\
\hspace{6mm}10.1.1 $c_n \leftarrow 0$ \\
11. Clamp excessive digits of $c$. (\textit{mp\_clamp}) \\
12. Return(\textit{MP\_OKAY}). \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm fast\_s\_mp\_mul\_digs}
\end{figure}
\textbf{Algorithm fast\_s\_mp\_mul\_digs.}
This algorithm performs the unsigned multiplication of $a$ and $b$ using the Comba method limited to $digs$ digits of precision. The algorithm
essentially peforms the same calculation as algorithm s\_mp\_mul\_digs but much faster.
The array $\hat W$ is meant to be on the stack when the algorithm is used. The size of the array does not change which is ideal. Note also that
unlike algorithm s\_mp\_mul\_digs no temporary mp\_int is required since the result is calculated in place in $\hat W$.
The $O(n^2)$ loop on step four is where the Comba method starts to show through. First there is no carry variable in the loop. Second the
double precision multiply and add step does not have a carry fixup of any sort. In fact the nested loop is very simple and can be implemented
in parallel.
What makes the Comba method so attractive is that the carry propagation only takes place outside the $O(n^2)$ nested loop. For example, if the
cost in terms of time of a multiply and add is $p$ and the cost of a carry propagation is $q$ then a baseline multiplication would require
$O \left ((p + q)n^2 \right )$ time to multiply two $n$-digit numbers. The Comba method only requires $pn^2 + qn$ time, however, in practice
the speed increase is actually much more. With $O(n)$ space the algorithm can be reduced to $O(pn + qn)$ time by implementing the $n$ multiply
and add operations in the nested loop in parallel.
The carry propagation loop on step 7 is fairly straightforward. It could have been written phased the other direction, that is, to assign
to $c_{ix}$ instead of $c_{ix-1}$ in each iteration. However, it would still require pre-caution to make sure that $\hat W_{ix+1}$ is not beyond
the \textbf{MP\_WARRAY} words set aside.
\index{bn\_fast\_s\_mp\_mul\_digs.c}
\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_fast\_s\_mp\_mul\_digs.c
\vspace{-3mm}
\begin{alltt}
016
017 /* Fast (comba) multiplier
018 *
019 * This is the fast column-array [comba] multiplier. It is
020 * designed to compute the columns of the product first
021 * then handle the carries afterwards. This has the effect
022 * of making the nested loops that compute the columns very
023 * simple and schedulable on super-scalar processors.
024 *
025 * This has been modified to produce a variable number of
026 * digits of output so if say only a half-product is required
027 * you don't have to compute the upper half (a feature
028 * required for fast Barrett reduction).
029 *
030 * Based on Algorithm 14.12 on pp.595 of HAC.
031 *
032 */
033 int
034 fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
035 \{
036 int olduse, res, pa, ix;
037 mp_word W[MP_WARRAY];
038
039 /* grow the destination as required */
040 if (c->alloc < digs) \{
041 if ((res = mp_grow (c, digs)) != MP_OKAY) \{
042 return res;
043 \}
044 \}
045
046 /* clear temp buf (the columns) */
047 memset (W, 0, sizeof (mp_word) * digs);
048
049 /* calculate the columns */
050 pa = a->used;
051 for (ix = 0; ix < pa; ix++) \{
052 /* this multiplier has been modified to allow you to
053 * control how many digits of output are produced.
054 * So at most we want to make upto "digs" digits of output.
055 *
056 * this adds products to distinct columns (at ix+iy) of W
057 * note that each step through the loop is not dependent on
058 * the previous which means the compiler can easily unroll
059 * the loop without scheduling problems
060 */
061 \{
062 register mp_digit tmpx, *tmpy;
063 register mp_word *_W;
064 register int iy, pb;
065
066 /* alias for the the word on the left e.g. A[ix] * A[iy] */
067 tmpx = a->dp[ix];
068
069 /* alias for the right side */
070 tmpy = b->dp;
071
072 /* alias for the columns, each step through the loop adds a new
073 term to each column
074 */
075 _W = W + ix;
076
077 /* the number of digits is limited by their placement. E.g.
078 we avoid multiplying digits that will end up above the # of
079 digits of precision requested
080 */
081 pb = MIN (b->used, digs - ix);
082
083 for (iy = 0; iy < pb; iy++) \{
084 *_W++ += ((mp_word) tmpx) * ((mp_word) * tmpy++);
085 \}
086 \}
087
088 \}
089
090 /* setup dest */
091 olduse = c->used;
092 c->used = digs;
093
094 \{
095 register mp_digit *tmpc;
096
097 /* At this point W[] contains the sums of each column. To get the
098 * correct result we must take the extra bits from each column and
099 * carry them down
100 *
101 * Note that while this adds extra code to the multiplier it
102 * saves time since the carry propagation is removed from the
103 * above nested loop.This has the effect of reducing the work
104 * from N*(N+N*c)==N**2 + c*N**2 to N**2 + N*c where c is the
105 * cost of the shifting. On very small numbers this is slower
106 * but on most cryptographic size numbers it is faster.
107 */
108 tmpc = c->dp;
109 for (ix = 1; ix < digs; ix++) \{
110 W[ix] += (W[ix - 1] >> ((mp_word) DIGIT_BIT));
111 *tmpc++ = (mp_digit) (W[ix - 1] & ((mp_word) MP_MASK));
112 \}
113 *tmpc++ = (mp_digit) (W[digs - 1] & ((mp_word) MP_MASK));
114
115 /* clear unused */
116 for (; ix < olduse; ix++) \{
117 *tmpc++ = 0;
118 \}
119 \}
120
121 mp_clamp (c);
122 return MP_OKAY;
123 \}
\end{alltt}
\end{small}
The memset on line 47 clears the initial $\hat W$ array to zero in a single step. Like the slower baseline multiplication
implementation a series of aliases (\textit{lines 67, 70 and 75}) are used to simplify the inner $O(n^2)$ loop.
In this case a new alias $\_\hat W$ has been added which refers to the double precision columns offset by $ix$ in each pass.
The inner loop on line 84 is where the algorithm will spend the majority of the time. Which is why it has been stripped to the
bones of any extra baggage\footnote{Hence the pointer aliases.}. On x86 processors the multiply and add amounts to at the very least five
instructions (\textit{two loads, two additions, one multiply}) while on the ARMv4 processors it amounts to only three (\textit{one load, one store,
one multiply-add}). On both the x86 and ARMv4 processors GCC v3.2 does a very good job at unrolling the loop and scheduling it so there
are very few dependency stalls.
In theory the difference between the baseline and comba algorithms is a mere $O(qn)$ time difference. However, in the $O(n^2)$ nested loop of the
baseline method there are dependency stalls as the algorithm must wait for the multiplier to finish before propagating the carry to the next
digit. As a result fewer of the often multiple execution units\footnote{The AMD Athlon has three execution units and the Intel P4 has four.} can
be simultaneously used.
\subsection{Polynomial Basis Multiplication}
To break the $O(n^2)$ barrier in multiplication requires a completely different look at integer multiplication. In the following algorithms
the use of polynomial basis representation for two integers $a$ and $b$ as $f(x) = \sum_{i=0}^{n} a_i x^i$ and
$g(x) = \sum_{i=0}^{n} b_i x^i$. respectively, is required. In this system both $f(x)$ and $g(x)$ have $n + 1$ terms and are of the $n$'th degree.
The product $a \cdot b \equiv f(x) \cdot g(x)$ is the polynomial $W(x) = \sum_{i=0}^{2n} w_i x^i$. The coefficients $w_i$ will
directly yield the desired product when $\beta$ is substituted for $x$. The direct solution to solve for the $2n + 1$ coefficients
requires $O(n^2)$ time and is would be in practice slower than the Comba technique.
However, numerical analysis theory will indicate that only $2n + 1$ points in $W(x)$ are required to provide $2n + 1$ knowns for the $2n + 1$ unknowns.
This means by finding $\zeta_y = W(y)$ for $2n + 1$ small values of $y$ the coefficients of $W(x)$ can be found with trivial Gaussian elimination.
Since the polynomial $W(x)$ is unknown the equivalent $\zeta_y = f(y) \cdot g(y)$ is used in its place.
The benefit of this technique stems from the fact that $f(y)$ and $g(y)$ are much smaller than either $a$ or $b$ respectively. In fact if
both polynomials have $n + 1$ terms then the multiplicands will be $n$ times smaller than the inputs. Even if $2n + 1$ multiplications are required
since they are of smaller values the algorithm is still faster.
When picking points to gather relations there are always three obvious points to choose, $y = 0, 1$ and $ \infty$. The $\zeta_0$ term
is simply the product $W(0) = w_0 = a_0 \cdot b_0$. The $\zeta_1$ term is the product
$W(1) = \left (\sum_{i = 0}^{n} a_i \right ) \left (\sum_{i = 0}^{n} b_i \right )$. The third point $\zeta_{\infty}$ is less obvious but rather
simple to explain. The $2n + 1$'th coefficient of $W(x)$ is numerically equivalent to the most significant column in an integer multiplication.
The point at $\infty$ is used symbolically to represent the most significant column, that is $W(\infty) = w_{2n + 1} = a_nb_n$. Note that the
points at $y = 0$ and $\infty$ yield the coefficients $w_0$ and $w_{2n + 1}$ directly.
If more points are required they should be of small input values which are powers of two such as
$2^q$ and the related \textit{mirror points} $\left (2^q \right )^{2n} \cdot \zeta_{2^{-q}}$ for small values of $q$. Using such
points will allow the values of $f(y)$ and $g(y)$ to be independently calculated using only left shifts.
As a general rule of the algorithm when the inputs are split into $n$ parts each there are $2n - 1$ multiplications. Each multiplication is of
multiplicands that have $n$ times fewer digits than the inputs. The asymptotic running time of this algorithm is
$O \left ( k^{lg_n(2n - 1)} \right )$ for $k$ digit inputs (\textit{assuming they have the same number of digits}). The following table
summarizes the exponents for various values of $n$.
\newpage\begin{figure}
\begin{center}
\begin{tabular}{|c|c|c|}
\hline \textbf{Split into $n$ Parts} & \textbf{Exponent} & \textbf{Notes}\\
\hline $2$ & $1.584962501$ & This is Karatsuba Multiplication. \\
\hline $3$ & $1.464973520$ & This is Toom-Cook Multiplication. \\
\hline $4$ & $1.403677461$ &\\
\hline $5$ & $1.365212389$ &\\
\hline $10$ & $1.278753601$ &\\
\hline $100$ & $1.149426538$ &\\
\hline $1000$ & $1.100270931$ &\\
\hline $10000$ & $1.075252070$ &\\
\hline
\end{tabular}
\end{center}
\caption{Asymptotic Running Time of Polynomial Basis Multiplication}
\end{figure}
At first it may seem like a good idea to choose $n = 1000$ since afterall the exponent is approximately $1.1$. However, the overhead
of solving for the 2001 terms of $W(x)$ will certainly consume any savings the algorithm could offer for all but exceedingly large
numbers.
\subsubsection{Cutoff Point}
The polynomial basis multiplication algorithms all require fewer single precision multiplications than a straight Comba approach. However,
the algorithms incur an overhead (\textit{at the $O(n)$ work level}) since they require a system of equations to be solved. This makes them costly to
use with small inputs.
Let $m$ represent the number of digits in the multiplicands (\textit{assume both multiplicands have the same number of digits}). There exists a
point $y$ such that when $m < y$ the polynomial basis algorithms are more costly than Comba, when $m = y$ they are roughly the same cost and
when $m > y$ the Comba methods are slower than the polynomial basis algorithms.
The exact location of $y$ depends on several key architectural elements of the computer platform in question.
\begin{enumerate}
\item The ratio of clock cycles for single precision multiplication versus other simpler operations such as addition, shifting, etc. For example
on the AMD Athlon the ratio is roughly $17 : 1$ while on the Intel P4 it is $29 : 1$. The higher the ratio in favour of multiplication the lower
the cutoff point $y$ will be.
\item The complexity of the linear system of equations (\textit{for the coefficients of $W(x)$}) is. Generally speaking as the number of splits
grows the complexity grows substantially. Ideally solving the system will only involve addition, subtraction and shifting of integers. This
directly reflects on the ratio previous mentioned.
\item To a lesser extent memory bandwidth and function call overheads. Provided the values are in the processor cache this is less of an
influence over the cutoff point.
\end{enumerate}
A clean cutoff point separation occurs when a point $y$ is found such that all of the cutoff point conditions are met. For example, if the point
is too low then there will be values of $m$ such that $m > y$ and the Comba method is still faster. Finding the cutoff points is fairly simple when
a high resolution timer is available.
\subsection{Karatsuba Multiplication}
Karatsuba multiplication \cite{KARA} when originally proposed in 1962 was among the first set of algorithms to break the $O(n^2)$ barrier for
general purpose multiplication. Given two polynomial basis representations $f(x) = ax + b$ and $g(x) = cx + d$ Karatsuba proved with
light number theory \cite{KARAP} that the following polynomial is equivalent to multiplication of the two integers the polynomials represent.
\begin{equation}
f(x) \cdot g(x) = acx^2 + ((a - b)(c - d) + ac + bd)x + bd
\end{equation}
Using the observation that $ac$ and $bd$ could be re-used only three half sized multiplications would be required to produce the product. Applying
this recursively the work factor becomes $O(n^{lg(3)})$ which is substantially better than the work factor $O(n^2)$ of the Comba technique. It turns
out what Karatsuba did not know or at least did not publish was that this is simply polynomial basis multiplication with the points
$\zeta_0$, $\zeta_{\infty}$ and $-\zeta_{-1}$. Consider the resultant system of equations.
\begin{center}
\begin{tabular}{rcrcrcrc}
$\zeta_{0}$ & $=$ & & & & & $w_0$ \\
$-\zeta_{-1}$ & $=$ & $-w_2$ & $+$ & $w_1$ & $-$ & $w_0$ \\
$\zeta_{\infty}$ & $=$ & $w_2$ & & & & \\
\end{tabular}
\end{center}
By adding the first and last equation to the equation in the middle the term $w_1$ can be isolated and all three coefficients solved for. The simplicity
of this system of equations has made Karatsuba fairly popular. In fact the cutoff point is often fairly low\footnote{With LibTomMath 0.18 it is 70 and 109 for the Intel P4 and AMD Athlon respectively.}
making it an ideal algorithm to speed up certain public key cryptosystems such as RSA and Diffie-Hellman. It is worth noting that the point
$\zeta_1$ could be substituted for $-\zeta_{-1}$. In this case the first and third row are subtracted instead of added to the second row.
\newpage\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_karatsuba\_mul}. \\
\textbf{Input}. mp\_int $a$ and mp\_int $b$ \\
\textbf{Output}. $c \leftarrow \vert a \vert \cdot \vert b \vert$ \\
\hline \\
1. Init the following mp\_int variables: $x0$, $x1$, $y0$, $y1$, $t1$, $x0y0$, $x1y1$.\\
2. If step 2 failed then return(\textit{MP\_MEM}). \\
\\
Split the input. e.g. $a = x1 \cdot \beta^B + x0$ \\
3. $B \leftarrow \mbox{min}(a.used, b.used)/2$ \\
4. $x0 \leftarrow a \mbox{ (mod }\beta^B\mbox{)}$ (\textit{mp\_mod\_2d}) \\
5. $y0 \leftarrow b \mbox{ (mod }\beta^B\mbox{)}$ \\
6. $x1 \leftarrow \lfloor a / \beta^B \rfloor$ (\textit{mp\_rshd}) \\
7. $y1 \leftarrow \lfloor b / \beta^B \rfloor$ \\
\\
Calculate the three products. \\
8. $x0y0 \leftarrow x0 \cdot y0$ (\textit{mp\_mul}) \\
9. $x1y1 \leftarrow x1 \cdot y1$ \\
10. $t1 \leftarrow x1 - x0$ (\textit{mp\_sub}) \\
11. $x0 \leftarrow y1 - y0$ \\
12. $t1 \leftarrow t1 \cdot x0$ \\
\\
Calculate the middle term. \\
13. $x0 \leftarrow x0y0 + x1y1$ \\
14. $t1 \leftarrow x0 - t1$ \\
\\
Calculate the final product. \\
15. $t1 \leftarrow t1 \cdot \beta^B$ (\textit{mp\_lshd}) \\
16. $x1y1 \leftarrow x1y1 \cdot \beta^{2B}$ \\
17. $t1 \leftarrow x0y0 + t1$ \\
18. $c \leftarrow t1 + x1y1$ \\
19. Clear all of the temporary variables. \\
20. Return(\textit{MP\_OKAY}).\\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm mp\_karatsuba\_mul}
\end{figure}
\textbf{Algorithm mp\_karatsuba\_mul.}
This algorithm computes the unsigned product of two inputs using the Karatsuba method. It is loosely based on the description
from \cite[pp. 294-295]{TAOCPV2}.
\index{radix point}
In order to split the two inputs into their respective halves a suitable \textit{radix point} must be chosen. The radix point chosen must
be used for both of the inputs meaning that it must smaller than the smallest input. Step 3 chooses the radix point $B$ as half of the
smallest input \textbf{used} count. After the radix point is chosen the inputs are split into lower and upper halves. Step 4 and 5
compute the lower halves. Step 6 and 7 computer the upper halves.
After the halves have been computed the three intermediate half-size products must be computed. Step 8 and 9 compute the trivial products
$x0 \cdot y0$ and $x1 \cdot y1$. The mp\_int $x0$ is used as a temporary variable after $x1 - x0$ has been computed. By using $x0$ instead
of an additional temporary variable the algorithm can avoid an addition memory allocation operation.
The remaining steps 13 through 18 compute the Karatsuba polynomial through a variety of digit shifting and addition operations.
\index{bn\_mp\_karatsuba\_mul.c}
\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_karatsuba\_mul.c
\vspace{-3mm}
\begin{alltt}
016
017 /* c = |a| * |b| using Karatsuba Multiplication using
018 * three half size multiplications
019 *
020 * Let B represent the radix [e.g. 2**DIGIT_BIT] and
021 * let n represent half of the number of digits in
022 * the min(a,b)
023 *
024 * a = a1 * B**n + a0
025 * b = b1 * B**n + b0
026 *
027 * Then, a * b =>
028 a1b1 * B**2n + ((a1 - a0)(b1 - b0) + a0b0 + a1b1) * B + a0b0
029 *
030 * Note that a1b1 and a0b0 are used twice and only need to be
031 * computed once. So in total three half size (half # of
032 * digit) multiplications are performed, a0b0, a1b1 and
033 * (a1-b1)(a0-b0)
034 *
035 * Note that a multiplication of half the digits requires
036 * 1/4th the number of single precision multiplications so in
037 * total after one call 25% of the single precision multiplications
038 * are saved. Note also that the call to mp_mul can end up back
039 * in this function if the a0, a1, b0, or b1 are above the threshold.
040 * This is known as divide-and-conquer and leads to the famous
041 * O(N**lg(3)) or O(N**1.584) work which is asymptopically lower than
042 * the standard O(N**2) that the baseline/comba methods use.
043 * Generally though the overhead of this method doesn't pay off
044 * until a certain size (N ~ 80) is reached.
045 */
046 int
047 mp_karatsuba_mul (mp_int * a, mp_int * b, mp_int * c)
048 \{
049 mp_int x0, x1, y0, y1, t1, x0y0, x1y1;
050 int B, err;
051
052 err = MP_MEM;
053
054 /* min # of digits */
055 B = MIN (a->used, b->used);
056
057 /* now divide in two */
058 B = B / 2;
059
060 /* init copy all the temps */
061 if (mp_init_size (&x0, B) != MP_OKAY)
062 goto ERR;
063 if (mp_init_size (&x1, a->used - B) != MP_OKAY)
064 goto X0;
065 if (mp_init_size (&y0, B) != MP_OKAY)
066 goto X1;
067 if (mp_init_size (&y1, b->used - B) != MP_OKAY)
068 goto Y0;
069
070 /* init temps */
071 if (mp_init_size (&t1, B * 2) != MP_OKAY)
072 goto Y1;
073 if (mp_init_size (&x0y0, B * 2) != MP_OKAY)
074 goto T1;
075 if (mp_init_size (&x1y1, B * 2) != MP_OKAY)
076 goto X0Y0;
077
078 /* now shift the digits */
079 x0.sign = x1.sign = a->sign;
080 y0.sign = y1.sign = b->sign;
081
082 x0.used = y0.used = B;
083 x1.used = a->used - B;
084 y1.used = b->used - B;
085
086 \{
087 register int x;
088 register mp_digit *tmpa, *tmpb, *tmpx, *tmpy;
089
090 /* we copy the digits directly instead of using higher level functions
091 * since we also need to shift the digits
092 */
093 tmpa = a->dp;
094 tmpb = b->dp;
095
096 tmpx = x0.dp;
097 tmpy = y0.dp;
098 for (x = 0; x < B; x++) \{
099 *tmpx++ = *tmpa++;
100 *tmpy++ = *tmpb++;
101 \}
102
103 tmpx = x1.dp;
104 for (x = B; x < a->used; x++) \{
105 *tmpx++ = *tmpa++;
106 \}
107
108 tmpy = y1.dp;
109 for (x = B; x < b->used; x++) \{
110 *tmpy++ = *tmpb++;
111 \}
112 \}
113
114 /* only need to clamp the lower words since by definition the
115 * upper words x1/y1 must have a known number of digits
116 */
117 mp_clamp (&x0);
118 mp_clamp (&y0);
119
120 /* now calc the products x0y0 and x1y1 */
121 /* after this x0 is no longer required, free temp [x0==t2]! */
122 if (mp_mul (&x0, &y0, &x0y0) != MP_OKAY)
123 goto X1Y1; /* x0y0 = x0*y0 */
124 if (mp_mul (&x1, &y1, &x1y1) != MP_OKAY)
125 goto X1Y1; /* x1y1 = x1*y1 */
126
127 /* now calc x1-x0 and y1-y0 */
128 if (mp_sub (&x1, &x0, &t1) != MP_OKAY)
129 goto X1Y1; /* t1 = x1 - x0 */
130 if (mp_sub (&y1, &y0, &x0) != MP_OKAY)
131 goto X1Y1; /* t2 = y1 - y0 */
132 if (mp_mul (&t1, &x0, &t1) != MP_OKAY)
133 goto X1Y1; /* t1 = (x1 - x0) * (y1 - y0) */
134
135 /* add x0y0 */
136 if (mp_add (&x0y0, &x1y1, &x0) != MP_OKAY)
137 goto X1Y1; /* t2 = x0y0 + x1y1 */
138 if (mp_sub (&x0, &t1, &t1) != MP_OKAY)
139 goto X1Y1; /* t1 = x0y0 + x1y1 - (x1-x0)*(y1-y0) */
140
141 /* shift by B */
142 if (mp_lshd (&t1, B) != MP_OKAY)
143 goto X1Y1; /* t1 = (x0y0 + x1y1 - (x1-x0)*(y1-y0))<<B */
144 if (mp_lshd (&x1y1, B * 2) != MP_OKAY)
145 goto X1Y1; /* x1y1 = x1y1 << 2*B */
146
147 if (mp_add (&x0y0, &t1, &t1) != MP_OKAY)
148 goto X1Y1; /* t1 = x0y0 + t1 */
149 if (mp_add (&t1, &x1y1, c) != MP_OKAY)
150 goto X1Y1; /* t1 = x0y0 + t1 + x1y1 */
151
152 err = MP_OKAY;
153
154 X1Y1:mp_clear (&x1y1);
155 X0Y0:mp_clear (&x0y0);
156 T1:mp_clear (&t1);
157 Y1:mp_clear (&y1);
158 Y0:mp_clear (&y0);
159 X1:mp_clear (&x1);
160 X0:mp_clear (&x0);
161 ERR:
162 return err;
163 \}
\end{alltt}
\end{small}
The new coding element in this routine that has not been seen in the previous routines yet is the usage of the goto statements. The normal
wisdom is that goto statements should be avoided. This is generally true however, when every single function call can fail it makes sense
to handle error recovery with a single piece of code. Lines 61 to 75 handle initializing all of the temporary variables
required. Note how each of the if statements goes to a different label in case of failure. This allows the routine to correctly free only
the temporaries that have been successfully allocated so far.
