Branch
Hash :
bcda8fc6
Author :
Date :
2019-10-29T22:38:49
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
#include "tommath_private.h"
#ifdef MP_DR_REDUCE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* reduce "x" in place modulo "n" using the Diminished Radix algorithm.
*
* Based on algorithm from the paper
*
* "Generating Efficient Primes for Discrete Log Cryptosystems"
* Chae Hoon Lim, Pil Joong Lee,
* POSTECH Information Research Laboratories
*
* The modulus must be of a special format [see manual]
*
* Has been modified to use algorithm 7.10 from the LTM book instead
*
* Input x must be in the range 0 <= x <= (n-1)**2
*/
mp_err mp_dr_reduce(mp_int *x, const mp_int *n, mp_digit k)
{
mp_err err;
/* m = digits in modulus */
int m = n->used;
/* ensure that "x" has at least 2m digits */
if ((err = mp_grow(x, m + m)) != MP_OKAY) {
return err;
}
/* top of loop, this is where the code resumes if
* another reduction pass is required.
*/
for (;;) {
int i;
mp_digit mu = 0;
/* compute (x mod B**m) + k * [x/B**m] inline and inplace */
for (i = 0; i < m; i++) {
mp_word r = ((mp_word)x->dp[i + m] * (mp_word)k) + x->dp[i] + mu;
x->dp[i] = (mp_digit)(r & MP_MASK);
mu = (mp_digit)(r >> ((mp_word)MP_DIGIT_BIT));
}
/* set final carry */
x->dp[i] = mu;
/* zero words above m */
s_mp_zero_digs(x->dp + m + 1, (x->used - m) - 1);
/* clamp, sub and return */
mp_clamp(x);
/* if x >= n then subtract and reduce again
* Each successive "recursion" makes the input smaller and smaller.
*/
if (mp_cmp_mag(x, n) == MP_LT) {
break;
}
if ((err = s_mp_sub(x, n, x)) != MP_OKAY) {
return err;
}
}
return MP_OKAY;
}
#endif