Hash :
0bfd097c
        
        Author :
  
        
        Date :
2025-04-28T08:37:31
        
      
test: Fix main() function prototype
Fix compilation error when building for Windows with clang-cl:
    ../subprojects/libxkbcommon-xkbcommon-1.9.0/test/keysym-unicode.c:11:1: error: return type defaults to 'int' [-Wimplicit-int]
    ../subprojects/libxkbcommon-xkbcommon-1.9.0/test/keysym-unicode.c:11:1: warning: function declaration isn't a prototype [-Wstrict-prototypes]
      
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
/*
 * Copyright © 2025 Pierre Le Marre <dev@wismill.eu>
 * SPDX-License-Identifier: MIT
 */
#include "config.h"
#include "test.h"
#ifdef _WIN32
int
main(void)
{
    test_init();
    return SKIP_TEST;
}
#else
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/wait.h>
#include "xkbcommon/xkbcommon-keysyms.h"
#include "xkbcommon/xkbcommon.h"
#include "test.h"
#include "utils.h"
#include "src/keysym.h"
static void
test_unicode_keysyms_consistency(uint32_t start, uint32_t end)
{
    static_assert(XKB_KEYSYM_NAME_MAX_SIZE > XKB_KEYSYM_UTF8_MAX_SIZE,
                  "Buffer too small");
    char buffer[XKB_KEYSYM_NAME_MAX_SIZE] = {0};
    char utf8[XKB_KEYSYM_UTF8_MAX_SIZE] = {0};
    for (uint32_t cp = start; cp <= end; cp++) {
        xkb_keysym_t unicode = XKB_KEYSYM_UNICODE_OFFSET + cp;
        xkb_keysym_t canonical = xkb_utf32_to_keysym(cp);
        int count = xkb_keysym_get_name(unicode, buffer, sizeof(buffer));
        assert(count > 0);
        if (cp == 0 || is_surrogate(cp)) {
            /*
             * Invalid code points
             */
            /* No conversion from code point */
            assert(canonical == XKB_KEY_NoSymbol);
            /* No conversion to code point */
            assert(xkb_keysym_to_utf32(unicode) == 0);
            char *end_ptr = NULL;
            if (cp == 0) {
                /* Corresponding name hexadecimal format, unchanged */
                assert(strtoull(buffer, &end_ptr, 16) == unicode);
            } else {
                /* Unicode notation */
                assert(count == 5 && buffer[0] == 'U');
                assert(strtoull(buffer + 1, &end_ptr, 16) == cp);
            }
            assert(*end_ptr == '\0');
            /* Roundtrip hexadecimal name */
            xkb_keysym_t ks = xkb_keysym_from_name(buffer, XKB_KEYSYM_NO_FLAGS);
            assert(ks == unicode);
            /* Check Unicode format */
            snprintf(buffer, sizeof(buffer), "U%"PRIX32, cp);
            ks = xkb_keysym_from_name(buffer, XKB_KEYSYM_NO_FLAGS);
            assert((cp == 0 && ks == XKB_KEY_NoSymbol) ^
                   (is_surrogate(cp) && ks == unicode));
            /* Cannot convert to UTF-8 */
            count = xkb_keysym_to_utf8(unicode, buffer, sizeof(buffer));
            assert(count == 0);
        } else {
            /*
             * Valid code points
             */
            /* Canonical keysym may be different but is set */
            assert_printf((canonical == unicode) ^
                          ((0x20 <= cp && cp <= 0x100 && cp != 0x7f && canonical == cp) ||
                           (canonical != unicode &&
                            canonical != XKB_KEY_NoSymbol &&
                            (canonical != cp || canonical == XKB_KEY_EuroSign))),
                          "Code point: U+%04"PRIX32", Unicode: %#"PRIx32", "
                          "canonical: %#"PRIx32"\n",
                          cp, unicode, canonical);
            /* Conversion to code point has the same expected result */
            assert(xkb_keysym_to_utf32(unicode) == cp);
            assert(xkb_keysym_to_utf32(canonical) == cp); /* roundtrip */
            /* Check name roundtrip */