The temporary variables are all initialized using the mp\_init\_size routine since they are expected to be large. This saves the
additional reallocation that would have been necessary. Also $x0$, $x1$, $y0$ and $y1$ have to be able to hold at least their respective
number of digits for the next section of code.
The first algebraic portion of the algorithm is to split the two inputs into their halves. However, instead of using mp\_mod\_2d and mp\_rshd
to extract the halves the code has been inlined. To initialize the halves the \textbf{used} and \textbf{sign} members are copied first. The first
for loop on line 98 copies the lower halves. Since they are both the same magnitude it is simpler to calculate both lower halves in a single
loop. The for loop on lines 104 and 109 calculate the upper halves $x1$ and $y1$ respectively.
By inlining the calculation of the halves the Karatsuba multiplier has a slightly lower overhead. As a result it can be used for smaller
inputs.
When line 152 is reached the algorithm has completed succesfully. The ``error status'' variable $err$ is set to \textbf{MP\_OKAY} so that
the same code that handles errors can be used to clear the temporary variables and return.
\subsection{Toom-Cook $3$-Way Multiplication}
Toom-Cook $3$-Way multiplication \cite{TOOM} is essentially the polynomial basis algorithm for $n = 3$ except that the points are
chosen such that $\zeta$ is easy to compute and the resulting system of equations easy to reduce. In this algorithm the points $\zeta_{0}$,
$16 \cdot \zeta_{1 \over 2}$, $\zeta_1$, $\zeta_2$ and $\zeta_{\infty}$ make up the five requires points to solve for the coefficients of the
product.
At first glance the five coefficents are relatively efficient to compute with the exception of $16 \cdot \zeta{1 \over 2}$. This coefficient
is related to $\zeta_2 = (4a_2 + 2a_1 + a_0)(4b_2 + 2b_1 + b_0)$ in that the coefficients of two terms are reversed (\textit{or mirrored}).
Simply put $16 \cdot \zeta{1 \over 2} = (a_2 + 2a_1 + 4a_0)(b_2 + 2b_1 + 4b_0)$.
With the five relations that Toom has chosen the following system of equations is formed.
\begin{center}
\begin{tabular}{rcrcrcrcrcr}
$\zeta_0$ & $=$ & $0w_4$ & $+$ & $0w_3$ & $+$ & $0w_2$ & $+$ & $0w_1$ & $+$ & $1w_0$ \\
$16 \cdot \zeta_{1 \over 2}$ & $=$ & $1w_4$ & $+$ & $2w_3$ & $+$ & $4w_2$ & $+$ & $8w_1$ & $+$ & $16w_0$ \\
$\zeta_1$ & $=$ & $1w_4$ & $+$ & $1w_3$ & $+$ & $1w_2$ & $+$ & $1w_1$ & $+$ & $1w_0$ \\
$\zeta_2$ & $=$ & $16w_4$ & $+$ & $8w_3$ & $+$ & $4w_2$ & $+$ & $2w_1$ & $+$ & $1w_0$ \\
$\zeta_{\infty}$ & $=$ & $1w_4$ & $+$ & $0w_3$ & $+$ & $0w_2$ & $+$ & $0w_1$ & $+$ & $0w_0$ \\
\end{tabular}
\end{center}
A trivial solution to this matrix requires $12$ subtractions, two multiplications by a small power of two, two divisions by a small power
of two, two divisions by three and one multiplication by three. All of these $19$ sub-operations require less than quadratic time meaning that
the algorithm overall can be faster than a baseline multiplication. However, the greater complexity of this algorithm places the cutoff point
(\textbf{TOOM\_MUL\_CUTOFF}) where Toom-Cook becomes the most efficient algorithm very much higher above the Karatsuba cutoff point.
\subsection{Signed Multiplication}
Now that algorithms to handle multiplications of every useful dimensions has been developed a rather simple finishing touch is required. So far all
of the multiplication algorithms have been unsigned which leaves only a signed multiplication algorithm to be established.
\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_mul}. \\
\textbf{Input}. mp\_int $a$ and mp\_int $b$ \\
\textbf{Output}. $c \leftarrow a \cdot b$ \\
\hline \\
1. If $a.sign = b.sign$ then \\
\hspace{3mm}1.1 $sign = MP\_ZPOS$ \\
2. else \\
\hspace{3mm}2.1 $sign = MP\_ZNEG$ \\
3. If min$(a.used, b.used) \ge TOOM\_MUL\_CUTOFF$ then \\
\hspace{3mm}3.1 $c \leftarrow a \cdot b$ using algorithm mp\_toom\_mul \\
4. else if min$(a.used, b.used) \ge KARATSUBA\_MUL\_CUTOFF$ then \\
\hspace{3mm}4.1 $c \leftarrow a \cdot b$ using algorithm mp\_karatsuba\_mul \\
5. else \\
\hspace{3mm}5.1 $digs \leftarrow a.used + b.used + 1$ \\
\hspace{3mm}5.2 If $digs < MP\_ARRAY$ and min$(a.used, b.used) \le \delta$ then \\
\hspace{6mm}5.2.1 $c \leftarrow a \cdot b \mbox{ (mod }\beta^{digs}\mbox{)}$ using algorithm fast\_s\_mp\_mul\_digs. \\
\hspace{3mm}5.3 else \\
\hspace{6mm}5.3.1 $c \leftarrow a \cdot b \mbox{ (mod }\beta^{digs}\mbox{)}$ using algorithm s\_mp\_mul\_digs. \\
6. $c.sign \leftarrow sign$ \\
7. Return the result of the unsigned multiplication performed. \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm mp\_mul}
\end{figure}
\textbf{Algorithm mp\_mul.}
This algorithm performs the signed multiplication of two inputs. It will make use of any of the three unsigned multiplication algorithms
available when the input is of appropriate size. The \textbf{sign} of the result is not set until the end of the algorithm since algorithm
s\_mp\_mul\_digs will clear it.
\index{bn\_mp\_mul.c}
\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_mul.c
\vspace{-3mm}
\begin{alltt}
016
017 /* high level multiplication (handles sign) */
018 int
019 mp_mul (mp_int * a, mp_int * b, mp_int * c)
020 \{
021 int res, neg;
022 neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
023
024 if (MIN (a->used, b->used) >= TOOM_MUL_CUTOFF) \{
025 res = mp_toom_mul(a, b, c);
026 \} else if (MIN (a->used, b->used) >= KARATSUBA_MUL_CUTOFF) \{
027 res = mp_karatsuba_mul (a, b, c);
028 \} else \{
029
030 /* can we use the fast multiplier?
031 *
032 * The fast multiplier can be used if the output will
033 * have less than MP_WARRAY digits and the number of
034 * digits won't affect carry propagation
035 */
036 int digs = a->used + b->used + 1;
037
038 if ((digs < MP_WARRAY) &&
039 MIN(a->used, b->used) <=
040 (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) \{
041 res = fast_s_mp_mul_digs (a, b, c, digs);
042 \} else \{
043 res = s_mp_mul (a, b, c);
044 \}
045
046 \}
047 c->sign = neg;
048 return res;
049 \}
\end{alltt}
\end{small}
The implementation is rather simplistic and is not particularly noteworthy. Line 22 computes the sign of the result using the ``?''
operator from the C programming language. Line 40 computes $\delta$ using the fact that $1 << k$ is equal to $2^k$.
\section{Squaring}
Squaring is a special case of multiplication where both multiplicands are equal. At first it may seem like there is no significant optimization
available but in fact there is. Consider the multiplication of $576$ against $241$. In total there will be nine single precision multiplications
performed which are $1\cdot 6$, $1 \cdot 7$, $1 \cdot 5$, $4 \cdot 6$, $4 \cdot 7$, $4 \cdot 5$, $2 \cdot 6$, $2 \cdot 7$ and $2 \cdot 5$. Now consider
the multiplication of $123$ against $123$. The nine products are $3 \cdot 3$, $3 \cdot 2$, $3 \cdot 1$, $2 \cdot 3$, $2 \cdot 2$, $2 \cdot 1$,
$1 \cdot 3$, $1 \cdot 2$ and $1 \cdot 1$. On closer inspection some of the products are equivalent. For example, $3 \cdot 2 = 2 \cdot 3$
and $3 \cdot 1 = 1 \cdot 3$.
For any $n$-digit input there are ${{\left (n^2 + n \right)}\over 2}$ possible unique single precision multiplications required. The following
diagram demonstrates the operations required.
\begin{figure}[here]
\begin{center}
\begin{tabular}{ccccc|c}
&&1&2&3&\\
$\times$ &&1&2&3&\\
\hline && $3 \cdot 1$ & $3 \cdot 2$ & $3 \cdot 3$ & Row 0\\
& $2 \cdot 1$ & $2 \cdot 2$ & $2 \cdot 3$ && Row 1 \\
$1 \cdot 1$ & $1 \cdot 2$ & $1 \cdot 3$ &&& Row 2 \\
\end{tabular}
\end{center}
\caption{Squaring Optimization Diagram}
\end{figure}
Starting from zero and numbering the columns from right to left a very simple pattern becomes obvious. For the purposes of this discussion let $x$
represent the number being squared. The first observation is that in row $k$ the $2k$'th column of the product has a $\left (x_k \right)^2$ term in it.
The second observation is that every column $j$ in row $k$ where $j \ne 2k$ is part of a double product. Every odd column is made up entirely of
double products. In fact every column is made up of double products and at most one square (\textit{see the exercise section}).
The third and final observation is that for row $k$ the first unique non-square term occurs at column $2k + 1$. For example, on row $1$ of the
previous squaring, column one is part of the double product with column one from row zero. Column two of row one is a square and column three is
the first unique column.
\subsection{The Baseline Squaring Algorithm}
The baseline squaring algorithm is meant to be a catch-all squaring algorithm. It will handle any of the input sizes that the faster routines
will not handle.
\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{s\_mp\_sqr}. \\
\textbf{Input}. mp\_int $a$ \\
\textbf{Output}. $b \leftarrow a^2$ \\
\hline \\
1. Init a temporary mp\_int of at least $2 \cdot a.used +1$ digits. (\textit{mp\_init\_size}) \\
2. If step 1 failed return(\textit{MP\_MEM}) \\
3. $t.used \leftarrow 2 \cdot a.used + 1$ \\
4. For $ix$ from 0 to $a.used - 1$ do \\
\hspace{3mm}Calculate the square. \\
\hspace{3mm}4.1 $\hat r \leftarrow t_{2ix} + \left (a_{ix} \right )^2$ \\
\hspace{3mm}4.2 $t_{2ix} \leftarrow \hat r \mbox{ (mod }\beta\mbox{)}$ \\
\hspace{3mm}Calculate the double products after the square. \\
\hspace{3mm}4.3 $u \leftarrow \lfloor \hat r / \beta \rfloor$ \\
\hspace{3mm}4.4 For $iy$ from $ix + 1$ to $a.used - 1$ do \\
\hspace{6mm}4.4.1 $\hat r \leftarrow 2 \cdot a_{ix}a_{iy} + t_{ix + iy} + u$ \\
\hspace{6mm}4.4.2 $t_{ix + iy} \leftarrow \hat r \mbox{ (mod }\beta\mbox{)}$ \\
\hspace{6mm}4.4.3 $u \leftarrow \lfloor \hat r / \beta \rfloor$ \\
\hspace{3mm}Set the last carry. \\
\hspace{3mm}4.5 While $u > 0$ do \\
\hspace{6mm}4.5.1 $iy \leftarrow iy + 1$ \\
\hspace{6mm}4.5.2 $\hat r \leftarrow t_{ix + iy} + u$ \\
\hspace{6mm}4.5.3 $t_{ix + iy} \leftarrow \hat r \mbox{ (mod }\beta\mbox{)}$ \\
\hspace{6mm}4.5.4 $u \leftarrow \lfloor \hat r / \beta \rfloor$ \\
5. Clamp excess digits of $t$. (\textit{mp\_clamp}) \\
6. Exchange $b$ and $t$. \\
7. Clear $t$ (\textit{mp\_clear}) \\
8. Return(\textit{MP\_OKAY}) \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm s\_mp\_sqr}
\end{figure}
\textbf{Algorithm s\_mp\_sqr.}
This algorithm computes the square of an input using the three observations on squaring. It is based fairly faithfully on algorithm 14.16 of
\cite[pp.596-597]{HAC}. Similar to algorithm s\_mp\_mul\_digs a temporary mp\_int is allocated to hold the result of the squaring. This allows the
destination mp\_int to be the same as the source mp\_int without losing information part way through the squaring.
The outer loop of this algorithm begins on step 4. It is best to think of the outer loop as walking down the rows of the partial results while
the inner loop computes the columns of the partial result. Step 4.1 and 4.2 compute the square term for each row while step 4.3 and 4.4 propagate
the carry and compute the double products.
The requirement that a mp\_word be able to represent the range $0 \le x < 2 \beta^2$ arises from this
very algorithm. The product $a_{ix}a_{iy}$ will lie in the range $0 \le x \le \beta^2 - 2\beta + 1$ which is obviously less than $\beta^2$ meaning that
when it is multiply by two it can be represented by a mp\_word properly.
Similar to algorithm s\_mp\_mul\_digs after every pass of the inner loop the destination is correctly set to the sum of all of the partial
results calculated so far. This involves expensive carry propagation which will be eliminated shortly.
\index{bn\_s\_mp\_sqr.c}
\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_s\_mp\_sqr.c
\vspace{-3mm}
\begin{alltt}
016
017 /* low level squaring, b = a*a, HAC pp.596-597, Algorithm 14.16 */
018 int
019 s_mp_sqr (mp_int * a, mp_int * b)
020 \{
021 mp_int t;
022 int res, ix, iy, pa;
023 mp_word r;
024 mp_digit u, tmpx, *tmpt;
025
026 pa = a->used;
027 if ((res = mp_init_size (&t, pa + pa + 1)) != MP_OKAY) \{
028 return res;
029 \}
030 t.used = pa + pa + 1;
031
032 for (ix = 0; ix < pa; ix++) \{
033 /* first calculate the digit at 2*ix */
034 /* calculate double precision result */
035 r = ((mp_word) t.dp[ix + ix]) +
036 ((mp_word) a->dp[ix]) * ((mp_word) a->dp[ix]);
037
038 /* store lower part in result */
039 t.dp[ix + ix] = (mp_digit) (r & ((mp_word) MP_MASK));
040
041 /* get the carry */
042 u = (r >> ((mp_word) DIGIT_BIT));
043
044 /* left hand side of A[ix] * A[iy] */
045 tmpx = a->dp[ix];
046
047 /* alias for where to store the results */
048 tmpt = t.dp + (ix + ix + 1);
049
050 for (iy = ix + 1; iy < pa; iy++) \{
051 /* first calculate the product */
052 r = ((mp_word) tmpx) * ((mp_word) a->dp[iy]);
053
054 /* now calculate the double precision result, note we use
055 * addition instead of *2 since its easier to optimize
056 */
057 r = ((mp_word) * tmpt) + r + r + ((mp_word) u);
058
059 /* store lower part */
060 *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
061
062 /* get carry */
063 u = (r >> ((mp_word) DIGIT_BIT));
064 \}
065 /* propagate upwards */
066 while (u != ((mp_digit) 0)) \{
067 r = ((mp_word) * tmpt) + ((mp_word) u);
068 *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
069 u = (r >> ((mp_word) DIGIT_BIT));
070 \}
071 \}
072
073 mp_clamp (&t);
074 mp_exch (&t, b);
075 mp_clear (&t);
076 return MP_OKAY;
077 \}
\end{alltt}
\end{small}
Inside the outer loop (\textit{see line 32}) the square term is calculated on line 35. Line 42 extracts the carry from the square
term. Aliases for $a_{ix}$ and $t_{ix+iy}$ are initialized on lines 45 and 48 respectively. The doubling is performed using two
additions (\textit{see line 57}) since it is usually faster than shifting if not at least as fast.
\subsection{Faster Squaring by the ``Comba'' Method}
A major drawback to the baseline method is the requirement for single precision shifting inside the $O(n^2)$ work level. Squaring has an additional
drawback that it must double the product inside the inner loop as well. As for multiplication the Comba technique can be used to eliminate these
performance hazards.
The first obvious solution is to make an array of mp\_words which will hold all of the columns. This will indeed eliminate all of the carry
propagation operations from the inner loop. However, the inner product must still be doubled $O(n^2)$ times. The solution stems from the simple fact
that $2a + 2b + 2c = 2(a + b + c)$. That is the sum of all of the double products is equal to double the sum of all the products. For example,
$ab + ba + ac + ca = 2ab + 2ac = 2(ab + ac)$.
However, we cannot simply double all of the columns since the squares appear only once per row. The most practical solution is to have two mp\_word
arrays. One array will hold the squares and the other array will hold the double products. With both arrays the doubling and carry propagation can be
moved to a $O(n)$ work level outside the $O(n^2)$ level.
\newpage\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{fast\_s\_mp\_sqr}. \\
\textbf{Input}. mp\_int $a$ \\
\textbf{Output}. $b \leftarrow a^2$ \\
\hline \\
Place two arrays of \textbf{MP\_WARRAY} mp\_words named $\hat W$ and $\hat {X}$ on the stack. \\
1. If $b.alloc < 2a.used + 1$ then grow $b$ to $2a.used + 1$ digits. (\textit{mp\_grow}). \\
2. If step 1 failed return(\textit{MP\_MEM}). \\
3. for $ix$ from $0$ to $2a.used + 1$ do \\
\hspace{3mm}3.1 $\hat W_{ix} \leftarrow 0$ \\
\hspace{3mm}3.2 $\hat {X}_{ix} \leftarrow 0$ \\
4. for $ix$ from $0$ to $a.used - 1$ do \\
\hspace{3mm}Compute the square.\\
\hspace{3mm}4.1 $\hat {X}_{ix+ix} \leftarrow \left ( a_ix \right )^2$ \\
\hspace{3mm}Compute the double products.\\
\hspace{3mm}4.2 for $iy$ from $ix + 1$ to $a.used - 1$ do \\
\hspace{6mm}4.2.1 $\hat W_{ix+iy} \leftarrow \hat W_{ix+iy} + a_{ix}a_{iy}$ \\
5. $oldused \leftarrow b.used$ \\
6. $b.used \leftarrow 2a.used + 1$ \\
Double the products and propagate the carries simultaneously. \\
7. $\hat W_0 \leftarrow 2 \hat W_0 + \hat {X}_0$ \\
8. for $ix$ from $1$ to $2a.used$ do \\
\hspace{3mm}8.1 $\hat W_{ix} \leftarrow 2 \hat W_{ix} + \hat {X}_{ix}$ \\
\hspace{3mm}8.2 $\hat W_{ix} \leftarrow \hat W_{ix} + \lfloor \hat W_{ix - 1} / \beta \rfloor$ \\
\hspace{3mm}8.3 $b_{ix-1} \leftarrow W_{ix-1} \mbox{ (mod }\beta\mbox{)}$ \\
9. $b_{2a.used} \leftarrow \hat W_{2a.used} \mbox{ (mod }\beta\mbox{)}$ \\
10. if $2a.used + 1 < oldused$ then do \\
\hspace{3mm}10.1 for $ix$ from $2a.used + 1$ to $oldused$ do \\
\hspace{6mm}10.1.1 $b_{ix} \leftarrow 0$ \\
11. Clamp excess digits from $b$. (\textit{mp\_clamp}) \\
12. Return(\textit{MP\_OKAY}). \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm fast\_s\_mp\_sqr}
\end{figure}
\textbf{Algorithm fast\_s\_mp\_sqr.}
This algorithm computes the square of an input using the Comba technique. It is designed to be a replacement for algorithm s\_mp\_sqr when
the amount of input digits is less than \textbf{MP\_WARRAY} and less than $\delta \over 2$.
This routine requires two arrays of mp\_words to be placed on the stack. The first array $\hat W$ will hold the double products and the second
array $\hat X$ will hold the squares. Though only at most $MP\_WARRAY \over 2$ words of $\hat X$ are used it has proven faster on most
processors to simply make it a full size array.
The loop on step 3 will zero the two arrays to prepare them for the squaring step. Step 4.1 computes the squares of the product. Note how
it simply assigns the value into the $\hat X$ array. The nested loop on step 4.2 computes the doubles of the products. In actuality that loop
computes the sum of the products for each column. They are not doubled until later.
After the squaring loop the products stored in $\hat W$ musted be doubled and the carries propagated forwards. It makes sense to do both
operations at the same time. The expression $\hat W_{ix} \leftarrow 2 \hat W_{ix} + \hat {X}_{ix}$ computes the sum of the double product and the
squares in place.
\index{bn\_fast\_s\_mp\_sqr.c}
\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_fast\_s\_mp\_sqr.c
\vspace{-3mm}
\begin{alltt}
016
017 /* fast squaring
018 *
019 * This is the comba method where the columns of the product
020 * are computed first then the carries are computed. This
021 * has the effect of making a very simple inner loop that
022 * is executed the most
023 *
024 * W2 represents the outer products and W the inner.
025 *
026 * A further optimizations is made because the inner
027 * products are of the form "A * B * 2". The *2 part does
028 * not need to be computed until the end which is good
029 * because 64-bit shifts are slow!
030 *
031 * Based on Algorithm 14.16 on pp.597 of HAC.
032 *
033 */
034 int
035 fast_s_mp_sqr (mp_int * a, mp_int * b)
036 \{
037 int olduse, newused, res, ix, pa;
038 mp_word W2[MP_WARRAY], W[MP_WARRAY];
039
040 /* calculate size of product and allocate as required */
041 pa = a->used;
042 newused = pa + pa + 1;
043 if (b->alloc < newused) \{
044 if ((res = mp_grow (b, newused)) != MP_OKAY) \{
045 return res;
046 \}
047 \}
048
049 /* zero temp buffer (columns)
050 * Note that there are two buffers. Since squaring requires
051 * a outter and inner product and the inner product requires
052 * computing a product and doubling it (a relatively expensive
053 * op to perform n**2 times if you don't have to) the inner and
054 * outer products are computed in different buffers. This way
055 * the inner product can be doubled using n doublings instead of
056 * n**2
057 */
058 memset (W, 0, newused * sizeof (mp_word));
059 memset (W2, 0, newused * sizeof (mp_word));
060
061 /* This computes the inner product. To simplify the inner N**2 loop
062 * the multiplication by two is done afterwards in the N loop.
