Hash :
44ccca75
Author :
Date :
2018-05-04T00:01:45
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
#include "tommath_private.h"
#ifdef BN_MP_KRONECKER_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*/
/*
Kronecker symbol (a|p)
Straightforward implementation of algorithm 1.4.10 in
Henri Cohen: "A Course in Computational Algebraic Number Theory"
@book{cohen2013course,
title={A course in computational algebraic number theory},
author={Cohen, Henri},
volume={138},
year={2013},
publisher={Springer Science \& Business Media}
}
*/
int mp_kronecker(const mp_int *a, const mp_int *p, int *c)
{
mp_int a1, p1, r;
int e = MP_OKAY;
int v, k;
const int table[8] = {0, 1, 0, -1, 0, -1, 0, 1};
if (mp_iszero(p)) {
if (a->used == 1 && a->dp[0] == 1) {
*c = 1;
return e;
} else {
*c = 0;
return e;
}
}
if (mp_iseven(a) && mp_iseven(p)) {
*c = 0;
return e;
}
if ((e = mp_init_copy(&a1, a)) != MP_OKAY) {
return e;
}
if ((e = mp_init_copy(&p1, p)) != MP_OKAY) {
goto LBL_KRON_0;
}
v = mp_cnt_lsb(&p1);
if ((e = mp_div_2d(&p1, v, &p1, NULL)) != MP_OKAY) {
goto LBL_KRON_1;
}
if ((v & 0x1) == 0) {
k = 1;
} else {
k = table[a->dp[0] & 7];
}
if (p1.sign == MP_NEG) {
p1.sign = MP_ZPOS;
if (a1.sign == MP_NEG) {
k = -k;
}
}
if ((e = mp_init(&r)) != MP_OKAY) {
goto LBL_KRON_1;
}
for (;;) {
if (mp_iszero(&a1)) {
if (mp_cmp_d(&p1, 1) == MP_EQ) {
*c = k;
goto LBL_KRON;
} else {
*c = 0;
goto LBL_KRON;
}
}
v = mp_cnt_lsb(&a1);
if ((e = mp_div_2d(&a1, v, &a1, NULL)) != MP_OKAY) {
goto LBL_KRON;
}
if ((v & 0x1) == 1) {
k = k * table[p1.dp[0] & 7];
}
if (a1.sign == MP_NEG) {
// compute k = (-1)^((a1)*(p1-1)/4) * k
// a1.dp[0] + 1 cannot overflow because the MSB
// of the type mp_digit is not set by definition
if ((a1.dp[0] + 1) & p1.dp[0] & 2u) {
k = -k;
}
} else {
// compute k = (-1)^((a1-1)*(p1-1)/4) * k
if (a1.dp[0] & p1.dp[0] & 2u) {
k = -k;
}
}
if ((e = mp_copy(&a1,&r)) != MP_OKAY) {
goto LBL_KRON;
}
r.sign = MP_ZPOS;
if ((e = mp_mod(&p1, &r, &a1)) != MP_OKAY) {
goto LBL_KRON;
}
if ((e = mp_copy(&r, &p1)) != MP_OKAY) {
goto LBL_KRON;
}
}
LBL_KRON:
mp_clear(&r);
LBL_KRON_0:
mp_clear(&a1);
LBL_KRON_1:
mp_clear(&p1);
return e;
}
#endif