            xkb_keysym_t ks = xkb_keysym_from_name(buffer, XKB_KEYSYM_NO_FLAGS);
            assert((unicode != canonical && ks == canonical) ^ (ks == unicode));
            /* Can use Unicode format */
            if (buffer[0] == 'U' && count > 4 && is_digit(buffer[1])) {
                /* Name already a Unicode notation: skip.
                 * Note that the heuristic may fail to detect a Unicode notation,
                 * but it is only meant to make the overall test faster. */
            } else {
                snprintf(buffer, sizeof(buffer), "U%"PRIX32, cp);
                ks = xkb_keysym_from_name(buffer, XKB_KEYSYM_NO_FLAGS);
                assert((unicode != canonical && ks == canonical) ^ (ks == unicode));
            }
            /* Roundtrip: numeric hexadecimal format for Unicode keysym */
            assert(snprintf(buffer, sizeof(buffer), "%#"PRIx32, unicode) == 9);
            ks = xkb_keysym_from_name(buffer, XKB_KEYSYM_NO_FLAGS);
            assert(ks == unicode);
            /* Can convert to UTF-8 (Unicode keysym) */
            count = xkb_keysym_to_utf8(unicode, buffer, sizeof(buffer));
            assert(count > 0);
            if (canonical != unicode) {
                /* Canonical keysym convert to same UTF-8 */
                const int count2 = xkb_keysym_to_utf8(canonical, utf8, sizeof(utf8));
                assert(count2 == count);
                assert(strcmp(buffer, utf8) == 0);
                /* Roundtrip: numeric hexadecimal format for canonical keysym */
                count = xkb_keysym_get_name(canonical, buffer, sizeof(buffer));
                assert(count > 0);
                assert(xkb_keysym_from_name(buffer, XKB_KEYSYM_NO_FLAGS) == canonical);
                assert(snprintf(buffer, sizeof(buffer), "%#"PRIx32, canonical) > 2);
                assert(xkb_keysym_from_name(buffer, XKB_KEYSYM_NO_FLAGS) == canonical);
            }
        }
    }
}
int
main(int argc, char *argv[])
{
    test_init();
    unsigned long int NUM_PROCESSES = 0;
    if (argc > 1) {
        NUM_PROCESSES = strtoul(argv[1], NULL, 10);
    }
    if (NUM_PROCESSES == 0 || NUM_PROCESSES > 32)
        NUM_PROCESSES = 4;
    const uint32_t max_codepoint = 0x10ffff;
    const uint32_t chunk = max_codepoint / NUM_PROCESSES;
    pid_t pids[NUM_PROCESSES];
    for (unsigned long int i = 0; i < NUM_PROCESSES; i++) {
        pid_t pid = fork();
        if (pid == 0) {
            /* Child */
            const uint32_t start = i * chunk;
            const uint32_t end = (i == NUM_PROCESSES - 1)
                               ? max_codepoint
                               : start + chunk;
            test_unicode_keysyms_consistency(start, end);
            exit(EXIT_SUCCESS);
        } else if (pid > 0) {
            /* Parent */
            pids[i] = pid;
        } else {
            perror("fork");
            return TEST_SETUP_FAILURE;
        }
    }
    /* Wait for children */
    int exit_code = EXIT_SUCCESS;
    for (unsigned long int i = 0; i < NUM_PROCESSES; i++) {
        int status;
        if (waitpid(pids[i], &status, 0) == -1) {
            perror("waitpid");
            exit_code = EXIT_FAILURE;
        } else if (WIFEXITED(status)) {
            int code = WEXITSTATUS(status);
            if (code != EXIT_SUCCESS) {
                fprintf(stderr,
                        "Child PID %d exited with code %d\n",
                        pids[i], code);
                exit_code = EXIT_FAILURE;
            }
        } else if (WIFSIGNALED(status)) {
            fprintf(stderr,
                    "Child PID %d terminated by signal %d\n",
                    pids[i], WTERMSIG(status));
            exit_code = EXIT_FAILURE;
        }
    }
    return exit_code;
}
#endif