063 */
064 for (ix = 0; ix < pa; ix++) \{
065 /* compute the outer product
066 *
067 * Note that every outer product is computed
068 * for a particular column only once which means that
069 * there is no need todo a double precision addition
070 */
071 W2[ix + ix] = ((mp_word) a->dp[ix]) * ((mp_word) a->dp[ix]);
072
073 \{
074 register mp_digit tmpx, *tmpy;
075 register mp_word *_W;
076 register int iy;
077
078 /* copy of left side */
079 tmpx = a->dp[ix];
080
081 /* alias for right side */
082 tmpy = a->dp + (ix + 1);
083
084 /* the column to store the result in */
085 _W = W + (ix + ix + 1);
086
087 /* inner products */
088 for (iy = ix + 1; iy < pa; iy++) \{
089 *_W++ += ((mp_word) tmpx) * ((mp_word) * tmpy++);
090 \}
091 \}
092 \}
093
094 /* setup dest */
095 olduse = b->used;
096 b->used = newused;
097
098 /* now compute digits */
099 \{
100 register mp_digit *tmpb;
101
102 /* double first value, since the inner products are
103 * half of what they should be
104 */
105 W[0] += W[0] + W2[0];
106
107 tmpb = b->dp;
108 for (ix = 1; ix < newused; ix++) \{
109 /* double/add next digit */
110 W[ix] += W[ix] + W2[ix];
111
112 W[ix] = W[ix] + (W[ix - 1] >> ((mp_word) DIGIT_BIT));
113 *tmpb++ = (mp_digit) (W[ix - 1] & ((mp_word) MP_MASK));
114 \}
115 /* set the last value. Note even if the carry is zero
116 * this is required since the next step will not zero
117 * it if b originally had a value at b->dp[2*a.used]
118 */
119 *tmpb++ = (mp_digit) (W[(newused) - 1] & ((mp_word) MP_MASK));
120
121 /* clear high digits */
122 for (; ix < olduse; ix++) \{
123 *tmpb++ = 0;
124 \}
125 \}
126
127 mp_clamp (b);
128 return MP_OKAY;
129 \}
\end{alltt}
\end{small}
-- Write something deep and insightful later, Tom.
\subsection{Polynomial Basis Squaring}
The same algorithm that performs optimal polynomial basis multiplication can be used to perform polynomial basis squaring. The minor exception
is that $\zeta_y = f(y) \cdot g(y)$ is actually equivalent to $\zeta_y = f(y)^2$ since $f(y) = g(y)$. That is instead of performing $2n + 1$
multiplications to find the $\zeta$ relations squaring operations are performed instead.
\subsection{Karatsuba Squaring}
Let $f(x) = ax + b$ represent the polynomial basis representation of a number to square.
Let $h(x) = \left ( f(x) \right )^2$ represent the square of the polynomial. The Karatsuba equation can be modified to square a
number with the following equation.
\begin{equation}
h(x) = a^2x^2 + \left (a^2 + b^2 - (a - b)^2 \right )x + b^2
\end{equation}
Upon closer inspection this equation only requires the calculation of three half-sized squares: $a^2$, $b^2$ and $(a - b)^2$. As in
Karatsuba multiplication this algorithm can be applied recursively on the input and will achieve an asymptotic running time of
$O \left ( n^{lg(3)} \right )$.
If the asymptotic time of Karatsuba squaring and multiplication is the same why not simply use the multiplication algorithm instead? The answer
to this question arises from the cutoff point for squaring. As in multiplication there exists a cutoff point at which the time required for a
Comba based squaring and a Karatsuba based squaring meet. Due to the overhead inherent in the Karatsuba method the cutoff point is fairly
high. For example, on an Athlon processor with $\beta = 2^{28}$ the cutoff point is around 127 digits.
Consider squaring a 200 digit number with this technique. It will be split into two 100 digit halves which are subsequently squared.
The 100 digit numbers will not be squared using Karatsuba but instead the faster Comba based squaring algorithm. If Karatsuba multiplication
were used instead the 100 digit numbers would be squared with a slower Comba based multiplication.
\newpage\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_karatsuba\_sqr}. \\
\textbf{Input}. mp\_int $a$ \\
\textbf{Output}. $b \leftarrow a^2$ \\
\hline \\
1. Initialize the following temporary mp\_ints: $x0$, $x1$, $t1$, $t2$, $x0x0$ and $x1x1$. \\
2. If any of the initializations on step 1 failed return(\textit{MP\_MEM}). \\
\\
Split the input. e.g. $a = x1\beta^B + x0$ \\
3. $B \leftarrow a.used / 2$ \\
4. $x0 \leftarrow a \mbox{ (mod }\beta^B\mbox{)}$ (\textit{mp\_mod\_2d}) \\
5. $x1 \leftarrow \lfloor a / \beta^B \rfloor$ (\textit{mp\_lshd}) \\
\\
Calculate the three squares. \\
6. $x0x0 \leftarrow x0^2$ (\textit{mp\_sqr}) \\
7. $x1x1 \leftarrow x1^2$ \\
8. $t1 \leftarrow x1 - x0$ (\textit{mp\_sub}) \\
9. $t1 \leftarrow t1^2$ \\
\\
Compute the middle term. \\
10. $t2 \leftarrow x0x0 + x1x1$ (\textit{s\_mp\_add}) \\
11. $t1 \leftarrow t2 - t1$ \\
\\
Compute final product. \\
12. $t1 \leftarrow t1\beta^B$ (\textit{mp\_lshd}) \\
13. $x1x1 \leftarrow x1x1\beta^{2B}$ \\
14. $t1 \leftarrow t1 + x0x0$ \\
15. $b \leftarrow t1 + x1x1$ \\
16. Return(\textit{MP\_OKAY}). \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm mp\_karatsuba\_sqr}
\end{figure}
\textbf{Algorithm mp\_karatsuba\_sqr.}
This algorithm computes the square of an input $a$ using the Karatsuba technique. This algorithm is very much similar to the Karatsuba based
multiplication algorithm.
The radix point for squaring is simply the placed above the median of the digits. Step 3, 4 and 5 compute the two halves required using $B$
as the radix point. The first two squares in steps 6 and 7 are rather straightforward while the last square is in a more compact form.
By expanding $\left (x1 - x0 \right )^2$ the $x1^2$ and $x0^2$ terms in the middle disappear, that is $x1^2 + x0^2 - (x1 - x0)^2 = 2 \cdot x0 \cdot x1$.
Now if $5n$ single precision additions and a squaring of $n$-digits is faster than multiplying two $n$-digit numbers and doubling then
this method is faster. Assuming no further recursions occur the difference can be estimated.
Let $p$ represent the cost of a single precision addition and $q$ the cost of a single precision multiplication both in terms of time\footnote{Or
machine clock cycles.}. The question reduces to whether the following equation is true or not.
\begin{equation}
5np +{{q(n^2 + n)} \over 2} \le pn + qn^2
\end{equation}
For example, on an AMD Athlon processor $p = {1 \over 3}$ and $q = 6$. This implies that the following inequality should hold.
\begin{center}
\begin{tabular}{rcl}
$5n + 3n^2 + 3n$ & $<$ & ${n \over 3} + 6n^2$ \\
${25 \over 3} + 3n$ & $<$ & ${1 \over 3} + 6n$ \\
${25 \over 3}$ & $<$ & $3n$ \\
${25 \over 9}$ & $<$ & $n$ \\
\end{tabular}
\end{center}
This results in a cutoff point around $n = 3$. As a consequence it is actually faster to compute the middle term the ``long way'' on processors
where multiplication is substantially slower\footnote{On the Athlon there is a 1:17 ratio between clock cycles for addition and multiplication. On
the Intel P4 processor this ratio is 1:29 making this method even more beneficial. The only common exception is the ARMv4 processor which has a
ratio of 1:7. } than simpler operations such as addition.
\index{bn\_mp\_karatsuba\_sqr.c}
\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_karatsuba\_sqr.c
\vspace{-3mm}
\begin{alltt}
016
017 /* Karatsuba squaring, computes b = a*a using three
018 * half size squarings
019 *
020 * See comments of mp_karatsuba_mul for details. It
021 * is essentially the same algorithm but merely
022 * tuned to perform recursive squarings.
023 */
024 int
025 mp_karatsuba_sqr (mp_int * a, mp_int * b)
026 \{
027 mp_int x0, x1, t1, t2, x0x0, x1x1;
028 int B, err;
029
030 err = MP_MEM;
031
032 /* min # of digits */
033 B = a->used;
034
035 /* now divide in two */
036 B = B / 2;
037
038 /* init copy all the temps */
039 if (mp_init_size (&x0, B) != MP_OKAY)
040 goto ERR;
041 if (mp_init_size (&x1, a->used - B) != MP_OKAY)
042 goto X0;
043
044 /* init temps */
045 if (mp_init_size (&t1, a->used * 2) != MP_OKAY)
046 goto X1;
047 if (mp_init_size (&t2, a->used * 2) != MP_OKAY)
048 goto T1;
049 if (mp_init_size (&x0x0, B * 2) != MP_OKAY)
050 goto T2;
051 if (mp_init_size (&x1x1, (a->used - B) * 2) != MP_OKAY)
052 goto X0X0;
053
054 \{
055 register int x;
056 register mp_digit *dst, *src;
057
058 src = a->dp;
059
060 /* now shift the digits */
061 dst = x0.dp;
062 for (x = 0; x < B; x++) \{
063 *dst++ = *src++;
064 \}
065
066 dst = x1.dp;
067 for (x = B; x < a->used; x++) \{
068 *dst++ = *src++;
069 \}
070 \}
071
072 x0.used = B;
073 x1.used = a->used - B;
074
075 mp_clamp (&x0);
076
077 /* now calc the products x0*x0 and x1*x1 */
078 if (mp_sqr (&x0, &x0x0) != MP_OKAY)
079 goto X1X1; /* x0x0 = x0*x0 */
080 if (mp_sqr (&x1, &x1x1) != MP_OKAY)
081 goto X1X1; /* x1x1 = x1*x1 */
082
083 /* now calc (x1-x0)**2 */
084 if (mp_sub (&x1, &x0, &t1) != MP_OKAY)
085 goto X1X1; /* t1 = x1 - x0 */
086 if (mp_sqr (&t1, &t1) != MP_OKAY)
087 goto X1X1; /* t1 = (x1 - x0) * (x1 - x0) */
088
089 /* add x0y0 */
090 if (s_mp_add (&x0x0, &x1x1, &t2) != MP_OKAY)
091 goto X1X1; /* t2 = x0x0 + x1x1 */
092 if (mp_sub (&t2, &t1, &t1) != MP_OKAY)
093 goto X1X1; /* t1 = x0x0 + x1x1 - (x1-x0)*(x1-x0) */
094
095 /* shift by B */
096 if (mp_lshd (&t1, B) != MP_OKAY)
097 goto X1X1; /* t1 = (x0x0 + x1x1 - (x1-x0)*(x1-x0))<<B */
098 if (mp_lshd (&x1x1, B * 2) != MP_OKAY)
099 goto X1X1; /* x1x1 = x1x1 << 2*B */
100
101 if (mp_add (&x0x0, &t1, &t1) != MP_OKAY)
102 goto X1X1; /* t1 = x0x0 + t1 */
103 if (mp_add (&t1, &x1x1, b) != MP_OKAY)
104 goto X1X1; /* t1 = x0x0 + t1 + x1x1 */
105
106 err = MP_OKAY;
107
108 X1X1:mp_clear (&x1x1);
109 X0X0:mp_clear (&x0x0);
110 T2:mp_clear (&t2);
111 T1:mp_clear (&t1);
112 X1:mp_clear (&x1);
113 X0:mp_clear (&x0);
114 ERR:
115 return err;
116 \}
\end{alltt}
\end{small}
This implementation is largely based on the implementation of algorithm mp\_karatsuba\_mul. It uses the same inline style to copy and
shift the input into the two halves. The loop from line 54 to line 70 has been modified since only one input exists. The \textbf{used}
count of both $x0$ and $x1$ is fixed up and $x0$ is clamped before the calculations begin. At this point $x1$ and $x0$ are valid equivalents
to the respective halves as if mp\_rshd and mp\_mod\_2d had been used.
By inlining the copy and shift operations the cutoff point for Karatsuba multiplication can be lowered. On the Athlon the cutoff point
is exactly at the point where Comba squaring can no longer be used (\textit{128 digits}). On slower processors such as the Intel P4
it is actually below the Comba limit (\textit{at 110 digits}).
This routine uses the same error trap coding style as mp\_karatsuba\_sqr. As the temporary variables are initialized errors are redirected to
the error trap higher up. If the algorithm completes without error the error code is set to \textbf{MP\_OKAY} and the error traps are
executed.
\textit{Last paragraph sucks. re-write! -- Tom}
\subsection{Toom-Cook Squaring}
The Toom-Cook squaring algorithm mp\_toom\_sqr is heavily based on the algorithm mp\_toom\_mul with the minor exception noted. The reader is
encouraged to read the description of the latter algorithm and try to derive their own Toom-Cook squaring algorithm.
\subsection{Generic Squaring}
\newpage\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_sqr}. \\
\textbf{Input}. mp\_int $a$ \\
\textbf{Output}. $b \leftarrow a^2$ \\
\hline \\
1. If $a.used \ge TOOM\_SQR\_CUTOFF$ then \\
\hspace{3mm}1.1 $b \leftarrow a^2$ using algorithm mp\_toom\_sqr \\
2. else if $a.used \ge KARATSUBA\_SQR\_CUTOFF$ then \\
\hspace{3mm}2.1 $b \leftarrow a^2$ using algorithm mp\_karatsuba\_sqr \\
3. else \\
\hspace{3mm}3.1 $digs \leftarrow a.used + b.used + 1$ \\
\hspace{3mm}3.2 If $digs < MP\_ARRAY$ and $a.used \le \delta$ then \\
\hspace{6mm}3.2.1 $b \leftarrow a^2$ using algorithm fast\_s\_mp\_sqr. \\
\hspace{3mm}3.3 else \\
\hspace{6mm}3.3.1 $b \leftarrow a^2$ using algorithm s\_mp\_sqr. \\
4. $b.sign \leftarrow MP\_ZPOS$ \\
5. Return the result of the unsigned squaring performed. \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm mp\_sqr}
\end{figure}
\textbf{Algorithm mp\_sqr.}
This algorithm computes the square of the input using one of four different algorithms. If the input is very large and has at least
\textbf{TOOM\_SQR\_CUTOFF} or \textbf{KARATSUBA\_SQR\_CUTOFF} digits then either the Toom-Cook or the Karatsuba Squaring algorithm is used. If
neither of the polynomial basis algorithms should be used then either the Comba or baseline algorithm is used.
\index{bn\_mp\_sqr.c}
\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_sqr.c
\vspace{-3mm}
\begin{alltt}
016
017 /* computes b = a*a */
018 int
019 mp_sqr (mp_int * a, mp_int * b)
020 \{
021 int res;
022 if (a->used >= TOOM_SQR_CUTOFF) \{
023 res = mp_toom_sqr(a, b);
024 \} else if (a->used >= KARATSUBA_SQR_CUTOFF) \{
025 res = mp_karatsuba_sqr (a, b);
026 \} else \{
027
028 /* can we use the fast multiplier? */
029 if ((a->used * 2 + 1) < MP_WARRAY &&
030 a->used <
031 (1 << (sizeof(mp_word) * CHAR_BIT - 2*DIGIT_BIT - 1))) \{
032 res = fast_s_mp_sqr (a, b);
033 \} else \{
034 res = s_mp_sqr (a, b);
035 \}
036 \}
037 b->sign = MP_ZPOS;
038 return res;
039 \}
\end{alltt}
\end{small}
\section*{Exercises}
\begin{tabular}{cl}
$\left [ 3 \right ] $ & Devise an efficient algorithm for selection of the radix point to handle inputs \\
& that have different number of digits in Karatsuba multiplication. \\
& \\
$\left [ 3 \right ] $ & In section 6.3 the fact that every column of a squaring is made up \\
& of double products and at most one square is stated. Prove this statement. \\
& \\
$\left [ 2 \right ] $ & In the Comba squaring algorithm half of the $\hat X$ variables are not used. \\
& Revise algorithm fast\_s\_mp\_sqr to shrink the $\hat X$ array. \\
& \\
$\left [ 3 \right ] $ & Prove the equation for Karatsuba squaring. \\
& \\
$\left [ 1 \right ] $ & Prove that Karatsuba squaring requires $O \left (n^{lg(3)} \right )$ time. \\
& \\
$\left [ 2 \right ] $ & Determine the minimal ratio between addition and multiplication clock cycles \\
& required for equation $6.7$ to be true. \\
& \\
\end{tabular}
\chapter{Modular Reduction}
\section{Basics of Modular Reduction}
\index{modular residue}
Modular reduction is an operation that arises quite often within public key cryptography algorithms. A number is said to be reduced modulo another
number by finding the remainder of division. If an integer $a$ is reduced modulo $b$ that is to solve the equation $a = bq + p$ then $p$ is the
result. To phrase that another way ``$p$ is congruent to $a$ modulo $b$'' which is also written as $p \equiv a \mbox{ (mod }b\mbox{)}$. In
other vernacular $p$ is known as the ``modular residue'' which leads to ``quadratic residue''\footnote{That's fancy talk for $b \equiv a^2 \mbox{ (mod }p\mbox{)}$.} and
other forms of residues.
\index{modulus}
Modular reductions are normally used to form finite groups such as fields and rings. For example, in the RSA public key algorithm \cite{RSAPAPER}
two private primes $p$ and $q$ are chosen which when multiplied $n = pq$ forms a composite modulus. When operations such as multiplication and
squaring are performed on units of the ring $\Z_n$ a finite multiplicative sub-group is formed. This sub-group is the group used to perform RSA
operations. Do not worry to much about how RSA works as it is not important for this discussion.
The most common usage for performance driven modular reductions is in modular exponentiation algorithms. That is to compute
$d = a^b \mbox{ (mod }c\mbox{)}$ as fast as possible. As will be discussed in the subsequent chapter there exists fast algorithms for computing
modular exponentiations without having to perform (\textit{in this example}) $b$ multiplications. These algorithms will produce partial
results in the range $0 \le x < c^2$ which can be taken advantage of.
The obvious line of thinking is to use an integer division routine and just extract the remainder. While this is equivalent to finding the
modular residue it turns out that the limited range of the input can be exploited to create several efficient algorithms.
\section{The Barrett Reduction}
The Barrett reduction algorithm \cite{BARRETT} was inspired by fast division algorithms which multiply by the reciprocal to emulate
division. Barretts observation was that the residue $c$ of $a$ modulo $b$ is equal to
\begin{equation}
c = a - b \cdot \lfloor a/b \rfloor
\end{equation}
Since algorithms such as modular reduction would be using the same modulus extensively, using typical DSP intuition the next step would be to
replace $a/b$ with a multiplication by the reciprocal. However, DSP intuition on its own will not work as these numbers are considerably
larger than the precision of common DSP floating point data types. It would take another common optimization to optimize the algorithm.
\subsection{Fixed Point Arithmetic}
The trick used to optimize the above equation is based on a technique of emulating floating point data types with fixed precision integers. Fixed
point arithmetic would be vastly popularlized in the mid 1990s for bringing 3d-games to the mass market. The idea is to take a normal $k$-bit
integer data type and break it into $p$-bit integer and a $q$-bit fraction part (\textit{where $p+q = k$}).
In this system a $k$-bit integer $n$ would actually represent $n/2^q$. For example, with $q = 4$ the integer $n = 37$ would actually represent the
value $2.3125$. To multiply two fixed point numbers the integers are multiplied using traditional arithmetic and subsequently normalized. For example,
with $q = 4$ to multiply the integers $9$ and $5$ they must be converted to fixed point first by multiplying by $2^q$. Let $a = 9(2^q)$
represent the fixed point representation of $9$ and $b = 5(2^q)$ represent the fixed point representation of $5$. The product $ab$ is equal to
$45(2^{2q})$ which when normalized produces $45(2^q)$.
Using fixed point arithmetic division can be easily achieved by multiplying by the reciprocal. If $2^q$ is equivalent to one than $2^q/b$ is
equivalent to $1/b$ using real arithmetic. Using this fact dividing an integer $a$ by another integer $b$ can be achieved with the following
expression.
\begin{equation}
\lfloor (a \cdot (\lfloor 2^q / b \rfloor))/2^q \rfloor
\end{equation}
The precision of the division is proportional to the value of $q$. If the divisor $b$ is used frequently as is the case with
modular exponentiation pre-computing $2^q/b$ will allow a division to be performed with a multiplication and a right shift. Both operations
are considerably faster than division on most processors.
Consider dividing $19$ by $5$. The correct result is $\lfloor 19/5 \rfloor = 3$. With $q = 3$ the reciprocal is $\lfloor 2^q/5 \rfloor = 1$ which
leads to a product of $19$ which when divided by $2^q$ produces $2$. However, with $q = 4$ the reciprocal is $\lfloor 2^q/5 \rfloor = 3$ and
the result of the emulated division is $\lfloor 3 \cdot 19 / 2^q \rfloor = 3$ which is correct.
Plugging this form of divison into the original equation the following modular residue equation arises.
\begin{equation}
c = a - b \cdot \lfloor (a \cdot (\lfloor 2^q / b \rfloor))/2^q \rfloor
\end{equation}
Using the notation from \cite{BARRETT} the value of $\lfloor 2^q / b \rfloor$ will be represented by the $\mu$ symbol. Using the $\mu$
variable also helps re-inforce the idea that it is meant to be computed once and re-used.
\begin{equation}
c = a - b \cdot \lfloor (a \cdot \mu)/2^q \rfloor
\end{equation}
Provided that $2^q > b^2$ this algorithm will produce a quotient that is either exactly correct or off by a value of one. Let $n$ represent
the number of digits in $b$. This algorithm requires approximately $2n^2$ single precision multiplications to produce the quotient and
another $n^2$ single precision multiplications to find the residue. In total $3n^2$ single precision multiplications are required to
reduce the number.
For example, if $b = 1179677$ and $q = 41$ ($2^q > b^2$), then the reciprocal $\mu$ is equal to $\lfloor 2^q / b \rfloor = 1864089$. Consider reducing
$a = 180388626447$ modulo $b$ using the above reduction equation. Using long division the quotient $\lfloor a/b \rfloor$ is equal
to the quotient found using the fixed point method. In this case the quotient is $\lfloor (a \cdot \mu)/2^q \rfloor = 152913$ and can
produce the modular residue $a - 152913b = 677346$.
\subsection{Choosing a Radix Point}
Using the fixed point representation a modular reduction can be performed with $3n^2$ single precision multiplications. If that were the best
that could be achieved a full division might as well be used in its place. The key to optimizing the reduction is to reduce the precision of
the initial multiplication that finds the quotient.
Let $a$ represent the number of which the residue is sought. Let $b$ represent the modulus used to find the residue. Let $m$ represent
the number of digits in $b$. For the purposes of this discussion we will assume that the number of digits in $a$ is $2m$. Dividing $a$ by
$b$ is the same as dividing a $2m$ digit integer by a $m$ digit integer. Digits below the $m - 1$'th digit of $a$ will contribute at most a value
of $1$ to the quotient because $\beta^k < b$ for any $0 \le k \le m - 1$.
Since those digits do not contribute much to the quotient the observation is that they might as well be zero. However, if the digits
``might as well be zero'' they might as well not be there in the first place. Let $q_0 = \lfloor a/\beta^{m-1} \rfloor$ represent the input
with the zeroes trimmed. Now the modular reduction is trimmed to the almost equivalent equation
\begin{equation}
c = a - b \cdot \lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor
\end{equation}
Notice how the original divisor $2^q$ has been replaced with $\beta^{m+1}$. Also note how the exponent on the divisor $m+1$ when added to the amount $q_0$
was shifted by ($m-1$) equals $2m$. If the optimization had not been performed the divisor would have the exponent $2m$ so in the end the exponents
do ``add up''. By using whole digits the algorithm is much faster since shifting digits is typically slower than simply copying them. Using the
above equation the quotient $\lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor$ can be off from the true quotient by at most two implying that
$0 \le a - b \cdot \lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor < 3b$. By first subtracting $b$ times the quotient and then conditionally
subtracting $b$ once or twice the residue is found.
The quotient is now found using $(m + 1)(m) = m^2 + m$ single precision multiplications and the residue with an additional $m^2$ single
precision multiplications. In total $2m^2 + m$ single precision multiplications are required which is considerably faster than the original
attempt.
For example, let $\beta = 10$ represent the radix of the digits. Let $b = 9999$ represent the modulus which implies $m = 4$. Let $a = 99929878$
represent the value of which the residue is desired. In this case $q = 10$ which means that $\mu = \lfloor \beta^{2m}/b \rfloor = 10001$.
With this optimization the multiplicand for the quotient is $q_0 = \lfloor a / \beta^{m - 1} \rfloor = 99929$. The quotient is then
$\lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor = 9993$. Subtracting $9993b$ from $a$ and the correct residue $9871 \equiv a \mbox{ (mod }b\mbox{)}$
is found.
\subsection{Trimming the Quotient}
So far the reduction algorithm has been optimized from $3m^2$ single precision multiplications down to $2m^2 + m$ single precision multiplications. As
it stands now the algorithm is already fairly fast compared to a full integer division algorithm. However, there is still room for
optimization.
After the first multiplication inside the quotient ($q_0 \cdot \mu$) the value is shifted right by $m + 1$ places effectively nullifying the lower
half of the product. It would be nice to be able to remove those digits from the product to effectively cut down the number of multiplications.
If the number of digits in the modulus $m$ is far less than $\beta$ a full product is not required. In fact the lower $m - 2$ digits will not
affect the upper half of the product at all and do not need to be computed.
The value of $\mu$ is a $m$-digit number and $q_0$ is a $m + 1$ digit number. Using a full multiplier $(m + 1)(m) = m^2 + m$ single precision
multiplications would be required. Using a multiplier that will only produce digits at and above the $m - 1$'th digit reduces the number
of single precision multiplications to ${m^2 + m} \over 2$ single precision multiplications.
\subsection{Trimming the Residue}
After the quotient has been calculated it is used to reduce the input. As previously noted the algorithm is not exact and it can be off by a small
multiple of the modulus, that is $0 \le a - b \cdot \lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor < 3b$. If $b$ is $m$ digits than the
result of reduction equation is a value of at most $m + 1$ digits (\textit{provided $3 < \beta$}) implying that the upper $m - 1$ digits are
implicitly zero.
The next optimization arises from this very fact. Instead of computing $b \cdot \lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor$ using a full
$O(m^2)$ multiplication algorithm only the lower $m+1$ digits of the product have to be computed. Similarly the value of $a$ can
be reduced modulo $\beta^{m+1}$ before the multiple of $b$ is subtracted which simplifes the subtraction as well. A multiplication that produces
only the lower $m+1$ digits requires ${m^2 + 3m - 2} \over 2$ single precision multiplications.
With both optimizations in place the algorithm is the algorithm Barrett proposed. It requires $m^2 + 2m - 1$ single precision multiplications which
is considerably faster than the straightforward $3m^2$ method.
\subsection{The Barrett Algorithm}
\newpage\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_reduce}. \\
\textbf{Input}. mp\_int $a$, mp\_int $b$ and $\mu = \lfloor \beta^{2m}/b \rfloor$ $(0 \le a < b^2, b > 1)$ \\
\textbf{Output}. $c \leftarrow a \mbox{ (mod }b\mbox{)}$ \\
\hline \\
Let $m$ represent the number of digits in $b$. \\
1. Make a copy of $a$ and store it in $q$. (\textit{mp\_init\_copy}) \\
2. $q \leftarrow \lfloor q / \beta^{m - 1} \rfloor$ (\textit{mp\_rshd}) \\
\\
Produce the quotient. \\
3. $q \leftarrow q \cdot \mu$ (\textit{note: only produce digits at or above $m-1$}) \\
4. $q \leftarrow \lfloor q / \beta^{m + 1} \rfloor$ \\
\\
Subtract the multiple of modulus from the input. \\
5. $c \leftarrow a \mbox{ (mod }\beta^{m+1}\mbox{)}$ (\textit{mp\_mod\_2d}) \\
6. $q \leftarrow q \cdot b \mbox{ (mod }\beta^{m+1}\mbox{)}$ (\textit{s\_mp\_mul\_digs}) \\
7. $c \leftarrow c - q$ (\textit{mp\_sub}) \\
\\
Add $\beta^{m+1}$ if a carry occured. \\
8. If $c < 0$ then (\textit{mp\_cmp\_d}) \\
\hspace{3mm}8.1 $q \leftarrow 1$ (\textit{mp\_set}) \\
\hspace{3mm}8.2 $q \leftarrow q \cdot \beta^{m+1}$ (\textit{mp\_lshd}) \\
\hspace{3mm}8.3 $c \leftarrow c + q$ \\
\\
Now subtract the modulus if the residue is too large (e.g. quotient too small). \\
9. While $c \ge b$ do (\textit{mp\_cmp}) \\
\hspace{3mm}9.1 $c \leftarrow c - b$ \\
10. Clear $q$. \\
11. Return(\textit{MP\_OKAY}) \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm mp\_reduce}
\end{figure}
\textbf{Algorithm mp\_reduce.}
This algorithm will reduce the input $a$ modulo $b$ in place using the Barrett algorithm. It is loosely based on algorithm 14.42 of
\cite[pp. 602]{HAC} which is based on \cite{BARRETT}. The algorithm has several restrictions and assumptions which must be adhered to
for the algorithm to work.
First the modulus $b$ is assumed to be positive and greater than one. If the modulus were less than or equal to one than subtracting
a multiple of it would either accomplish nothing or actually enlarge the input. The input $a$ must be in the range $0 \le a < b^2$ in order
for the quotient to have enough precision. Technically the algorithm will still work if $a \ge b^2$ but it will take much longer to finish. The
value of $\mu$ is passed as an argument to this algorithm and is assumed to be setup before the algorithm is used.
Recall that the multiplication for the quotient on step 3 must only produce digits at or above the $m-1$'th position. An algorithm called
$s\_mp\_mul\_high\_digs$ which has not been presented is used to accomplish this task. This optimal algorithm can only be used if the number
of digits in $b$ is very much smaller than $\beta$.
After the multiple of the modulus has been subtracted from $a$ the residue must be fixed up in case its negative. While it is known that
$a \ge b \cdot \lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor$ only the lower $m+1$ digits are being used to compute the residue. In this case
the invariant $\beta^{m+1}$ must be added to the residue to make it positive again.
The while loop at step 9 will subtract $b$ until the residue is less than $b$. If the algorithm is performed correctly this step is only
performed upto two times. However, if $a \ge b^2$ than it will iterate substantially more times than it should.
\index{bn\_mp\_reduce.c}
\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_reduce.c
\vspace{-3mm}
\begin{alltt}
016
017 /* reduces x mod m, assumes 0 < x < m**2, mu is
018 * precomputed via mp_reduce_setup.
019 * From HAC pp.604 Algorithm 14.42
020 */
021 int
022 mp_reduce (mp_int * x, mp_int * m, mp_int * mu)
023 \{
024 mp_int q;
025 int res, um = m->used;
026
027 /* q = x */
028 if ((res = mp_init_copy (&q, x)) != MP_OKAY) \{
029 return res;
030 \}
031
032 /* q1 = x / b**(k-1) */
033 mp_rshd (&q, um - 1);
034
035 /* according to HAC this is optimization is ok */
036 if (((unsigned long) m->used) > (((mp_digit)1) << (DIGIT_BIT - 1))) \{
037 if ((res = mp_mul (&q, mu, &q)) != MP_OKAY) \{
038 goto CLEANUP;
039 \}
040 \} else \{
041 if ((res = s_mp_mul_high_digs (&q, mu, &q, um - 1)) != MP_OKAY) \{
042 goto CLEANUP;
043 \}
044 \}
045
046 /* q3 = q2 / b**(k+1) */
047 mp_rshd (&q, um + 1);
048
049 /* x = x mod b**(k+1), quick (no division) */
050 if ((res = mp_mod_2d (x, DIGIT_BIT * (um + 1), x)) != MP_OKAY) \{
051 goto CLEANUP;
052 \}
053
054 /* q = q * m mod b**(k+1), quick (no division) */
055 if ((res = s_mp_mul_digs (&q, m, &q, um + 1)) != MP_OKAY) \{
056 goto CLEANUP;
057 \}
058
059 /* x = x - q */
060 if ((res = mp_sub (x, &q, x)) != MP_OKAY) \{
061 goto CLEANUP;
062 \}
063
064 /* If x < 0, add b**(k+1) to it */
065 if (mp_cmp_d (x, 0) == MP_LT) \{
066 mp_set (&q, 1);
067 if ((res = mp_lshd (&q, um + 1)) != MP_OKAY)
068 goto CLEANUP;
069 if ((res = mp_add (x, &q, x)) != MP_OKAY)
070 goto CLEANUP;
071 \}
072
073 /* Back off if it's too big */
074 while (mp_cmp (x, m) != MP_LT) \{
075 if ((res = s_mp_sub (x, m, x)) != MP_OKAY) \{
076 break;
077 \}
078 \}
079
080 CLEANUP:
081 mp_clear (&q);
082
083 return res;
084 \}
\end{alltt}
\end{small}
The first multiplication that determines the quotient can be performed by only producing the digits from $m - 1$ and up. This essentially halves
the number of single precision multiplications required. However, the optimization is only safe if $\beta$ is much larger than the number of digits
in the modulus. In the source code this is evaluated on lines 36 to 44 where algorithm s\_mp\_mul\_high\_digs is used when it is
safe to do so.
\subsection{The Barrett Setup Algorithm}
In order to use algorithm mp\_reduce the value of $\mu$ must be calculated in advance. Ideally this value should be computed once and stored for
future use so that the Barrett algorithm can be used without delay.
\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_reduce\_setup}. \\
\textbf{Input}. mp\_int $a$ ($a > 1$) \\
\textbf{Output}. $\mu \leftarrow \lfloor \beta^{2m}/a \rfloor$ \\
\hline \\
1. $\mu \leftarrow 2^{2 \cdot lg(\beta) \cdot m}$ (\textit{mp\_2expt}) \\
2. $\mu \leftarrow \lfloor \mu / b \rfloor$ (\textit{mp\_div}) \\
3. Return(\textit{MP\_OKAY}) \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm mp\_reduce\_setup}
\end{figure}
\textbf{Algorithm mp\_reduce\_setup.}
This algorithm computes the reciprocal $\mu$ required for Barrett reduction. First $\beta^{2m}$ is calculated as $2^{2 \cdot lg(\beta) \cdot m}$ which
is equivalent and much faster. The final value is computed by taking the integer quotient of $\lfloor \mu / b \rfloor$.
\index{bn\_mp\_reduce\_setup.c}
\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_reduce\_setup.c
\vspace{-3mm}
\begin{alltt}
016
017 /* pre-calculate the value required for Barrett reduction
018 * For a given modulus "b" it calulates the value required in "a"
019 */
020 int
021 mp_reduce_setup (mp_int * a, mp_int * b)
022 \{
023 int res;
024
025 if ((res = mp_2expt (a, b->used * 2 * DIGIT_BIT)) != MP_OKAY) \{
026 return res;
027 \}
028 return mp_div (a, b, a, NULL);
029 \}
\end{alltt}
\end{small}
This simple routine calculates the reciprocal $\mu$ required by Barrett reduction. Note the extended usage of algorithm mp\_div where the variable
which would received the remainder is passed as NULL. As will be discussed in section 9.1 the division routine allows both the quotient and the
remainder to be passed as NULL meaning to ignore the value.
\section{The Montgomery Reduction}
Montgomery reduction\footnote{Thanks to Niels Ferguson for his insightful explanation of the algorithm.} \cite{MONT} is by far the most interesting
form of reduction in common use. It computes a modular residue which is not actually equal to the residue of the input yet instead equal to a
residue times a constant. However, as perplexing as this may sound the algorithm is relatively simple and very efficient.
Throughout this entire section the variable $n$ will represent the modulus used to form the residue. As will be discussed shortly the value of
$n$ must be odd. The variable $x$ will represent the quantity of which the residue is sought. Similar to the Barrett algorithm the input
is restricted to $0 \le x < n^2$. To begin the description some simple number theory facts must be established.
\textbf{Fact 1.} Adding $n$ to $x$ does not change the residue since in effect it adds one to the quotient $\lfloor x / n \rfloor$.
\textbf{Fact 2.} If $x$ is even then performing a division by two in $\Z$ is congruent to $x \cdot 2^{-1} \mbox{ (mod }n\mbox{)}$. For example,
if $n = 7$ and $x = 6$ then $x/2 = 3$. Using the modular inverse of two the same result is found. That is, $2^{-1} \equiv (n+1)/2 \equiv 4$ and
$4 \cdot 6 \equiv 3 \mbox{ (mod }n\mbox{)}$.
From these two simple facts the following simple algorithm can be derived.
\newpage\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{Montgomery Reduction}. \\
\textbf{Input}. Integer $x$, $n$ and $k$ \\
\textbf{Output}. $2^{-k}x \mbox{ (mod }n\mbox{)}$ \\
\hline \\
1. for $t$ from $1$ to $k$ do \\
\hspace{3mm}1.1 If $x$ is odd then \\
\hspace{6mm}1.1.1 $x \leftarrow x + n$ \\
\hspace{3mm}1.2 $x \leftarrow x/2$ \\
2. Return $x$. \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm Montgomery Reduction}
\end{figure}
The algorithm reduces the input one bit at a time using the two congruencies stated previously. Inside the loop $n$, which is odd, is
added to $x$ if $x$ is odd. This forces $x$ to be even which allows the division by two in $\Z$ to be congruent to a modular division by two.
Let $r$ represent the final result of the Montgomery algorithm. If $k > lg(n)$ and $0 \le x < n^2$ then the final result is limited to
$0 \le r < \lfloor x/2^k \rfloor + n$. As a result at most a single subtraction is required to get the residue desired.
Let $k = \lfloor lg(n) \rfloor + 1$ represent the number of bits in $n$. The current algorithm requires $2k^2$ single precision shifts
and $k^2$ single precision additions. At this rate the algorithm is most certainly slower than Barrett reduction and not terribly useful.
Fortunately there exists an alternative representation of the algorithm.
\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{Montgomery Reduction} (modified I). \\
\textbf{Input}. Integer $x$, $n$ and $k$ \\
\textbf{Output}. $2^{-k}x \mbox{ (mod }n\mbox{)}$ \\
\hline \\
1. for $t$ from $0$ to $k - 1$ do \\
\hspace{3mm}1.1 If the $t$'th bit of $x$ is one then \\
\hspace{6mm}1.1.1 $x \leftarrow x + 2^tn$ \\
2. Return $x/2^k$. \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm Montgomery Reduction (modified I)}
\end{figure}
This algorithm is equivalent since $2^tn$ is a multiple of $n$ and the lower $k$ bits of $x$ are zero by step 2. The number of single
precision shifts has now been reduced from $2k^2$ to $k^2 + 1$ which is only a small improvement.
\subsection{Digit Based Montgomery Reduction}
Instead of computing the reduction on a bit-by-bit basis it is actually much faster to compute it on digit-by-digit basis. Consider the
previous algorithm re-written to compute the Montgomery reduction in this new fashion.
\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{Montgomery Reduction} (modified II). \\
\textbf{Input}. Integer $x$, $n$ and $k$ \\
\textbf{Output}. $\beta^{-k}x \mbox{ (mod }n\mbox{)}$ \\
\hline \\
1. for $t$ from $0$ to $k - 1$ do \\
\hspace{3mm}1.1 $x \leftarrow x + \mu n \beta^t$ \\
2. Return $x/\beta^k$. \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm Montgomery Reduction (modified II)}
\end{figure}
The value $\mu n \beta^t$ is a multiple of the modulus $n$ meaning that it will not change the residue. If the first digit of
the value $\mu n \beta^t$ equals the negative (modulo $\beta$) of the $t$'th digit of $x$ then the addition will result in a zero digit. This
problem breaks down to solving the following congruency.
\begin{center}
\begin{tabular}{rcl}
$x_t + \mu n_0$ & $\equiv$ & $0 \mbox{ (mod }\beta\mbox{)}$ \\
$\mu n_0$ & $\equiv$ & $-x_t \mbox{ (mod }\beta\mbox{)}$ \\
$\mu$ & $\equiv$ & $-x_t/n_0 \mbox{ (mod }\beta\mbox{)}$ \\
\end{tabular}
\end{center}
In each iteration of the loop on step 1 a new value of $\mu$ must be calculated. The value of $-1/n_0 \mbox{ (mod }\beta\mbox{)}$ is used
extensively in this algorithm and should be precomputed. Let $\rho$ represent the negative of the modular inverse of $n_0$ modulo $\beta$.
For example, let $\beta = 10$ represent the radix. Let $n = 17$ represent the modulus which implies $k = 2$ and $\rho \equiv 7$. Let $x = 33$
represent the value to reduce.
\newpage\begin{figure}
\begin{center}
\begin{tabular}{|c|c|c|}
\hline \textbf{Step ($t$)} & \textbf{Value of $x$} & \textbf{Value of $\mu$} \\
\hline -- & $33$ & --\\
\hline $0$ & $33 + \mu n = 50$ & $1$ \\
\hline $1$ & $50 + \mu n \beta = 900$ & $5$ \\
\hline
\end{tabular}
\end{center}
\caption{Example of Montgomery Reduction}
\end{figure}
The final result $900$ is then divided by $\beta^k$ to produce the final result $9$. The first observation is that $9 \nequiv x \mbox{ (mod }n\mbox{)}$
which implies the result is not the modular residue of $x$ modulo $n$. However, recall that the residue is actually multiplied by $\beta^{-k}$ in
the algorithm. To get the true residue the value must be multiplied by $\beta^k$. In this case $\beta^k \equiv 15 \mbox{ (mod }n\mbox{)}$ and
the correct residue is $9 \cdot 15 \equiv 16 \mbox{ (mod }n\mbox{)}$.
\subsection{Baseline Montgomery Reduction}
The baseline Montgomery reduction algorithm will produce the residue for any size input. It is designed to be a catch-all algororithm for
Montgomery reductions.
\newpage\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_montgomery\_reduce}. \\
\textbf{Input}. mp\_int $x$, mp\_int $n$ and a digit $\rho \equiv -1/n_0 \mbox{ (mod }n\mbox{)}$. \\
\hspace{11.5mm}($0 \le x < n^2, n > 1, (n, \beta) = 1, \beta^k > n$) \\
\textbf{Output}. $\beta^{-k}x \mbox{ (mod }n\mbox{)}$ \\
\hline \\
1. $digs \leftarrow 2n.used + 1$ \\
2. If $digs < MP\_ARRAY$ and $m.used < \delta$ then \\
\hspace{3mm}2.1 Use algorithm fast\_mp\_montgomery\_reduce instead. \\
\\
Setup $x$ for the reduction. \\
3. If $x.alloc < digs$ then grow $x$ to $digs$ digits. \\
4. $x.used \leftarrow digs$ \\
\\
Eliminate the lower $k$ digits. \\
5. For $ix$ from $0$ to $k - 1$ do \\
\hspace{3mm}5.1 $\mu \leftarrow x_{ix} \cdot \rho \mbox{ (mod }\beta\mbox{)}$ \\
\hspace{3mm}5.2 $u \leftarrow 0$ \\
\hspace{3mm}5.3 For $iy$ from $0$ to $k - 1$ do \\
\hspace{6mm}5.3.1 $\hat r \leftarrow \mu n_{iy} + x_{ix + iy} + u$ \\
\hspace{6mm}5.3.2 $x_{ix + iy} \leftarrow \hat r \mbox{ (mod }\beta\mbox{)}$ \\
\hspace{6mm}5.3.3 $u \leftarrow \lfloor \hat r / \beta \rfloor$ \\
\hspace{3mm}5.4 While $u > 0$ do \\
\hspace{6mm}5.4.1 $iy \leftarrow iy + 1$ \\
\hspace{6mm}5.4.2 $x_{ix + iy} \leftarrow x_{ix + iy} + u$ \\
\hspace{6mm}5.4.3 $u \leftarrow \lfloor x_{ix+iy} / \beta \rfloor$ \\
\hspace{6mm}5.4.4 $x_{ix + iy} \leftarrow x_{ix+iy} \mbox{ (mod }\beta\mbox{)}$ \\
\\
Divide by $\beta^k$ and fix up as required. \\
6. $x \leftarrow \lfloor x / \beta^k \rfloor$ \\
7. If $x \ge n$ then \\
\hspace{3mm}7.1 $x \leftarrow x - n$ \\
8. Return(\textit{MP\_OKAY}). \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm mp\_montgomery\_reduce}
\end{figure}
\textbf{Algorithm mp\_montgomery\_reduce.}
This algorithm reduces the input $x$ modulo $n$ in place using the Montgomery reduction algorithm. The algorithm is loosely based
on algorithm 14.32 of \cite[pp.601]{HAC} except it merges the multiplication of $\mu n \beta^t$ with the addition in the inner loop. The
restrictions on this algorithm are fairly easy to adapt to. First $0 \le x < n^2$ bounds the input to numbers in the same range as
for the Barrett algorithm. Additionally $n > 1$ will ensure a modular inverse $\rho$ exists. $\rho$ must be calculated in
advance of this algorithm. Finally the variable $k$ is fixed and a pseudonym for $n.used$.
Step 2 decides whether a faster Montgomery algorithm can be used. It is based on the Comba technique meaning that there are limits on
the size of the input. This algorithm is discussed in sub-section 7.3.3.
Step 5 is the main reduction loop of the algorithm. The value of $\mu$ is calculated once per iteration in the outer loop. The inner loop
calculates $x + \mu n \beta^{ix}$ by multiplying $\mu n$ and adding the result to $x$ shifted by $ix$ digits. Both the addition and
multiplication are performed in the same loop to save time and memory. Step 5.4 will handle any additional carries that escape the inner loop.
Using a quick inspection this algorithm requires $n$ single precision multiplications for the outer loop and $n^2$ single precision multiplications
in the inner loop. In total $n^2 + n$ single precision multiplications which compares favourably to Barrett at $n^2 + 2n - 1$ single precision
multiplications.
\index{bn\_mp\_montgomery\_reduce.c}
\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_montgomery\_reduce.c
\vspace{-3mm}
\begin{alltt}
016
017 /* computes xR**-1 == x (mod N) via Montgomery Reduction */
018 int
019 mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
020 \{
021 int ix, res, digs;
022 mp_digit mu;
023
024 /* can the fast reduction [comba] method be used?
025 *
026 * Note that unlike in mp_mul you're safely allowed *less*
027 * than the available columns [255 per default] since carries
028 * are fixed up in the inner loop.
029 */
030 digs = n->used * 2 + 1;
031 if ((digs < MP_WARRAY) &&
032 n->used <
033 (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) \{
034 return fast_mp_montgomery_reduce (x, n, rho);
035 \}
036
037 /* grow the input as required */
038 if (x->alloc < digs) \{
039 if ((res = mp_grow (x, digs)) != MP_OKAY) \{
040 return res;
041 \}
042 \}
043 x->used = digs;
044
045 for (ix = 0; ix < n->used; ix++) \{
046 /* mu = ai * m' mod b */
047 mu = (x->dp[ix] * rho) & MP_MASK;
048
049 /* a = a + mu * m * b**i */
050 \{
051 register int iy;
052 register mp_digit *tmpn, *tmpx, u;
053 register mp_word r;
054
055 /* aliases */
056 tmpn = n->dp;
057 tmpx = x->dp + ix;
058
059 /* set the carry to zero */
060 u = 0;
061
062 /* Multiply and add in place */
063 for (iy = 0; iy < n->used; iy++) \{
064 r = ((mp_word) mu) * ((mp_word) * tmpn++) +
065 ((mp_word) u) + ((mp_word) * tmpx);
066 u = (r >> ((mp_word) DIGIT_BIT));
067 *tmpx++ = (r & ((mp_word) MP_MASK));
068 \}
069 /* propagate carries */
070 while (u) \{
071 *tmpx += u;
072 u = *tmpx >> DIGIT_BIT;
073 *tmpx++ &= MP_MASK;
074 \}
075 \}
076 \}
077
078 /* x = x/b**n.used */
079 mp_rshd (x, n->used);
080
081 /* if A >= m then A = A - m */
082 if (mp_cmp_mag (x, n) != MP_LT) \{
083 return s_mp_sub (x, n, x);
084 \}
085
086 return MP_OKAY;
087 \}
\end{alltt}
\end{small}
This is the baseline implementation of the Montgomery reduction algorithm. Lines 30 to 35 determine if the Comba based
routine can be used instead. Line 47 computes the value of $\mu$ for that particular iteration of the outer loop.
The multiplication $\mu n \beta^{ix}$ is performed in one step in the inner loop. The alias $tmpx$ refers to the $ix$'th digit of $x$ and
the alias $tmpn$ refers to the modulus $n$.
\subsection{Faster ``Comba'' Montgomery Reduction}
The Montgomery reduction requires fewer single precision multiplications than a Barrett reduction, however it is much slower due to the serial
nature of the inner loop. The Barrett reduction algorithm requires two slightly modified multipliers which can be implemented with the Comba
technique. The Montgomery reduction algorithm cannot directly use the Comba technique to any significant advantage since the inner loop calculates
a $k \times 1$ product $k$ times.
The biggest obstacle is that at the $ix$'th iteration of the outer loop the value of $x_{ix}$ is required to calculate $\mu$. This means the
carries from $0$ to $ix - 1$ must have been propagated upwards to form a valid $ix$'th digit. The solution as it turns out is very simple.
Perform a Comba like multiplier and inside the outer loop just after the inner loop fix up the $ix + 1$'th digit by forwarding the carry.
With this change in place the Montgomery reduction algorithm can be performed with a Comba style multiplication loop which substantially increases
the speed of the algorithm.
\newpage\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{fast\_mp\_montgomery\_reduce}. \\
\textbf{Input}. mp\_int $x$, mp\_int $n$ and a digit $\rho \equiv -1/n_0 \mbox{ (mod }n\mbox{)}$. \\
\hspace{11.5mm}($0 \le x < n^2, n > 1, (n, \beta) = 1, \beta^k > n$) \\
\textbf{Output}. $\beta^{-k}x \mbox{ (mod }n\mbox{)}$ \\
\hline \\
Place an array of \textbf{MP\_WARRAY} mp\_word variables called $\hat W$ on the stack. \\
1. if $x.alloc < n.used + 1$ then grow $x$ to $n.used + 1$ digits. \\
Copy the digits of $x$ into the array $\hat W$ \\
2. For $ix$ from $0$ to $x.used - 1$ do \\
\hspace{3mm}2.1 $\hat W_{ix} \leftarrow x_{ix}$ \\
3. For $ix$ from $x.used$ to $2n.used - 1$ do \\
\hspace{3mm}3.1 $\hat W_{ix} \leftarrow 0$ \\
Elimiate the lower $k$ digits. \\
4. for $ix$ from $0$ to $n.used - 1$ do \\
\hspace{3mm}4.1 $\mu \leftarrow \hat W_{ix} \cdot \rho \mbox{ (mod }\beta\mbox{)}$ \\
\hspace{3mm}4.2 For $iy$ from $0$ to $n.used - 1$ do \\
\hspace{6mm}4.2.1 $\hat W_{iy + ix} \leftarrow \hat W_{iy + ix} + \mu \cdot n_{iy}$ \\
\hspace{3mm}4.3 $\hat W_{ix + 1} \leftarrow \hat W_{ix + 1} + \lfloor \hat W_{ix} / \beta \rfloor$ \\
Propagate carries upwards. \\
5. for $ix$ from $n.used$ to $2n.used + 1$ do \\
\hspace{3mm}5.1 $\hat W_{ix + 1} \leftarrow \hat W_{ix + 1} + \lfloor \hat W_{ix} / \beta \rfloor$ \\
Shift right and reduce modulo $\beta$ simultaneously. \\
6. for $ix$ from $0$ to $n.used + 1$ do \\
\hspace{3mm}6.1 $x_{ix} \leftarrow \hat W_{ix + n.used} \mbox{ (mod }\beta\mbox{)}$ \\
Zero excess digits and fixup $x$. \\
7. if $x.used > n.used + 1$ then do \\
\hspace{3mm}7.1 for $ix$ from $n.used + 1$ to $x.used - 1$ do \\
\hspace{6mm}7.1.1 $x_{ix} \leftarrow 0$ \\
8. $x.used \leftarrow n.used + 1$ \\
9. Clamp excessive digits of $x$. \\
10. If $x \ge n$ then \\
\hspace{3mm}10.1 $x \leftarrow x - n$ \\
11. Return(\textit{MP\_OKAY}). \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm fast\_mp\_montgomery\_reduce}
\end{figure}
\textbf{Algorithm fast\_mp\_montgomery\_reduce.}
This algorithm will compute the Montgomery reduction of $x$ modulo $n$ using the Comba technique. It is on most computer platforms significantly
faster than algorithm mp\_montgomery\_reduce and algorithm mp\_reduce (\textit{Barrett reduction}). The algorithm has the same restrictions
on the input as the baseline reduction algorithm. An additional two restrictions are imposed on this algorithm. The number of digits $k$ in the
the modulus $n$ must not violate $MP\_WARRAY > 2k +1$ and $n < \delta$. When $\beta = 2^{28}$ this algorithm can be used to reduce modulo
a modulus of at most $3,556$ bits in length.
As in the other Comba reduction algorithms there is a $\hat W$ array which stores the columns of the product. It is initially filled with the
contents of $x$ with the excess digits zeroed. The reduction loop is very similar the to the baseline loop at heart. The multiplication on step
4.1 can be single precision only since $ab \mbox{ (mod }\beta\mbox{)} \equiv (a \mbox{ mod }\beta)(b \mbox{ mod }\beta)$. Some multipliers such
as those on the ARM processors take a variable length time to complete depending on the number of bytes of result it must produce. By performing
a single precision multiplication instead half the amount of time is spent.
Also note that digit $\hat W_{ix}$ must have the carry from the $ix - 1$'th digit propagated upwards in order for this to work. That is what step
4.3 will do. In effect over the $n.used$ iterations of the outer loop the $n.used$'th lower columns all have the their carries propagated forwards. Note
how the upper bits of those same words are not reduced modulo $\beta$. This is because those values will be discarded shortly and there is no
point.
Step 5 will propgate the remainder of the carries upwards. On step 6 the columns are reduced modulo $\beta$ and shifted simultaneously as they are
stored in the destination $x$.
\index{bn\_fast\_mp\_montgomery\_reduce.c}
\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_fast\_mp\_montgomery\_reduce.c
\vspace{-3mm}
\begin{alltt}
016
017 /* computes xR**-1 == x (mod N) via Montgomery Reduction
018 *
019 * This is an optimized implementation of mp_montgomery_reduce
020 * which uses the comba method to quickly calculate the columns of the
021 * reduction.
022 *
023 * Based on Algorithm 14.32 on pp.601 of HAC.
024 */
025 int
026 fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
027 \{
028 int ix, res, olduse;
029 mp_word W[MP_WARRAY];
030
031 /* get old used count */
032 olduse = x->used;
033
034 /* grow a as required */
035 if (x->alloc < n->used + 1) \{
036 if ((res = mp_grow (x, n->used + 1)) != MP_OKAY) \{
037 return res;
038 \}
039 \}
040
041 \{
042 register mp_word *_W;
043 register mp_digit *tmpx;
044
045 _W = W;
046 tmpx = x->dp;
047
048 /* copy the digits of a into W[0..a->used-1] */
049 for (ix = 0; ix < x->used; ix++) \{
050 *_W++ = *tmpx++;
051 \}
052
053 /* zero the high words of W[a->used..m->used*2] */
054 for (; ix < n->used * 2 + 1; ix++) \{
055 *_W++ = 0;
056 \}
057 \}
058
059 for (ix = 0; ix < n->used; ix++) \{
060 /* mu = ai * m' mod b
061 *
062 * We avoid a double precision multiplication (which isn't required)
063 * by casting the value down to a mp_digit. Note this requires
064 * that W[ix-1] have the carry cleared (see after the inner loop)
065 */
066 register mp_digit mu;
067 mu = (((mp_digit) (W[ix] & MP_MASK)) * rho) & MP_MASK;
068
069 /* a = a + mu * m * b**i
070 *
071 * This is computed in place and on the fly. The multiplication
072 * by b**i is handled by offseting which columns the results
073 * are added to.
074 *
075 * Note the comba method normally doesn't handle carries in the
076 * inner loop In this case we fix the carry from the previous
077 * column since the Montgomery reduction requires digits of the
078 * result (so far) [see above] to work. This is
079 * handled by fixing up one carry after the inner loop. The
080 * carry fixups are done in order so after these loops the
081 * first m->used words of W[] have the carries fixed
082 */
083 \{
084 register int iy;
085 register mp_digit *tmpn;
086 register mp_word *_W;
087
088 /* alias for the digits of the modulus */
089 tmpn = n->dp;
090
091 /* Alias for the columns set by an offset of ix */
092 _W = W + ix;
093
094 /* inner loop */
095 for (iy = 0; iy < n->used; iy++) \{
096 *_W++ += ((mp_word) mu) * ((mp_word) * tmpn++);
097 \}
098 \}
099
100 /* now fix carry for next digit, W[ix+1] */
101 W[ix + 1] += W[ix] >> ((mp_word) DIGIT_BIT);
102 \}
103
104
105 \{
106 register mp_digit *tmpx;
107 register mp_word *_W, *_W1;
108
109 /* nox fix rest of carries */
110 _W1 = W + ix;
111 _W = W + ++ix;
112
113 for (; ix <= n->used * 2 + 1; ix++) \{
114 *_W++ += *_W1++ >> ((mp_word) DIGIT_BIT);
115 \}
116
117 /* copy out, A = A/b**n
118 *
119 * The result is A/b**n but instead of converting from an
120 * array of mp_word to mp_digit than calling mp_rshd
121 * we just copy them in the right order
122 */
123 tmpx = x->dp;
124 _W = W + n->used;
125
126 for (ix = 0; ix < n->used + 1; ix++) \{
127 *tmpx++ = *_W++ & ((mp_word) MP_MASK);
128 \}
129
130 /* zero oldused digits, if the input a was larger than
131 * m->used+1 we'll have to clear the digits */
132 for (; ix < olduse; ix++) \{
133 *tmpx++ = 0;
134 \}
135 \}
136
137 /* set the max used and clamp */
138 x->used = n->used + 1;
139 mp_clamp (x);
140
141 /* if A >= m then A = A - m */
142 if (mp_cmp_mag (x, n) != MP_LT) \{
143 return s_mp_sub (x, n, x);
144 \}
145 return MP_OKAY;
146 \}
\end{alltt}
\end{small}
The $\hat W$ array is first filled with digits of $x$ on line 49 then the rest of the digits are zeroed on line 54. Both loops share
the same alias variables to make the code easier to read.
The value of $\mu$ is calculated in an interesting fashion. First the value $\hat W_{ix}$ is reduced modulo $\beta$ and cast to a mp\_digit. This
forces the compiler to use a single precision multiplication and prevents any concerns about loss of precision. Line 101 fixes the carry
for the next iteration of the loop by propagating the carry from $\hat W_{ix}$ to $\hat W_{ix+1}$.
The for loop on line 113 propagates the rest of the carries upwards through the columns. The for loop on line 126 reduces the columns
modulo $\beta$ and shifts them $k$ places at the same time. The alias $\_ \hat W$ actually refers to the array $\hat W$ starting at the $n.used$'th
digit, that is $\_ \hat W_{t} = \hat W_{n.used + t}$.
\subsection{Montgomery Setup}
To calculate the variable $\rho$ a relatively simple algorithm will be required.
\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_montgomery\_setup}. \\
\textbf{Input}. mp\_int $n$ ($n > 1$ and $(n, 2) = 1$) \\
\textbf{Output}. $\rho \equiv -1/n_0 \mbox{ (mod }\beta\mbox{)}$ \\
\hline \\
1. $b \leftarrow n_0$ \\
2. If $b$ is even return(\textit{MP\_VAL}) \\
3. $x \leftarrow ((b + 2) \mbox{ AND } 4) << 1) + b$ \\
4. for $k$ from 0 to $3$ do \\
\hspace{3mm}4.1 $x \leftarrow x \cdot (2 - bx)$ \\
5. $\rho \leftarrow \beta - x \mbox{ (mod }\beta\mbox{)}$ \\
6. Return(\textit{MP\_OKAY}). \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm mp\_montgomery\_setup}
\end{figure}
\textbf{Algorithm mp\_montgomery\_setup.}
This algorithm will calculate the value of $\rho$ required within the Montgomery reduction algorithms. It uses a very interesting trick
to calculate $1/n_0$ when $\beta$ is a power of two.
\index{bn\_mp\_montgomery\_setup.c}
\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_montgomery\_setup.c
\vspace{-3mm}
\begin{alltt}
016
017 /* setups the montgomery reduction stuff */
018 int
019 mp_montgomery_setup (mp_int * n, mp_digit * rho)
020 \{
021 mp_digit x, b;
022
023 /* fast inversion mod 2**k
024 *
025 * Based on the fact that
026 *
027 * XA = 1 (mod 2**n) => (X(2-XA)) A = 1 (mod 2**2n)
028 * => 2*X*A - X*X*A*A = 1
029 * => 2*(1) - (1) = 1
030 */
031 b = n->dp[0];
032
033 if ((b & 1) == 0) \{
034 return MP_VAL;
035 \}
036
037 x = (((b + 2) & 4) << 1) + b; /* here x*a==1 mod 2**4 */
038 x *= 2 - b * x; /* here x*a==1 mod 2**8 */
039 #if !defined(MP_8BIT)
040 x *= 2 - b * x; /* here x*a==1 mod 2**16 */
041 #endif
042 #if defined(MP_64BIT) || !(defined(MP_8BIT) || defined(MP_16BIT))
043 x *= 2 - b * x; /* here x*a==1 mod 2**32 */
044 #endif
045 #ifdef MP_64BIT
046 x *= 2 - b * x; /* here x*a==1 mod 2**64 */
047 #endif
048
049 /* rho = -1/m mod b */
050 *rho = (((mp_digit) 1 << ((mp_digit) DIGIT_BIT)) - x) & MP_MASK;
051
052 return MP_OKAY;
053 \}
\end{alltt}
\end{small}
This source code computes the value of $\rho$ required to perform Montgomery reduction. It has been modified to avoid performing excess
multiplications when $\beta$ is not the default 28-bits.
\section{The Diminished Radix Algorithm}
The diminished radix method of modular reduction \cite{DRMET} is a fairly clever technique which is more efficient than either the Barrett
or Montgomery methods. The technique is based on a simple congruence.
\begin{equation}
(x \mbox{ mod } n) + k \lfloor x / n \rfloor \equiv x \mbox{ (mod }(n - k)\mbox{)}
\end{equation}
This observation was used in the MMB \cite{MMB} block cipher to create a diffusion primitive. It used the fact that if $n = 2^{31}$ and $k=1$ that
then a x86 multiplier could produce the 62-bit product and use the ``shrd'' instruction to perform a double-precision right shift. The proof
of the above equation is very simple. First write $x$ in the product form.
\begin{equation}
x = qn + r
\end{equation}
Now reduce both sides modulo $(n - k)$.
\begin{equation}
x \equiv qk + r \mbox{ (mod }(n-k)\mbox{)}
\end{equation}
The variable $n$ reduces as $n \mbox{ mod } (n - k)$ to $k$. By putting $q = \lfloor x/n \rfloor$ and $r = x \mbox{ mod } n$
into the equation the original congruence is reproduced. The following algorithm is based on these observations.
\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{Diminished Radix Reduction}. \\
\textbf{Input}. Integer $x$, $n$, $k$ \\
\textbf{Output}. $x \mbox{ mod } (n - k)$ \\
\hline \\
1. $q \leftarrow \lfloor x / n \rfloor$ \\
2. $q \leftarrow k \cdot q$ \\
3. $x \leftarrow x \mbox{ (mod }n\mbox{)}$ \\
4. $x \leftarrow x + q$ \\
5. If $x \ge (n - k)$ then \\
\hspace{3mm}5.1 $x \leftarrow x - (n - k)$ \\
\hspace{3mm}5.2 Goto step 1. \\
6. Return $x$ \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm Diminished Radix Reduction}
\label{fig:DR}
\end{figure}
This algorithm will reduce $x$ modulo $n - k$ and return the residue. If $0 \le x < (n - k)^2$ then the algorithm will loop almost always
once or twice and occasionally three times. For simplicity sake the value of $x$ is bounded by the following simple polynomial.
\begin{equation}
0 \le x < n^2 + k^2 - 2nk
\end{equation}
The true bound is $0 \le x < (n - k - 1)^2$ but this has quite a few more terms. The value of $q$ after step 1 is bounded by the following.
\begin{equation}
q < n - 2k - k^2/n
\end{equation}
Since $k^2$ is going to be considerably smaller than $n$ that term will always be zero. The value of $x$ after step 3 is bounded trivially as
$0 \le x < n$. By step four the sum $x + q$ is bounded by
\begin{equation}
0 \le q + x < (k + 1)n - 2k^2 - 1
\end{equation}
As a result at most $k$ subtractions of $n$ are required to produce the residue. With a second pass $q$ will be loosely bounded by $0 \le q < k^2$
after step 2 while $x$ will still be loosely bounded by $0 \le x < n$ after step 3. After the second pass it is highly unlike that the
sum in step 4 will exceed $n - k$. In practice fewer than three passes of the algorithm are required to reduce virtually every input in the
range $0 \le x < (n - k - 1)^2$.
\subsection{Choice of Moduli}
On the surface this algorithm looks like a very expensive algorithm. It requires a couple of subtractions followed by multiplication and other
modular reductions. The usefulness of this algorithm becomes exceedingly clear when an appropriate moduli is chosen.
Division in general is a very expensive operation to perform. The one exception is when the division is by a power of the radix of representation used.
Division by ten for example is simple for humans since it amounts to shifting the decimal place. Similarly division by two
(\textit{or powers of two}) is very simple for computers to perform. It would therefore seem logical to choose $n$ of the form $2^p$
which would imply that $\lfloor x / n \rfloor$ is a simple shift of $x$ right $p$ bits.
However, there is one operation related to division of power of twos that is even faster than this. If $n = \beta^p$ then the division may be
performed by moving whole digits to the right $p$ places. In practice division by $\beta^p$ is much faster than division by $2^p$ for any $p$.
Also with the choice of $n = \beta^p$ reducing $x$ modulo $n$ requires zeroing the digits above the $p-1$'th digit of $x$.
Throughout the next section the term ``restricted modulus'' will refer to a modulus of the form $\beta^p - k$ where as the term ``unrestricted
modulus'' will refer to a modulus of the form $2^p - k$. The word ``restricted'' in this case refers to the fact that it is based on the
$2^p$ logic except $p$ must be a multiple of $lg(\beta)$.
\subsection{Choice of $k$}
Now that division and reduction (\textit{step 1 and 3 of figure~\ref{fig:DR}}) have been optimized to simple digit operations the multiplication by $k$
in step 2 is the most expensive operation. Fortunately the choice of $k$ is not terribly limited. For all intents and purposes it might
as well be a single digit.
\subsection{Restricted Diminished Radix Reduction}
The restricted Diminished Radix algorithm can quickly reduce numbers modulo numbers of the form $n = \beta^p - k$. This algorithm can reduce
an input $x$ within the range $0 \le x < n^2$ using a couple passes of the algorithm demonstrated in figure~\ref{fig:DR}. The implementation
of this algorithm has been optimized to avoid additional overhead associated with a division by $\beta^p$, the
multiplication by $k$ or the addition of $x$ and $q$. The resulting algorithm is very efficient and can lead to substantial improvements when
modular exponentiations are performed compared to Montgomery based reduction algorithms.
\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_dr\_reduce}. \\
\textbf{Input}. mp\_int $x$, $n$ and a mp\_digit $k = \beta - n_0$ \\
\hspace{11.5mm}($0 \le x < n^2$, $n > 1$, $0 < k \le \beta$) \\
\textbf{Output}. $x \mbox{ mod } n$ \\
\hline \\
1. $m \leftarrow n.used$ \\
2. If $x.alloc < 2m$ then grow $x$ to $2m$ digits. \\
3. $\mu \leftarrow 0$ \\
4. for $i$ from $0$ to $m - 1$ do \\
\hspace{3mm}4.1 $\hat r \leftarrow k \cdot x_{m+i} + x_{i} + \mu$ \\
\hspace{3mm}4.2 $x_{i} \leftarrow \hat r \mbox{ (mod }\beta\mbox{)}$ \\
\hspace{3mm}4.3 $\mu \leftarrow \lfloor \hat r / \beta \rfloor$ \\
5. $x_{m} \leftarrow \mu$ \\
6. for $i$ from $m + 1$ to $x.used - 1$ do \\
\hspace{3mm}6.1 $x_{i} \leftarrow 0$ \\
7. Clamp excess digits of $x$. \\
8. If $x \ge n$ then \\
\hspace{3mm}8.1 $x \leftarrow x - n$ \\
\hspace{3mm}8.2 Goto step 3. \\
9. Return(\textit{MP\_OKAY}). \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm mp\_dr\_reduce}
\end{figure}
\textbf{Algorithm mp\_dr\_reduce.}
This algorithm will perform the dimished radix reduction of $x$ modulo $n$. It has similar restrictions to that of the Barrett reduction
with the addition that $n$ must be of the form $n = \beta^m - k$ where $0 < k \le \beta$.
This algorithm essentially implements the pseudo-code in figure 7.10 except with a slight optimization. The division by $\beta^m$, multiplication by $k$
and addition of $x \mbox{ mod }\beta^m$ are all performed as one step inside the loop on step 4. The division by $\beta^m$ is emulated by accessing
the term at the $m+i$'th position which is subsequently multiplied by $k$ and added to the term at the $i$'th position. After the loop the $m$'th
digit is set to the carry and the upper digits are zeroed. Step 5 and 6 emulate the reduction modulo $\beta^m$ that should have happend to
$x$ before the addition of the multiple of the upper half.
At step 8 if $x$ is still larger than $n$ another pass of the algorithm is required. First $n$ is subtracted from $x$ and then the algorithm resumes
at step 3.
\index{bn\_mp\_dr\_reduce.c}
\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_dr\_reduce.c
\vspace{-3mm}
\begin{alltt}
016
017 /* reduce "x" in place modulo "n" using the Diminished Radix algorithm.
018 *
019 * Based on algorithm from the paper
020 *
021 * "Generating Efficient Primes for Discrete Log Cryptosystems"
022 * Chae Hoon Lim, Pil Loong Lee,
023 * POSTECH Information Research Laboratories
024 *
025 * The modulus must be of a special format [see manual]
026 *
027 * Has been modified to use algorithm 7.10 from the LTM book instead
028 */
029 int
030 mp_dr_reduce (mp_int * x, mp_int * n, mp_digit k)
031 \{
032 int err, i, m;
033 mp_word r;
034 mp_digit mu, *tmpx1, *tmpx2;
035
036 /* m = digits in modulus */
037 m = n->used;
038
039 /* ensure that "x" has at least 2m digits */
040 if (x->alloc < m + m) \{
041 if ((err = mp_grow (x, m + m)) != MP_OKAY) \{
042 return err;
043 \}
044 \}
045
046 /* top of loop, this is where the code resumes if
047 * another reduction pass is required.
048 */
049 top:
050 /* aliases for digits */
051 /* alias for lower half of x */
052 tmpx1 = x->dp;
053
054 /* alias for upper half of x, or x/B**m */
055 tmpx2 = x->dp + m;
056
057 /* set carry to zero */
058 mu = 0;
059
060 /* compute (x mod B**m) + mp * [x/B**m] inline and inplace */
061 for (i = 0; i < m; i++) \{
062 r = ((mp_word)*tmpx2++) * ((mp_word)k) + *tmpx1 + mu;
063 *tmpx1++ = r & MP_MASK;
064 mu = r >> ((mp_word)DIGIT_BIT);
065 \}
066
067 /* set final carry */
068 *tmpx1++ = mu;
069
070 /* zero words above m */
071 for (i = m + 1; i < x->used; i++) \{
072 *tmpx1++ = 0;
073 \}
074
075 /* clamp, sub and return */
076 mp_clamp (x);
077
078 /* if x >= n then subtract and reduce again
079 * Each successive "recursion" makes the input smaller and smaller.
080 */
081 if (mp_cmp_mag (x, n) != MP_LT) \{
082 s_mp_sub(x, n, x);
083 goto top;
084 \}
085 return MP_OKAY;
086 \}
\end{alltt}
\end{small}
The first step is to grow $x$ as required to $2m$ digits since the reduction is performed in place on $x$. The label on line 49 is where
the algorithm will resume if further reduction passes are required. In theory it could be placed at the top of the function however, the size of
the modulus and question of whether $x$ is large enough are invariant after the first pass meaning that it would be a waste of time.
The aliases $tmpx1$ and $tmpx2$ refer to the digits of $x$ where the latter is offset by $m$ digits. By reading digits from $x$ offset by $m$ digits
a division by $\beta^m$ can be simulated virtually for free. The loop on line 61 performs the bulk of the work (\textit{corresponds to step 4 of algorithm 7.11})
in this algorithm.
By line 68 the pointer $tmpx1$ points to the $m$'th digit of $x$ which is where the final carry will be placed. Similarly by line 71 the
same pointer will point to the $m+1$'th digit where the zeroes will be placed.
Since the algorithm is only valid if both $x$ and $n$ are greater than zero an unsigned comparison suffices to determine if another pass is required.
With the same logic at line 82 the value of $x$ is known to be greater than or equal to $n$ meaning that an unsigned subtraction can be used
as well. Since the destination of the subtraction is the larger of the inputs the call to algorithm s\_mp\_sub cannot fail and the return code
does not need to be checked.
\subsubsection{Setup}
To setup the restricted Diminished Radix algorithm the value $k = \beta - n_0$ is required. This algorithm is not really complicated but provided for
completeness.
\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_dr\_setup}. \\
\textbf{Input}. mp\_int $n$ \\
\textbf{Output}. $k = \beta - n_0$ \\
\hline \\
1. $k \leftarrow \beta - n_0$ \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm mp\_dr\_setup}
\end{figure}
\index{bn\_mp\_dr\_setup.c}
\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_dr\_setup.c
\vspace{-3mm}
\begin{alltt}
016
017 /* determines the setup value */
018 void mp_dr_setup(mp_int *a, mp_digit *d)
019 \{
020 /* the casts are required if DIGIT_BIT is one less than
021 * the number of bits in a mp_digit [e.g. DIGIT_BIT==31]
022 */
023 *d = (mp_digit)((((mp_word)1) << ((mp_word)DIGIT_BIT)) -
024 ((mp_word)a->dp[0]));
025 \}
026
\end{alltt}
\end{small}
\subsubsection{Modulus Detection}
Another algorithm which will be useful is the ability to detect a restricted Diminished Radix modulus. An integer is said to be
of restricted Diminished Radix form if all of the digits are equal to $\beta - 1$ except the trailing digit which may be any value.
\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_dr\_is\_modulus}. \\
\textbf{Input}. mp\_int $n$ \\
\textbf{Output}. $1$ if $n$ is in D.R form, $0$ otherwise \\
\hline
1. If $n.used < 2$ then return($0$). \\
2. for $ix$ from $1$ to $n.used - 1$ do \\
\hspace{3mm}2.1 If $n_{ix} \ne \beta - 1$ return($0$). \\
3. Return($1$). \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm mp\_dr\_is\_modulus}
\end{figure}
\textbf{Algorithm mp\_dr\_is\_modulus.}
This algorithm determines if a value is in Diminished Radix form. Step 1 rejects obvious cases where fewer than two digits are
in the mp\_int. Step 2 tests all but the first digit to see if they are equal to $\beta - 1$. If the algorithm manages to get to
step 3 then $n$ must of Diminished Radix form.
\index{bn\_mp\_dr\_is\_modulus.c}
\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_dr\_is\_modulus.c
\vspace{-3mm}
\begin{alltt}
016
017 /* determines if a number is a valid DR modulus */
018 int mp_dr_is_modulus(mp_int *a)
019 \{
020 int ix;
021
022 /* must be at least two digits */
023 if (a->used < 2) \{
024 return 0;
025 \}
026
027 for (ix = 1; ix < a->used; ix++) \{
028 if (a->dp[ix] != MP_MASK) \{
029 return 0;
030 \}
031 \}
032 return 1;
033 \}
034
\end{alltt}
\end{small}
\subsection{Unrestricted Diminished Radix Reduction}
The unrestricted Diminished Radix algorithm allows modular reductions to be performed when the modulus is of the form $2^p - k$. This algorithm
is a straightforward adaptation of algorithm~\ref{fig:DR}.
In general the restricted Diminished Radix reduction algorithm is much faster since it has considerably lower overhead. However, this new
algorithm is much faster than either Montgomery or Barrett reduction when the moduli are of the appropriate form.
\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_reduce\_2k}. \\
\textbf{Input}. mp\_int $a$ and $n$. mp\_digit $k$ \\
\hspace{11.5mm}($a \ge 0$, $n > 1$, $0 < k < \beta$, $n + k$ is a power of two) \\
\textbf{Output}. $a \mbox{ (mod }n\mbox{)}$ \\
\hline
1. $p \leftarrow \lfloor lg(n) \rfloor + 1$ (\textit{mp\_count\_bits}) \\
2. While $a \ge n$ do \\
\hspace{3mm}2.1 $q \leftarrow \lfloor a / 2^p \rfloor$ (\textit{mp\_div\_2d}) \\
\hspace{3mm}2.2 $a \leftarrow a \mbox{ (mod }2^p\mbox{)}$ (\textit{mp\_mod\_2d}) \\
\hspace{3mm}2.3 $q \leftarrow q \cdot k$ (\textit{mp\_mul\_d}) \\
\hspace{3mm}2.4 $a \leftarrow a - q$ (\textit{s\_mp\_sub}) \\
\hspace{3mm}2.5 If $a \ge n$ then do \\
\hspace{6mm}2.5.1 $a \leftarrow a - n$ \\
3. Return(\textit{MP\_OKAY}). \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm mp\_reduce\_2k}
\end{figure}
\textbf{Algorithm mp\_reduce\_2k.}
This algorithm quickly reduces an input $a$ modulo an unrestricted Diminished Radix modulus $n$.
\index{bn\_mp\_reduce\_2k.c}
\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_reduce\_2k.c
\vspace{-3mm}
\begin{alltt}
016
017 /* reduces a modulo n where n is of the form 2**p - k */
018 int
019 mp_reduce_2k(mp_int *a, mp_int *n, mp_digit k)
020 \{
021 mp_int q;
022 int p, res;
023
024 if ((res = mp_init(&q)) != MP_OKAY) \{
025 return res;
026 \}
027
028 p = mp_count_bits(n);
029 top:
030 /* q = a/2**p, a = a mod 2**p */
031 if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) \{
032 goto ERR;
033 \}
034
035 if (k != 1) \{
036 /* q = q * k */
037 if ((res = mp_mul_d(&q, k, &q)) != MP_OKAY) \{
038 goto ERR;
039 \}
040 \}
041
042 /* a = a + q */
043 if ((res = s_mp_add(a, &q, a)) != MP_OKAY) \{
044 goto ERR;
045 \}
046
047 if (mp_cmp_mag(a, n) != MP_LT) \{
048 s_mp_sub(a, n, a);
049 goto top;
050 \}
051
052 ERR:
053 mp_clear(&q);
054 return res;
055 \}
056
\end{alltt}
\end{small}
\subsubsection{Unrestricted Setup}
To setup this reduction algorithm the value of $k = 2^p - n$ is required.
\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_reduce\_2k\_setup}. \\
\textbf{Input}. mp\_int $n$ \\
\textbf{Output}. $k = 2^p - n$ \\
\hline
1. $p \leftarrow \lfloor lg(n) \rfloor + 1$ (\textit{mp\_count\_bits}) \\
2. $x \leftarrow 2^p$ (\textit{mp\_2expt}) \\
3. $x \leftarrow x - n$ (\textit{mp\_sub}) \\
4. $k \leftarrow x_0$ \\
5. Return(\textit{MP\_OKAY}). \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm mp\_reduce\_2k\_setup}
\end{figure}
\textbf{Algorithm mp\_reduce\_2k\_setup.}
\index{bn\_mp\_reduce\_2k\_setup.c}
\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_reduce\_2k\_setup.c
\vspace{-3mm}
\begin{alltt}
016
017 /* determines the setup value */
018 int
019 mp_reduce_2k_setup(mp_int *a, mp_digit *d)
020 \{
021 int res, p;
022 mp_int tmp;
023
024 if ((res = mp_init(&tmp)) != MP_OKAY) \{
025 return res;
026 \}
027
028 p = mp_count_bits(a);
029 if ((res = mp_2expt(&tmp, p)) != MP_OKAY) \{
030 mp_clear(&tmp);
031 return res;
032 \}
033
034 if ((res = s_mp_sub(&tmp, a, &tmp)) != MP_OKAY) \{
035 mp_clear(&tmp);
036 return res;
037 \}
038
039 *d = tmp.dp[0];
040 mp_clear(&tmp);
041 return MP_OKAY;
042 \}
\end{alltt}
\end{small}
\subsubsection{Unrestricted Detection}
An integer $n$ is a valid unrestricted Diminished Radix modulus if either of the following are true.
\begin{enumerate}
\item The number has only one digit.
\item The number has more than one digit and every bit from the $\beta$'th to the most significant is one.
\end{enumerate}
If either condition is true than there is a power of two namely $2^p$ such that $0 < 2^p - n < \beta$.
-- Finish this section later, Tom.
\section{Algorithm Comparison}
So far three very different algorithms for modular reduction have been discussed. Each of the algorithms have their own strengths and weaknesses
that makes having such a selection very useful. The following table sumarizes the three algorithms along with comparisons of work factors. Since
all three algorithms have the restriction that $0 \le x < n^2$ and $n > 1$ those limitations are not included in the table.
\begin{center}
\begin{small}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \textbf{Method} & \textbf{Work Required} & \textbf{Limitations} & \textbf{$m = 8$} & \textbf{$m = 32$} & \textbf{$m = 64$} \\
\hline Barrett & $m^2 + 2m - 1$ & None & $79$ & $1087$ & $4223$ \\
\hline Montgomery & $m^2 + m$ & $n$ must be odd & $72$ & $1056$ & $4160$ \\
\hline D.R. & $2m$ & $n = \beta^m - k$ & $16$ & $64$ & $128$ \\
\hline
\end{tabular}
\end{small}
\end{center}
In theory Montgomery and Barrett reductions would require roughly the same amount of time to complete. However, in practice since Montgomery
reduction can be written as a single function with the Comba technique it is much faster. Barrett reduction suffers from the overhead of
calling the half precision multipliers, addition and division by $\beta$ algorithms.
For almost every cryptographic algorithm Montgomery reduction is the algorithm of choice. The one set of algorithms where Diminished Radix reduction truly
shines are based on the discrete logarithm problem such as Diffie-Hellman \cite{DH} and ElGamal \cite{ELGAMAL}. In these algorithms
primes of the form $\beta^m - k$ can be found and shared amongst users. These primes will allow the Diminished Radix algorithm to be used in
modular exponentiation to greatly speed up the operation.
\section*{Exercises}
\begin{tabular}{cl}
$\left [ 3 \right ]$ & Prove that the ``trick'' in algorithm mp\_montgomery\_setup actually \\
& calculates the correct value of $\rho$. \\
& \\
$\left [ 2 \right ]$ & Devise an algorithm to reduce modulo $n + k$ for small $k$ quickly. \\
& \\
$\left [ 4 \right ]$ & Prove that the pseudo-code algorithm ``Diminished Radix Reduction'' \\
& (\textit{figure 7.10}) terminates. Also prove the probability that it will \\
& terminate within $1 \le k \le 10$ iterations. \\
& \\
\end{tabular}
\chapter{Exponentiation}
Exponentiation is the operation of raising one variable to the power of another, for example, $a^b$. A variant of exponentiation, computed
in a finite field or ring, is called modular exponentiation. This latter style of operation is typically used in public key
cryptosystems such as RSA and Diffie-Hellman. The ability to quickly compute modular exponentiations is of great benefit to any
such cryptosystem and many methods have been sought to speed it up.
\section{Exponentiation Basics}
A trivial algorithm would simply multiply $a$ against itself $b - 1$ times to compute the exponentiation desired. However, as $b$ grows in size
the number of multiplications becomes prohibitive. Imagine what would happen if $b$ $\approx$ $2^{1024}$ as is the case when computing an RSA signature
with a $1024$-bit key. Such a calculation could never be completed as it would take simply far too long.
Fortunately there is a very simple algorithm based on the laws of exponents. Recall that $lg_a(a^b) = b$ and that $lg_a(a^ba^c) = b + c$ which
are two trivial relationships between the base and the exponent. Let $b_i$ represent the $i$'th bit of $b$ starting from the least
significant bit. If $b$ is a $k$-bit integer than the following equation is true.
\begin{equation}
a^b = \prod_{i=0}^{k-1} a^{2^i \cdot b_i}
\end{equation}
By taking the base $a$ logarithm of both sides of the equation the following equation is the result.
\begin{equation}
b = \sum_{i=0}^{k-1}2^i \cdot b_i
\end{equation}
This is indeed true. The term $a^{2^i}$ can be found from the $i - 1$'th term by squaring the term since $\left ( a^{2^i} \right )^2$ is equal to
$a^{2^{i+1}}$. This trivial algorithm forms the basis of essentially all fast exponentiation algorithms. It requires $k$ squarings and on average
$k \over 2$ multiplications to compute the result. This is indeed quite an improvement over simply multiplying by $a$ a total of $b-1$ times.
While this current method is a considerable speed up there are further improvements to be made. For example, the $a^{2^i}$ term does not need to
be an auxilary variable. Consider the following algorithm.
\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{Left to Right Exponentiation}. \\
\textbf{Input}. Integer $a$, $b$ and $k$ \\
\textbf{Output}. $c = a^b$ \\
\hline \\
1. $c \leftarrow 1$ \\
2. for $i$ from $k - 1$ to $0$ do \\
\hspace{3mm}2.1 $c \leftarrow c^2$ \\
\hspace{3mm}2.2 $c \leftarrow c \cdot a^{b_i}$ \\
3. Return $c$. \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Left to Right Exponentiation}
\end{figure}
This algorithm starts from the most significant bit and works towards the least significant bit. When the $i$'th bit of $b$ is set $a$ is
multiplied against the current product. In each iteration the product is squared which doubles the exponent of the individual terms of the
product.
For example, let $b = 101100_2 \equiv 44_{10}$. The following chart demonstrates the actions of the algorithm.
\newpage\begin{figure}
\begin{center}
\begin{tabular}{|c|c|}
\hline \textbf{Value of $i$} & \textbf{Value of $c$} \\
\hline - & $1$ \\
\hline $5$ & $a$ \\
\hline $4$ & $a^2$ \\
\hline $3$ & $a^4 \cdot a$ \\
\hline $2$ & $a^8 \cdot a^2 \cdot a$ \\
\hline $1$ & $a^{16} \cdot a^4 \cdot a^2$ \\
\hline $0$ & $a^{32} \cdot a^8 \cdot a^4$ \\
\hline
\end{tabular}
\end{center}
\caption{Example of Left to Right Exponentiation}
\end{figure}
When the product $a^{32} \cdot a^8 \cdot a^4$ is simplified it is equal $a^{44}$ which is the desired exponentiation. This particular algorithm is
called ``Left to Right'' because it reads the exponent in that order. All of the exponentiation algorithms that will be presented are of this nature.
\subsection{Single Digit Exponentiation}
The first algorithm in the series of exponentiation algorithms will be an unbounded algorithm where the exponent is a single digit. It is intended
to be used when a small power of an input is required (\textit{e.g. $a^5$}). It is faster than simply multiplying $b - 1$ times for all values of
$b$ that are greater than three.
\newpage\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_expt\_d}. \\
\textbf{Input}. mp\_int $a$ and mp\_digit $b$ \\
\textbf{Output}. $c = a^b$ \\
\hline \\
1. $g \leftarrow a$ (\textit{mp\_init\_copy}) \\
2. $c \leftarrow 1$ (\textit{mp\_set}) \\
3. for $x$ from 0 to $lg(\beta) - 1$ do \\
\hspace{3mm}3.1 $c \leftarrow c^2$ (\textit{mp\_sqr}) \\
\hspace{3mm}3.2 If $b$ AND $2^{lg(\beta) - 1} \ne 0$ then \\
\hspace{6mm}3.2.1 $c \leftarrow c \cdot g$ (\textit{mp\_mul}) \\
\hspace{3mm}3.3 $b \leftarrow b << 1$ \\
4. Clear $g$. \\
5. Return(\textit{MP\_OKAY}). \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm mp\_expt\_d}
\end{figure}
\textbf{Algorithm mp\_expt\_d.}
This algorithm computes the value of $a$ raised to the power of a single digit $b$. It uses the left to right exponentiation algorithm to
quickly compute the exponentiation. It is loosely based on algorithm 14.79 of HAC \cite[pp. 615]{HAC} with the difference that the
exponent is a fixed width.
A copy of $a$ is made on the first step to allow destination variable $c$ be the same as the source variable $a$. The result
is set to the initial value of $1$ in the subsequent step.
Inside the loop the exponent is read from the most significant bit first downto the least significant bit. First $c$ is invariably squared
on step 3.1. In the following step if the most significant bit of $b$ is one the copy of $a$ is multiplied against the result. The value
of $b$ is shifted left one bit to make the next bit down from the most signficant bit become the new most significant bit. In effect each
iteration of the loop moves the bits of the exponent $b$ upwards to the most significant location.
\index{bn\_mp\_expt\_d.c}
\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_expt\_d.c
\vspace{-3mm}
\begin{alltt}
016
017 /* calculate c = a**b using a square-multiply algorithm */
018 int
019 mp_expt_d (mp_int * a, mp_digit b, mp_int * c)
020 \{
021 int res, x;
022 mp_int g;
023
024 if ((res = mp_init_copy (&g, a)) != MP_OKAY) \{
025 return res;
026 \}
027
028 /* set initial result */
029 mp_set (c, 1);
030
031 for (x = 0; x < (int) DIGIT_BIT; x++) \{
032 /* square */
033 if ((res = mp_sqr (c, c)) != MP_OKAY) \{
034 mp_clear (&g);
035 return res;
036 \}
037
038 /* if the bit is set multiply */
039 if ((b & (mp_digit) (((mp_digit)1) << (DIGIT_BIT - 1))) != 0) \{
040 if ((res = mp_mul (c, &g, c)) != MP_OKAY) \{
041 mp_clear (&g);
042 return res;
043 \}
044 \}
045
046 /* shift to next bit */
047 b <<= 1;
048 \}
049
050 mp_clear (&g);
051 return MP_OKAY;
052 \}
\end{alltt}
\end{small}
-- Some note later.
\subsection{$k$-ary Exponentiation}
When calculating an exponentiation the most time consuming bottleneck is the multiplications which are in general a small factor
slower than squaring. Recall from the previous algorithm that $b_{i}$ refers to the $i$'th bit of the exponent $b$. Suppose it referred to
the $i$'th $k$-bit digit of the exponent of $b$. For $k = 1$ the definitions are synonymous and for $k > 1$ the resulting algorithm
computes the same exponentiation. A group of $k$ bits from the exponent is called a \textit{window}. That is it is a window on a small
portion of the exponent. Consider the following modification to the basic left to right exponentiation algorithm.
\newpage\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{$k$-ary Exponentiation}. \\
\textbf{Input}. Integer $a$, $b$, $k$ and $t$ \\
\textbf{Output}. $c = a^b$ \\
\hline \\
1. $c \leftarrow 1$ \\
2. for $i$ from $t - 1$ to $0$ do \\
\hspace{3mm}2.1 $c \leftarrow c^{2^k} $ \\
\hspace{3mm}2.2 Extract the $i$'th $k$-bit word from $b$ and store it in $g$. \\
\hspace{3mm}2.3 $c \leftarrow c \cdot a^g$ \\
3. Return $c$. \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{$k$-ary Exponentiation}
\end{figure}
The squaring on step 2.1 can be calculated by squaring the value $c$ successively $k$ times. If the values of $a^g$ for $0 < g < 2^k$ have been
precomputed this algorithm requires only $t$ multiplications and $tk$ squarings. The table can be generated with $2^{k - 1} - 1$ squarings and
$2^{k - 1} + 1$ multiplications. This algorithm assumes that the number of bits in the exponent is evenly divisible by $k$.
However, when it is not the remaining $0 < x \le k - 1$ bits can be handled with the original left to right style algorithm.
Suppose $k = 4$ and $t = 100$. This modified algorithm will require $109$ multiplications and $408$ squarings to compute the exponentiation. The
original algorithm would on average have required $200$ multiplications and $400$ squrings to compute the same value. The total number of squarings
has increased slightly but the number of multiplications has nearly halved.
\subsection{Sliding-Window Exponentiation}
A simple modification to the previous algorithm is only generate the upper half of the table in the range $2^{k-1} \le g < 2^k$. Essentially
this is a table for all values of $g$ where the most significant bit of $g$ is a one. However, in order for this to be allowed in the
algorithm values of $g$ in the range $0 \le g < 2^{k-1}$ must be avoided.
\newpage\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{Sliding Window $k$-ary Exponentiation}. \\
\textbf{Input}. Integer $a$, $b$, $k$ and $t$ \\
\textbf{Output}. $c = a^b$ \\
\hline \\
1. $c \leftarrow 1$ \\
2. for $i$ from $t - 1$ to $0$ do \\
\hspace{3mm}2.1 If the $i$'th bit of $b$ is a zero then \\
\hspace{6mm}2.1.1 $c \leftarrow c^2$ \\
\hspace{3mm}2.2 else do \\
\hspace{6mm}2.2.1 $c \leftarrow c^{2^k}$ \\
\hspace{6mm}2.2.2 Extract the $k$ bits from $(b_{i}b_{i-1}\ldots b_{i-(k-1)})$ and store it in $g$. \\
\hspace{6mm}2.2.3 $c \leftarrow c \cdot a^g$ \\
\hspace{6mm}2.2.4 $i \leftarrow i - k$ \\
3. Return $c$. \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Sliding Window $k$-ary Exponentiation}
\end{figure}
Similar to the previous algorithm this algorithm must have a special handler when fewer than $k$ bits are left in the exponent. While this
algorithm requires the same number of squarings it can potentially have fewer multiplications. The pre-computed table $a^g$ is also half
the size as the previous table.
Consider the exponent $b = 111101011001000_2 \equiv 31432_{10}$ with $k = 3$ using both algorithms. The first algorithm will divide the exponent up as
the following five $3$-bit words $b \equiv \left ( 111, 101, 011, 001, 000 \right )_{2}$. The second algorithm will break the
exponent as $b \equiv \left ( 111, 101, 0, 110, 0, 100, 0 \right )_{2}$. The single digit $0$ in the second representation are where
a single squaring took place instead of a squaring and multiplication. In total the first method requires $10$ multiplications and $18$
squarings. The second method requires $8$ multiplications and $18$ squarings.
In general the sliding window method is never slower than the generic $k$-ary method and often it is slightly faster.
\section{Modular Exponentiation}
Modular exponentiation is essentially computing the power of a base within a finite field or ring. For example, computing
$d \equiv a^b \mbox{ (mod }c\mbox{)}$ is a modular exponentiation. Instead of first computing $a^b$ and then reducing it
modulo $c$ the intermediate result is reduced modulo $c$ after every squaring or multiplication operation.
This guarantees that any intermediate result is bounded by $0 \le d \le c^2 - 2c + 1$ and can be reduced modulo $c$ quickly using
any of the three algorithms presented in chapter seven.
Before the actual modular exponentiation algorithm can be written a wrapper algorithm must be written first. This wrapper algorithm
will allow the exponent $b$ to be negative which is computed as $c \equiv \left (1 / a \right )^{\vert b \vert} \mbox{(mod }d\mbox{)}$. The
value of $(1/a) \mbox{ mod }c$ is computed using the modular inverse (\textit{see section 10.4}). If no inverse exists the algorithm
terminates with an error.
\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_exptmod}. \\
\textbf{Input}. mp\_int $a$, $b$ and $c$ \\
\textbf{Output}. $y \equiv g^x \mbox{ (mod }p\mbox{)}$ \\
\hline \\
1. If $c.sign = MP\_NEG$ return(\textit{MP\_VAL}). \\
2. If $b.sign = MP\_NEG$ then \\
\hspace{3mm}2.1 $g' \leftarrow g^{-1} \mbox{ (mod }c\mbox{)}$ \\
\hspace{3mm}2.2 $x' \leftarrow \vert x \vert$ \\
\hspace{3mm}2.3 Compute $d \equiv g'^{x'} \mbox{ (mod }c\mbox{)}$ via recursion. \\
3. if ($p$ is odd \textbf{OR} $p$ is a D.R. modulus) \textbf{AND} $p.used > 4$ then \\
\hspace{3mm}3.1 Compute $y \equiv g^{x} \mbox{ (mod }p\mbox{)}$ via algorithm mp\_exptmod\_fast. \\
4. else \\
\hspace{3mm}4.1 Compute $y \equiv g^{x} \mbox{ (mod }p\mbox{)}$ via algorithm s\_mp\_exptmod. \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm mp\_exptmod}
\end{figure}
\textbf{Algorithm mp\_exptmod.}
The first algorithm which actually performs modular exponentiation is algorithm s\_mp\_exptmod. It is a sliding window $k$-ary algorithm
which uses Barrett reduction to reduce the product modulo $p$. The second algorithm mp\_exptmod\_fast performs the same operation
except it uses either Montgomery or Diminished Radix reduction. The two latter reduction algorithms are clumped in the same exponentiation
algorithm since their arguments are essentially the same (\textit{two mp\_ints and one mp\_digit}).
\index{bn\_mp\_exptmod.c}
\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_exptmod.c
\vspace{-3mm}
\begin{alltt}
016
017
018 /* this is a shell function that calls either the normal or Montgomery
019 * exptmod functions. Originally the call to the montgomery code was
020 * embedded in the normal function but that wasted alot of stack space
021 * for nothing (since 99% of the time the Montgomery code would be called)
022 */
023 int
024 mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
025 \{
026 int dr;
027
028 /* modulus P must be positive */
029 if (P->sign == MP_NEG) \{
030 return MP_VAL;
031 \}
032
033 /* if exponent X is negative we have to recurse */
034 if (X->sign == MP_NEG) \{
035 mp_int tmpG, tmpX;
036 int err;
037
038 /* first compute 1/G mod P */
039 if ((err = mp_init(&tmpG)) != MP_OKAY) \{
040 return err;
041 \}
042 if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) \{
043 mp_clear(&tmpG);
044 return err;
045 \}
046
047 /* now get |X| */
048 if ((err = mp_init(&tmpX)) != MP_OKAY) \{
049 mp_clear(&tmpG);
050 return err;
051 \}
052 if ((err = mp_abs(X, &tmpX)) != MP_OKAY) \{
053 mp_clear_multi(&tmpG, &tmpX, NULL);
054 return err;
055 \}
056
057 /* and now compute (1/G)**|X| instead of G**X [X < 0] */
058 err = mp_exptmod(&tmpG, &tmpX, P, Y);
059 mp_clear_multi(&tmpG, &tmpX, NULL);
060 return err;
061 \}
062
063 dr = mp_dr_is_modulus(P);
064 if (dr == 0) \{
065 dr = mp_reduce_is_2k(P) << 1;
066 \}
067
068 /* if the modulus is odd use the fast method */
069 if ((mp_isodd (P) == 1 || dr != 0) && P->used > 4) \{
070 return mp_exptmod_fast (G, X, P, Y, dr);
071 \} else \{
072 return s_mp_exptmod (G, X, P, Y);
073 \}
074 \}
075
\end{alltt}
\end{small}
\subsection{Barrett Modular Exponentiation}
\newpage\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{s\_mp\_exptmod}. \\
\textbf{Input}. mp\_int $a$, $b$ and $c$ \\
\textbf{Output}. $y \equiv g^x \mbox{ (mod }p\mbox{)}$ \\
\hline \\
1. $k \leftarrow lg(x)$ \\
2. $winsize \leftarrow \left \lbrace \begin{array}{ll}
2 & \mbox{if }k \le 7 \\
3 & \mbox{if }7 < k \le 36 \\
4 & \mbox{if }36 < k \le 140 \\
5 & \mbox{if }140 < k \le 450 \\
6 & \mbox{if }450 < k \le 1303 \\
7 & \mbox{if }1303 < k \le 3529 \\
8 & \mbox{if }3529 < k \\
\end{array} \right .$ \\
3. Initialize $2^{winsize}$ mp\_ints in an array named $M$ and one mp\_int named $\mu$ \\
4. Calculate the $\mu$ required for Barrett Reduction (\textit{mp\_reduce\_setup}). \\
5. $M_1 \leftarrow g \mbox{ (mod }p\mbox{)}$ \\
\\
Setup the table of small powers of $g$. First find $g^{2^{winsize}}$ and then all multiples of it. \\
6. $k \leftarrow 2^{winsize - 1}$ \\
7. $M_{k} \leftarrow M_1$ \\
8. for $ix$ from 0 to $winsize - 2$ do \\
\hspace{3mm}8.1 $M_k \leftarrow \left ( M_k \right )^2$ \\
\hspace{3mm}8.2 $M_k \leftarrow M_k \mbox{ (mod }p\mbox{)}$ (\textit{mp\_reduce}) \\
9. for $ix$ from $2^{winsize - 1} + 1$ to $2^{winsize} - 1$ do \\
\hspace{3mm}9.1 $M_{ix} \leftarrow M_{ix - 1} \cdot M_{1}$ \\
\hspace{3mm}9.2 $M_{ix} \leftarrow M_{ix} \mbox{ (mod }p\mbox{)}$ (\textit{mp\_reduce}) \\
10. $res \leftarrow 1$ \\
\\
Start Sliding Window. \\
11. $mode \leftarrow 0, bitcnt \leftarrow 1, buf \leftarrow 0, digidx \leftarrow x.used - 1, bitcpy \leftarrow 0, bitbuf \leftarrow 0$ \\
12. Loop \\
\hspace{3mm}12.1 $bitcnt \leftarrow bitcnt - 1$ \\
\hspace{3mm}12.2 If $bitcnt = 0$ then do \\
\hspace{6mm}12.2.1 If $digidx = -1$ goto step 13. \\
\hspace{6mm}12.2.2 $buf \leftarrow x_{digidx}$ \\
\hspace{6mm}12.2.3 $digidx \leftarrow digidx - 1$ \\
\hspace{6mm}12.2.4 $bitcnt \leftarrow lg(\beta)$ \\
Continued on next page. \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm s\_mp\_exptmod}
\end{figure}
\newpage\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{s\_mp\_exptmod} (\textit{continued}). \\
\textbf{Input}. mp\_int $a$, $b$ and $c$ \\
\textbf{Output}. $y \equiv g^x \mbox{ (mod }p\mbox{)}$ \\
\hline \\
\hspace{3mm}12.3 $y \leftarrow (buf >> (lg(\beta) - 1))$ AND $1$ \\
\hspace{3mm}12.4 $buf \leftarrow buf << 1$ \\
\hspace{3mm}12.5 if $mode = 0$ and $y = 0$ then goto step 12. \\
\hspace{3mm}12.6 if $mode = 1$ and $y = 0$ then do \\
\hspace{6mm}12.6.1 $res \leftarrow res^2$ \\
\hspace{6mm}12.6.2 $res \leftarrow res \mbox{ (mod }p\mbox{)}$ \\
\hspace{6mm}12.6.3 Goto step 12. \\
\hspace{3mm}12.7 $bitcpy \leftarrow bitcpy + 1$ \\
\hspace{3mm}12.8 $bitbuf \leftarrow bitbuf + (y << (winsize - bitcpy))$ \\
\hspace{3mm}12.9 $mode \leftarrow 2$ \\
\hspace{3mm}12.10 If $bitcpy = winsize$ then do \\
\hspace{6mm}Window is full so perform the squarings and single multiplication. \\
\hspace{6mm}12.10.1 for $ix$ from $0$ to $winsize -1$ do \\
\hspace{9mm}12.10.1.1 $res \leftarrow res^2$ \\
\hspace{9mm}12.10.1.2 $res \leftarrow res \mbox{ (mod }p\mbox{)}$ \\
\hspace{6mm}12.10.2 $res \leftarrow res \cdot M_{bitbuf}$ \\
\hspace{6mm}12.10.3 $res \leftarrow res \mbox{ (mod }p\mbox{)}$ \\
\hspace{6mm}Reset the window. \\
\hspace{6mm}12.10.4 $bitcpy \leftarrow 0, bitbuf \leftarrow 0, mode \leftarrow 1$ \\
\\
No more windows left. Check for residual bits of exponent. \\
13. If $mode = 2$ and $bitcpy > 0$ then do \\
\hspace{3mm}13.1 for $ix$ form $0$ to $bitcpy - 1$ do \\
\hspace{6mm}13.1.1 $res \leftarrow res^2$ \\
\hspace{6mm}13.1.2 $res \leftarrow res \mbox{ (mod }p\mbox{)}$ \\
\hspace{6mm}13.1.3 $bitbuf \leftarrow bitbuf << 1$ \\
\hspace{6mm}13.1.4 If $bitbuf$ AND $2^{winsize} \ne 0$ then do \\
\hspace{9mm}13.1.4.1 $res \leftarrow res \cdot M_{1}$ \\
\hspace{9mm}13.1.4.2 $res \leftarrow res \mbox{ (mod }p\mbox{)}$ \\
14. $y \leftarrow res$ \\
15. Clear $res$, $mu$ and the $M$ array. \\
16. Return(\textit{MP\_OKAY}). \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm s\_mp\_exptmod (continued)}
\end{figure}
\textbf{Algorithm s\_mp\_exptmod.}
This algorithm computes the $x$'th power of $g$ modulo $p$ and stores the result in $y$. It takes advantage of the Barrett reduction
algorithm to keep the product small throughout the algorithm.
The first two steps determine the optimal window size based on the number of bits in the exponent. The larger the exponent the
larger the window size becomes. After a window size $winsize$ has been chosen an array of $2^{winsize}$ mp\_int variables is allocated. This
table will hold the values of $g^x \mbox{ (mod }p\mbox{)}$ for $2^{winsize - 1} \le x < 2^{winsize}$.
After the table is allocated the first power of $g$ is found. Since $g \ge p$ is allowed it must be first reduced modulo $p$ to make
the rest of the algorithm more efficient. The first element of the table at $2^{winsize - 1}$ is found by squaring $M_1$ successively $winsize - 2$
times. The rest of the table elements are found by multiplying the previous element by $M_1$ modulo $p$.
Now that the table is available the sliding window may begin. The following list describes the functions of all the variables in the window.
\begin{enumerate}
\item The variable $mode$ dictates how the bits of the exponent are interpreted.
\begin{enumerate}
\item When $mode = 0$ the bits are ignored since no non-zero bit of the exponent has been seen yet. For example, if the exponent were simply
$1$ then there would be $lg(\beta) - 1$ zero bits before the first non-zero bit. In this case bits are ignored until a non-zero bit is found.
\item When $mode = 1$ a non-zero bit has been seen before and a new $winsize$-bit window has not been formed yet. In this mode leading $0$ bits
are read and a single squaring is performed. If a non-zero bit is read a new window is created.
\item When $mode = 2$ the algorithm is in the middle of forming a window and new bits are appended to the window from the most significant bit
downards.
\end{enumerate}
\item The variable $bitcnt$ indicates how many bits are left in the current digit of the exponent left to be read. When it reaches zero a new digit
is fetched from the exponent.
\item The variable $buf$ holds the currently read digit of the exponent.
\item The variable $digidx$ is an index into the exponents digits. It starts at the leading digit $x.used - 1$ and moves towards the trailing digit.
\item The variable $bitcpy$ indicates how many bits are in the currently formed window. When it reaches $winsize$ the window is flushed and
the appropriate operations performed.
\item The variable $bitbuf$ holds the current bits of the window being formed.
\end{enumerate}
All of step 12 is the window processing loop. It will iterate while there are digits available form the exponent to read. The first step
inside this loop is to extract a new digit if no more bits are available in the current digit. If there are no bits left a new digit is
read and if there are no digits left than the loop terminates.
After a digit is made available step 12.3 will extract the most significant bit of the current digit and move all other bits in the digit
upwards. In effect the digit is read from most significant bit to least significant bit and since the digits are read from leading to
trailing edges the entire exponent is read from most significant bit to least significant bit.
At step 12.5 if the $mode$ and currently extracted bit $y$ are both zero the bit is ignored and the next bit is read. This prevents the
algorithm from having todo trivial squaring and reduction operations before the first non-zero bit is read. Step 12.6 and 12.7-10 handle
the two cases of $mode = 1$ and $mode = 2$ respectively.
\begin{center}
\begin{figure}[here]
\includegraphics{pics/expt_state.ps}
\caption{Sliding Window State Diagram}
\end{figure}
\end{center}
By step 13 there are no more digits left in the exponent. However, there may be partial bits in the window left. If $mode = 2$ then
a Left-to-Right algorithm is used to process the remaining few bits.
\index{bn\_s\_mp\_exptmod.c}
\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_s\_mp\_exptmod.c
\vspace{-3mm}
\begin{alltt}
016
017 int
018 s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
019 \{
020 mp_int M[256], res, mu;
021 mp_digit buf;
022 int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
023
024 /* find window size */
025 x = mp_count_bits (X);
026 if (x <= 7) \{
027 winsize = 2;
028 \} else if (x <= 36) \{
029 winsize = 3;
030 \} else if (x <= 140) \{
031 winsize = 4;
032 \} else if (x <= 450) \{
033 winsize = 5;
034 \} else if (x <= 1303) \{
035 winsize = 6;
036 \} else if (x <= 3529) \{
037 winsize = 7;
038 \} else \{
039 winsize = 8;
040 \}
041
042 #ifdef MP_LOW_MEM
043 if (winsize > 5) \{
044 winsize = 5;
045 \}
046 #endif
047
048 /* init M array */
049 for (x = 0; x < (1 << winsize); x++) \{
050 if ((err = mp_init_size (&M[x], 1)) != MP_OKAY) \{
051 for (y = 0; y < x; y++) \{
052 mp_clear (&M[y]);
053 \}
054 return err;
055 \}
056 \}
057
058 /* create mu, used for Barrett reduction */
059 if ((err = mp_init (&mu)) != MP_OKAY) \{
060 goto __M;
061 \}
062 if ((err = mp_reduce_setup (&mu, P)) != MP_OKAY) \{
063 goto __MU;
064 \}
065
066 /* create M table
067 *
068 * The M table contains powers of the input base, e.g. M[x] = G**x mod P
069 *
070 * The first half of the table is not computed though accept for M[0] and
M[1]
071 */
072 if ((err = mp_mod (G, P, &M[1])) != MP_OKAY) \{
073 goto __MU;
074 \}
075
076 /* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) tim
es */
077 if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) \{
078 goto __MU;
079 \}
080
081 for (x = 0; x < (winsize - 1); x++) \{
082 if ((err = mp_sqr (&M[1 << (winsize - 1)], &M[1 << (winsize - 1)])) != M
P_OKAY) \{
083 goto __MU;
084 \}
085 if ((err = mp_reduce (&M[1 << (winsize - 1)], P, &mu)) != MP_OKAY) \{
086 goto __MU;
087 \}
088 \}
089
090 /* create upper table */
091 for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) \{
092 if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) \{
093 goto __MU;
094 \}
095 if ((err = mp_reduce (&M[x], P, &mu)) != MP_OKAY) \{
096 goto __MU;
097 \}
098 \}
099
100 /* setup result */
101 if ((err = mp_init (&res)) != MP_OKAY) \{
102 goto __MU;
103 \}
104 mp_set (&res, 1);
105
106 /* set initial mode and bit cnt */
107 mode = 0;
108 bitcnt = 1;
109 buf = 0;
110 digidx = X->used - 1;
111 bitcpy = bitbuf = 0;
112
113 for (;;) \{
114 /* grab next digit as required */
115 if (--bitcnt == 0) \{
116 if (digidx == -1) \{
117 break;
118 \}
119 buf = X->dp[digidx--];
120 bitcnt = (int) DIGIT_BIT;
121 \}
122
123 /* grab the next msb from the exponent */
124 y = (buf >> (mp_digit)(DIGIT_BIT - 1)) & 1;
125 buf <<= (mp_digit)1;
126
127 /* if the bit is zero and mode == 0 then we ignore it
128 * These represent the leading zero bits before the first 1 bit
129 * in the exponent. Technically this opt is not required but it
130 * does lower the # of trivial squaring/reductions used
131 */
132 if (mode == 0 && y == 0)
133 continue;
134
135 /* if the bit is zero and mode == 1 then we square */
136 if (mode == 1 && y == 0) \{
137 if ((err = mp_sqr (&res, &res)) != MP_OKAY) \{
138 goto __RES;
139 \}
140 if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) \{
141 goto __RES;
142 \}
143 continue;
144 \}
145
146 /* else we add it to the window */
147 bitbuf |= (y << (winsize - ++bitcpy));
148 mode = 2;
149
150 if (bitcpy == winsize) \{
151 /* ok window is filled so square as required and multiply */
152 /* square first */
153 for (x = 0; x < winsize; x++) \{
154 if ((err = mp_sqr (&res, &res)) != MP_OKAY) \{
155 goto __RES;
156 \}
157 if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) \{
158 goto __RES;
159 \}
160 \}
161
162 /* then multiply */
163 if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) \{
164 goto __MU;
165 \}
166 if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) \{
167 goto __MU;
168 \}
169
170 /* empty window and reset */
171 bitcpy = bitbuf = 0;
172 mode = 1;
173 \}
174 \}
175
176 /* if bits remain then square/multiply */
177 if (mode == 2 && bitcpy > 0) \{
178 /* square then multiply if the bit is set */
179 for (x = 0; x < bitcpy; x++) \{
180 if ((err = mp_sqr (&res, &res)) != MP_OKAY) \{
181 goto __RES;
182 \}
183 if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) \{
184 goto __RES;
185 \}
186
187 bitbuf <<= 1;
188 if ((bitbuf & (1 << winsize)) != 0) \{
189 /* then multiply */
190 if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) \{
191 goto __RES;
192 \}
193 if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) \{
194 goto __RES;
195 \}
196 \}
197 \}
198 \}
199
200 mp_exch (&res, Y);
201 err = MP_OKAY;
202 __RES:mp_clear (&res);
203 __MU:mp_clear (&mu);
204 __M:
205 for (x = 0; x < (1 << winsize); x++) \{
206 mp_clear (&M[x]);
207 \}
208 return err;
209 \}
\end{alltt}
\end{small}
\section{Quick Power of Two}
Calculating $b = 2^a$ can be performed much quicker than with any of the previous algorithms. Recall that a logical shift left $m << k$ is
equivalent to $m \cdot 2^k$. By this logic when $m = 1$ a quick power of two can be achieved.
\newpage\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_2expt}. \\
\textbf{Input}. integer $b$ \\
\textbf{Output}. $a \leftarrow 2^b$ \\
\hline \\
1. $a \leftarrow 0$ \\
2. If $a.alloc < \lfloor b / lg(\beta) \rfloor + 1$ then grow $a$ appropriately. \\
3. $a.used \leftarrow \lfloor b / lg(\beta) \rfloor + 1$ \\
4. $a_{\lfloor b / lg(\beta) \rfloor} \leftarrow 1 << (b \mbox{ mod } lg(\beta))$ \\
5. Return(\textit{MP\_OKAY}). \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm mp\_2expt}
\end{figure}
\textbf{Algorithm mp\_2expt.}
\index{bn\_mp\_2expt.c}
\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_2expt.c
\vspace{-3mm}
\begin{alltt}
016
017 /* computes a = 2**b
018 *
019 * Simple algorithm which zeroes the int, grows it then just sets one bit
020 * as required.
021 */
022 int
023 mp_2expt (mp_int * a, int b)
024 \{
025 int res;
026
027 mp_zero (a);
028 if ((res = mp_grow (a, b / DIGIT_BIT + 1)) != MP_OKAY) \{
029 return res;
030 \}
031 a->used = b / DIGIT_BIT + 1;
032 a->dp[b / DIGIT_BIT] = 1 << (b % DIGIT_BIT);
033
034 return MP_OKAY;
035 \}
\end{alltt}
\end{small}
\chapter{Higher Level Algorithms}
\section{Integer Division with Remainder}
\section{Single Digit Helpers}
\subsection{Single Digit Addition}
\subsection{Single Digit Subtraction}
\subsection{Single Digit Multiplication}
\subsection{Single Digit Division}
\subsection{Single Digit Modulo}
\subsection{Single Digit Root Extraction}
\section{Random Number Generation}
\section{Formatted Output}
\subsection{Getting The Output Size}
\subsection{Generating Radix-n Output}
\subsection{Reading Radix-n Input}
\section{Unformatted Output}
\subsection{Getting The Output Size}
\subsection{Generating Output}
\subsection{Reading Input}
\chapter{Number Theoretic Algorithms}
\section{Greatest Common Divisor}
\section{Least Common Multiple}
\section{Jacobi Symbol Computation}
\section{Modular Inverse}
\subsection{General Case}
\subsection{Odd Moduli}
\section{Primality Tests}
\subsection{Trial Division}
\subsection{The Fermat Test}
\subsection{The Miller-Rabin Test}
\subsection{Primality Test in a Bottle}
\subsection{The Next Prime}
\section{Root Extraction}
\backmatter
\appendix
\begin{thebibliography}{ABCDEF}
\bibitem[1]{TAOCPV2}
Donald Knuth, \textit{The Art of Computer Programming}, Third Edition, Volume Two, Seminumerical Algorithms, Addison-Wesley, 1998
\bibitem[2]{HAC}
A. Menezes, P. van Oorschot, S. Vanstone, \textit{Handbook of Applied Cryptography}, CRC Press, 1996
\bibitem[3]{ROSE}
Michael Rosing, \textit{Implementing Elliptic Curve Cryptography}, Manning Publications, 1999
\bibitem[4]{COMBA}
Paul G. Comba, \textit{Exponentiation Cryptosystems on the IBM PC}. IBM Systems Journal 29(4): 526-538 (1990)
\bibitem[5]{KARA}
A. Karatsuba, Doklay Akad. Nauk SSSR 145 (1962), pp.293-294
\bibitem[6]{KARAP}
Andre Weimerskirch and Christof Paar, \textit{Generalizations of the Karatsuba Algorithm for Polynomial Multiplication}, Submitted to Design, Codes and Cryptography, March 2002
\bibitem[7]{BARRETT}
Paul Barrett, \textit{Implementing the Rivest Shamir and Adleman Public Key Encryption Algorithm on a Standard Digital Signal Processor}, Advances in Cryptology, Crypto '86, Springer-Verlag.
\bibitem[8]{MONT}
P.L.Montgomery. \textit{Modular multiplication without trial division}. Mathematics of Computation, 44(170):519-521, April 1985.
\bibitem[9]{DRMET}
Chae Hoon Lim and Pil Joong Lee, \textit{Generating Efficient Primes for Discrete Log Cryptosystems}, POSTECH Information Research Laboratories
\bibitem[10]{MMB}
J. Daemen and R. Govaerts and J. Vandewalle, \textit{Block ciphers based on Modular Arithmetic}, State and {P}rogress in the {R}esearch of {C}ryptography, 1993, pp. 80-89
\end{thebibliography}
\input{tommath.ind}
\chapter{Appendix}
\subsection*{Appendix A -- Source Listing of tommath.h}
The following is the source listing of the header file ``tommath.h'' for the LibTomMath project. It contains many of
the definitions used throughout the code such as \textbf{mp\_int}, \textbf{MP\_PREC} and so on. The header is
presented here for completeness.
\index{tommath.h}
\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: tommath.h
\vspace{-3mm}
\begin{alltt}
001 /* LibTomMath, multiple-precision integer library -- Tom St Denis
002 *
003 * LibTomMath is library that provides for multiple-precision
004 * integer arithmetic as well as number theoretic functionality.
005 *
006 * The library is designed directly after the MPI library by
007 * Michael Fromberger but has been written from scratch with
008 * additional optimizations in place.
009 *
010 * The library is free for all purposes without any express
011 * guarantee it works.
012 *
013 * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
014 */
015 #ifndef BN_H_
016 #define BN_H_
017
018 #include <stdio.h>
019 #include <string.h>
020 #include <stdlib.h>
021 #include <ctype.h>
022 #include <limits.h>
023
024 #undef MIN
025 #define MIN(x,y) ((x)<(y)?(x):(y))
026 #undef MAX
027 #define MAX(x,y) ((x)>(y)?(x):(y))
028
029 #ifdef __cplusplus
030 extern "C" \{
031
032 /* C++ compilers don't like assigning void * to mp_digit * */
033 #define OPT_CAST (mp_digit *)
034
035 #else
036
037 /* C on the other hand doesn't care */
038 #define OPT_CAST
039
040 #endif
041
042 /* some default configurations.
043 *
044 * A "mp_digit" must be able to hold DIGIT_BIT + 1 bits
045 * A "mp_word" must be able to hold 2*DIGIT_BIT + 1 bits
046 *
047 * At the very least a mp_digit must be able to hold 7 bits
048 * [any size beyond that is ok provided it doesn't overflow the data type]
049 */
050 #ifdef MP_8BIT
051 typedef unsigned char mp_digit;
052 typedef unsigned short mp_word;
053 #elif defined(MP_16BIT)
054 typedef unsigned short mp_digit;
055 typedef unsigned long mp_word;
056 #elif defined(MP_64BIT)
057 /* for GCC only on supported platforms */
058 #ifndef CRYPT
059 typedef unsigned long long ulong64;
060 typedef signed long long long64;
061 #endif
062
063 typedef ulong64 mp_digit;
064 typedef unsigned long mp_word __attribute__ ((mode(TI)));
065
066 #define DIGIT_BIT 60
067 #else
068 /* this is the default case, 28-bit digits */
069
070 /* this is to make porting into LibTomCrypt easier :-) */
071 #ifndef CRYPT
072 #if defined(_MSC_VER) || defined(__BORLANDC__)
073 typedef unsigned __int64 ulong64;
074 typedef signed __int64 long64;
075 #else
076 typedef unsigned long long ulong64;
077 typedef signed long long long64;
078 #endif
079 #endif
080
081 typedef unsigned long mp_digit;
082 typedef ulong64 mp_word;
083
084 #ifdef MP_31BIT
085 #define DIGIT_BIT 31
086 #else
087 #define DIGIT_BIT 28
088 #endif
089 #endif
090
091 /* otherwise the bits per digit is calculated automatically from the size of
a mp_digit */
092 #ifndef DIGIT_BIT
093 #define DIGIT_BIT ((CHAR_BIT * sizeof(mp_digit) - 1)) /* bits per di
git */
094 #endif
095
096
097 #define MP_DIGIT_BIT DIGIT_BIT
098 #define MP_MASK ((((mp_digit)1)<<((mp_digit)DIGIT_BIT))-((mp_digit)
1))
099 #define MP_DIGIT_MAX MP_MASK
100
101 /* equalities */
102 #define MP_LT -1 /* less than */
103 #define MP_EQ 0 /* equal to */
104 #define MP_GT 1 /* greater than */
105
106 #define MP_ZPOS 0 /* positive integer */
107 #define MP_NEG 1 /* negative */
108
109 #define MP_OKAY 0 /* ok result */
110 #define MP_MEM -2 /* out of mem */
111 #define MP_VAL -3 /* invalid input */
112 #define MP_RANGE MP_VAL
113
114 typedef int mp_err;
115
116 /* you'll have to tune these... */
117 extern int KARATSUBA_MUL_CUTOFF,
118 KARATSUBA_SQR_CUTOFF,
119 TOOM_MUL_CUTOFF,
120 TOOM_SQR_CUTOFF;
121
122 /* various build options */
123 #define MP_PREC 64 /* default digits of precision (must
be power of two) */
124
125 /* define this to use lower memory usage routines (exptmods mostly) */
126 /* #define MP_LOW_MEM */
127
128 /* size of comba arrays, should be at least 2 * 2**(BITS_PER_WORD - BITS_PER
_DIGIT*2) */
129 #define MP_WARRAY (1 << (sizeof(mp_word) * CHAR_BIT - 2 * DIGI
T_BIT + 1))
130
131 typedef struct \{
132 int used, alloc, sign;
133 mp_digit *dp;
134 \} mp_int;
135
136 #define USED(m) ((m)->used)
137 #define DIGIT(m,k) ((m)->dp[k])
138 #define SIGN(m) ((m)->sign)
139
140 /* ---> init and deinit bignum functions <--- */
141
142 /* init a bignum */
143 int mp_init(mp_int *a);
144
145 /* free a bignum */
146 void mp_clear(mp_int *a);
147
148 /* init a null terminated series of arguments */
149 int mp_init_multi(mp_int *mp, ...);
150
151 /* clear a null terminated series of arguments */
152 void mp_clear_multi(mp_int *mp, ...);
153
154 /* exchange two ints */
155 void mp_exch(mp_int *a, mp_int *b);
156
157 /* shrink ram required for a bignum */
158 int mp_shrink(mp_int *a);
159
160 /* grow an int to a given size */
161 int mp_grow(mp_int *a, int size);
162
163 /* init to a given number of digits */
164 int mp_init_size(mp_int *a, int size);
165
166 /* ---> Basic Manipulations <--- */
167
168 #define mp_iszero(a) (((a)->used == 0) ? 1 : 0)
169 #define mp_iseven(a) (((a)->used == 0 || (((a)->dp[0] & 1) == 0)) ? 1 : 0)
170 #define mp_isodd(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 1)) ? 1 : 0)
171
172 /* set to zero */
173 void mp_zero(mp_int *a);
174
175 /* set to a digit */
176 void mp_set(mp_int *a, mp_digit b);
177
178 /* set a 32-bit const */
179 int mp_set_int(mp_int *a, unsigned int b);
180
181 /* copy, b = a */
182 int mp_copy(mp_int *a, mp_int *b);
183
184 /* inits and copies, a = b */
185 int mp_init_copy(mp_int *a, mp_int *b);
186
187 /* trim unused digits */
188 void mp_clamp(mp_int *a);
189
190 /* ---> digit manipulation <--- */
191
192 /* right shift by "b" digits */
193 void mp_rshd(mp_int *a, int b);
194
195 /* left shift by "b" digits */
196 int mp_lshd(mp_int *a, int b);
197
198 /* c = a / 2**b */
199 int mp_div_2d(mp_int *a, int b, mp_int *c, mp_int *d);
200
201 /* b = a/2 */
202 int mp_div_2(mp_int *a, mp_int *b);
203
204 /* c = a * 2**b */
205 int mp_mul_2d(mp_int *a, int b, mp_int *c);
206
207 /* b = a*2 */
208 int mp_mul_2(mp_int *a, mp_int *b);
209
210 /* c = a mod 2**d */
211 int mp_mod_2d(mp_int *a, int b, mp_int *c);
212
213 /* computes a = 2**b */
214 int mp_2expt(mp_int *a, int b);
215
216 /* makes a pseudo-random int of a given size */
217 int mp_rand(mp_int *a, int digits);
218
219 /* ---> binary operations <--- */
220 /* c = a XOR b */
221 int mp_xor(mp_int *a, mp_int *b, mp_int *c);
222
223 /* c = a OR b */
224 int mp_or(mp_int *a, mp_int *b, mp_int *c);
225
226 /* c = a AND b */
227 int mp_and(mp_int *a, mp_int *b, mp_int *c);
228
229 /* ---> Basic arithmetic <--- */
230
231 /* b = -a */
232 int mp_neg(mp_int *a, mp_int *b);
233
234 /* b = |a| */
235 int mp_abs(mp_int *a, mp_int *b);
236
237 /* compare a to b */
238 int mp_cmp(mp_int *a, mp_int *b);
239
240 /* compare |a| to |b| */
241 int mp_cmp_mag(mp_int *a, mp_int *b);
242
243 /* c = a + b */
244 int mp_add(mp_int *a, mp_int *b, mp_int *c);
245
246 /* c = a - b */
247 int mp_sub(mp_int *a, mp_int *b, mp_int *c);
248
249 /* c = a * b */
250 int mp_mul(mp_int *a, mp_int *b, mp_int *c);
251
252 /* b = a*a */
253 int mp_sqr(mp_int *a, mp_int *b);
254
255 /* a/b => cb + d == a */
256 int mp_div(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
257
258 /* c = a mod b, 0 <= c < b */
259 int mp_mod(mp_int *a, mp_int *b, mp_int *c);
260
261 /* ---> single digit functions <--- */
262
263 /* compare against a single digit */
264 int mp_cmp_d(mp_int *a, mp_digit b);
265
266 /* c = a + b */
267 int mp_add_d(mp_int *a, mp_digit b, mp_int *c);
268
269 /* c = a - b */
270 int mp_sub_d(mp_int *a, mp_digit b, mp_int *c);
271
272 /* c = a * b */
273 int mp_mul_d(mp_int *a, mp_digit b, mp_int *c);
274
275 /* a/b => cb + d == a */
276 int mp_div_d(mp_int *a, mp_digit b, mp_int *c, mp_digit *d);
277
278 /* a/3 => 3c + d == a */
279 int mp_div_3(mp_int *a, mp_int *c, mp_digit *d);
280
281 /* c = a**b */
282 int mp_expt_d(mp_int *a, mp_digit b, mp_int *c);
283
284 /* c = a mod b, 0 <= c < b */
285 int mp_mod_d(mp_int *a, mp_digit b, mp_digit *c);
286
287 /* ---> number theory <--- */
288
289 /* d = a + b (mod c) */
290 int mp_addmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
291
292 /* d = a - b (mod c) */
293 int mp_submod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
294
295 /* d = a * b (mod c) */
296 int mp_mulmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
297
298 /* c = a * a (mod b) */
299 int mp_sqrmod(mp_int *a, mp_int *b, mp_int *c);
300
301 /* c = 1/a (mod b) */
302 int mp_invmod(mp_int *a, mp_int *b, mp_int *c);
303
304 /* c = (a, b) */
305 int mp_gcd(mp_int *a, mp_int *b, mp_int *c);
306
307 /* c = [a, b] or (a*b)/(a, b) */
308 int mp_lcm(mp_int *a, mp_int *b, mp_int *c);
309
310 /* finds one of the b'th root of a, such that |c|**b <= |a|
311 *
312 * returns error if a < 0 and b is even
313 */
314 int mp_n_root(mp_int *a, mp_digit b, mp_int *c);
315
316 /* shortcut for square root */
317 #define mp_sqrt(a, b) mp_n_root(a, 2, b)
318
319 /* computes the jacobi c = (a | n) (or Legendre if b is prime) */
320 int mp_jacobi(mp_int *a, mp_int *n, int *c);
321
322 /* used to setup the Barrett reduction for a given modulus b */
323 int mp_reduce_setup(mp_int *a, mp_int *b);
324
325 /* Barrett Reduction, computes a (mod b) with a precomputed value c
326 *
327 * Assumes that 0 < a <= b*b, note if 0 > a > -(b*b) then you can merely
328 * compute the reduction as -1 * mp_reduce(mp_abs(a)) [pseudo code].
329 */
330 int mp_reduce(mp_int *a, mp_int *b, mp_int *c);
331
332 /* setups the montgomery reduction */
333 int mp_montgomery_setup(mp_int *a, mp_digit *mp);
334
335 /* computes a = B**n mod b without division or multiplication useful for
336 * normalizing numbers in a Montgomery system.
337 */
338 int mp_montgomery_calc_normalization(mp_int *a, mp_int *b);
339
340 /* computes x/R == x (mod N) via Montgomery Reduction */
341 int mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp);
342
343 /* returns 1 if a is a valid DR modulus */
344 int mp_dr_is_modulus(mp_int *a);
345
346 /* sets the value of "d" required for mp_dr_reduce */
347 void mp_dr_setup(mp_int *a, mp_digit *d);
348
349 /* reduces a modulo b using the Diminished Radix method */
350 int mp_dr_reduce(mp_int *a, mp_int *b, mp_digit mp);
351
352 /* returns true if a can be reduced with mp_reduce_2k */
353 int mp_reduce_is_2k(mp_int *a);
354
355 /* determines k value for 2k reduction */
356 int mp_reduce_2k_setup(mp_int *a, mp_digit *d);
357
358 /* reduces a modulo b where b is of the form 2**p - k [0 <= a] */
359 int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit k);
360
361 /* d = a**b (mod c) */
362 int mp_exptmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
363
364 /* ---> Primes <--- */
365
366 /* number of primes */
367 #ifdef MP_8BIT
368 #define PRIME_SIZE 31
369 #else
370 #define PRIME_SIZE 256
371 #endif
372
373 /* table of first PRIME_SIZE primes */
374 extern const mp_digit __prime_tab[];
375
376 /* result=1 if a is divisible by one of the first PRIME_SIZE primes */
377 int mp_prime_is_divisible(mp_int *a, int *result);
378
379 /* performs one Fermat test of "a" using base "b".
380 * Sets result to 0 if composite or 1 if probable prime
381 */
382 int mp_prime_fermat(mp_int *a, mp_int *b, int *result);
383
384 /* performs one Miller-Rabin test of "a" using base "b".
385 * Sets result to 0 if composite or 1 if probable prime
386 */
387 int mp_prime_miller_rabin(mp_int *a, mp_int *b, int *result);
388
389 /* performs t rounds of Miller-Rabin on "a" using the first
390 * t prime bases. Also performs an initial sieve of trial
391 * division. Determines if "a" is prime with probability
392 * of error no more than (1/4)**t.
393 *
394 * Sets result to 1 if probably prime, 0 otherwise
395 */
396 int mp_prime_is_prime(mp_int *a, int t, int *result);
397
398 /* finds the next prime after the number "a" using "t" trials
399 * of Miller-Rabin.
400 */
401 int mp_prime_next_prime(mp_int *a, int t);
402
403
404 /* ---> radix conversion <--- */
405 int mp_count_bits(mp_int *a);
406
407 int mp_unsigned_bin_size(mp_int *a);
408 int mp_read_unsigned_bin(mp_int *a, unsigned char *b, int c);
409 int mp_to_unsigned_bin(mp_int *a, unsigned char *b);
410
411 int mp_signed_bin_size(mp_int *a);
412 int mp_read_signed_bin(mp_int *a, unsigned char *b, int c);
413 int mp_to_signed_bin(mp_int *a, unsigned char *b);
414
415 int mp_read_radix(mp_int *a, char *str, int radix);
416 int mp_toradix(mp_int *a, char *str, int radix);
417 int mp_radix_size(mp_int *a, int radix);
418
419 int mp_fread(mp_int *a, int radix, FILE *stream);
420 int mp_fwrite(mp_int *a, int radix, FILE *stream);
421
422 #define mp_read_raw(mp, str, len) mp_read_signed_bin((mp), (str), (len))
423 #define mp_raw_size(mp) mp_signed_bin_size(mp)
424 #define mp_toraw(mp, str) mp_to_signed_bin((mp), (str))
425 #define mp_read_mag(mp, str, len) mp_read_unsigned_bin((mp), (str), (len))
426 #define mp_mag_size(mp) mp_unsigned_bin_size(mp)
427 #define mp_tomag(mp, str) mp_to_unsigned_bin((mp), (str))
428
429 #define mp_tobinary(M, S) mp_toradix((M), (S), 2)
430 #define mp_tooctal(M, S) mp_toradix((M), (S), 8)
431 #define mp_todecimal(M, S) mp_toradix((M), (S), 10)
432 #define mp_tohex(M, S) mp_toradix((M), (S), 16)
433
434 /* lowlevel functions, do not call! */
435 int s_mp_add(mp_int *a, mp_int *b, mp_int *c);
436 int s_mp_sub(mp_int *a, mp_int *b, mp_int *c);
437 #define s_mp_mul(a, b, c) s_mp_mul_digs(a, b, c, (a)->used + (b)->used + 1)
438 int fast_s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
439 int s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
440 int fast_s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
441 int s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
442 int fast_s_mp_sqr(mp_int *a, mp_int *b);
443 int s_mp_sqr(mp_int *a, mp_int *b);
444 int mp_karatsuba_mul(mp_int *a, mp_int *b, mp_int *c);
445 int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c);
446 int mp_karatsuba_sqr(mp_int *a, mp_int *b);
447 int mp_toom_sqr(mp_int *a, mp_int *b);
448 int fast_mp_invmod(mp_int *a, mp_int *b, mp_int *c);
449 int fast_mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp);
450 int mp_exptmod_fast(mp_int *G, mp_int *X, mp_int *P, mp_int *Y, int mode);
451 int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y);
452 void bn_reverse(unsigned char *s, int len);
453
454 #ifdef __cplusplus
455 \}
456 #endif
457
458 #endif
459
\end{alltt}
\end{small}
\end{document}