# The XKB keymap text format, V1 and V2 {#keymap-text-format-v1-v2}
<!--
NOTE:
• The Markdown supported in Doxygen is limited and buggy.
Current issues and solutions:
• In headers, only plain text is supported.
• Use the language tag “c” for block code to give them a nice (approximated)
syntax highlighting.
-->
This document describes the following [keymap] formats, as implemented by libxkbcommon:
<dl>
<dt>
`::XKB_KEYMAP_FORMAT_TEXT_V1` @anchor keymap-text-format-v1
</dt>
<dd>
The classic XKB text format, as generated by `xkbcomp -xkb`.
See @ref xkbcommon-compatibility "" for further information.
</dd>
<dt>
`::XKB_KEYMAP_FORMAT_TEXT_V2` @anchor keymap-text-format-v2
</dt>
<dd>
Xkbcommon extensions of the classic XKB text format, **incompatible with X11**.
See @ref xkbcommon-compatibility "" for further information.
</dd>
</dl>
@see For an overview of the role of this format, please see “@ref xkb-the-config ""”.
@see For examples of keymaps in this format, please see “@ref user-configuration ""”.
For further examples see [xkeyboard-config], the standard database of keyboard
configuration data.
@note Due to the complexity of the format, this document is still is construction.
Some additional resources are:
@note
- [Ivan Pascal’s XKB documentation][ivan-pascal]
- [An Unreliable Guide to XKB Configuration][unreliable-guide]
- [The X Keyboard Extension: Protocol Specification][XKB Protocol]
- [How to enhance XKB configuration][xkeyboard-config doc]
- [ArchWiki XKB page][arch-wiki]
[xkeyboard-config]: https://gitlab.freedesktop.org/xkeyboard-config/xkeyboard-config
[ivan-pascal]: https://web.archive.org/web/20190724015820/http://pascal.tsu.ru/en/xkb/
[unreliable-guide]: https://www.charvolant.org/doug/xkb/html/index.html
[XKB Protocol]: https://www.x.org/releases/current/doc/kbproto/xkbproto.html
[xkeyboard-config doc]: https://gitlab.freedesktop.org/xkeyboard-config/xkeyboard-config/-/blob/master/docs/README.enhancing
[arch-wiki]: https://wiki.archlinux.org/index.php/X_keyboard_extension
@tableofcontents{html:2}
[terminology]: @ref terminology
[introduction]: @ref introduction-to-the-xkb-text-format
[xkb_keymap]: @ref the-xkb_keymap-block
[xkb_keycodes]: @ref the-xkb_keycodes-section
[xkb_types]: @ref the-xkb_types-section
[xkb_compat]: @ref the-xkb_compat-section
[xkb_symbols]: @ref the-xkb_symbols-section
[virtual modifier statements]:@ref virtual-modifier-statements
[actions]: @ref key-actions
## Terminology {#terminology}
<dl>
<dt><a name="keycode-def">Keycode</a><dt>
<dd>
Code that identifies a physical key on a keyboard.
- _Raw_ keycodes are the numeric identifiers used as input in XKB.
They are the result of the low-level processing of the data that
keyboards send to a computer. For instance `36` may represent
the return key.
- _XKB_ keycodes are _symbolic_ names assigned to raw keycodes in
order to facilitate their mapping to symbols. For instance the
keycode for the return key is the abbreviation `RTRN`.
See [xkb_keycodes] for further details.
</dd>
<dt><a name="keysym-def">Symbols</a></dt>
<dd>
A _keysym_ (short for “key symbol”) is a numeric encoding of a
symbol on the cap of a key.
Some keysyms have a canonical name for convenience. The complete list of
canonical names is defined in `xkbcommon/xkbcommon-keysyms.h`.
Common types of keysyms are:
- A _character:_ e.g. `a` and `A` for Latin scripts,
`alpha` “α” and `ALPHA` “Α” for Greek, etc.
- A _dead key:_ e.g. `dead_grave` and `dead_diaeresis`, corresponding
respectively to the [grave accent](https://en.wikipedia.org/wiki/Grave_accent)
and the [diaeresis](https://en.wikipedia.org/wiki/Diaeresis_%28diacritic%29)
diacritics.
A [dead key](https://en.wikipedia.org/wiki/Dead_key) is a special kind of key
that does not generate a character by itself, but modifies the character
generated by the key struck(s) immediately after.
- A <em>[modifier]:</em> e.g. `Shift_L`, `Control_R`, `Caps_Lock`.
See hereinafter.
- A _system action:_ e.g. the arrow `Left`, `Pause`, `Escape`, `F1`.
@sa [xkb_symbols] for further details on binding keysyms to keycodes.
@sa [Keysym syntax][@ref keysym-syntax]
</dd>
<dt><a name="modifier-def">Modifier</a></dt>
<dd>
A _modifier key_ is a key that modifies the effect of other keys:
e.g. Shift, Control, Caps Lock, etc.
The state of a modifier key (active/inactive) is encoded as a
_modifier index_ (or modifier bit or simply modifier) and has
an associated _unique name_.
For historical reasons, modifiers are divided in two categories:
<dl>
<dt><a name="real-modifier-def">Real modifiers</a></dt>
<dd>
They are the 8 _predefined_ (AKA *core*, *X11*) modifiers
(see [usual modifiers] hereinafter).
Real modifiers ensure backward compatibility: indeed
they are the actual bits used to compute the [levels][level]
and are communicated via the API of xkbcommon.
Some are generic modifiers (`Mod[1-5]`) that do not have a
conventional interpretation and are the motivation of the
introduction of [virtual modifiers].
</dd>
<dt><a name="virtual-modifier-def">Virtual modifiers</a>
<dd>
They are the modifiers that are _not_ predefined.
</dd>
</dl>
Each modifier defines a _mapping_ to one or multiple
_real_ modifier. Real modifiers map to themselves.
The following table lists the
<a name="usual-modifiers">usual modifiers</a>
present in the [standard keyboard configuration][xkeyboard-config].
Note that this is provided for information only, as it may change
depending on the user configuration.
| Modifier | Type | Usual mapping | Comment |
| ------------ | ------- | ----------------- | --------------------------- |
| `Shift` | Real | `Shift` (fixed) | The usual [Shift] |
| `Lock` | Real | `Lock` (fixed) | The usual [Caps Lock][Lock] |
| `Control` | Real | `Control` (fixed) | The usual [Control] |
| `Mod1` | Real | `Mod1` (fixed) | Not conventional |
| `Mod2` | Real | `Mod2` (fixed) | Not conventional |
| `Mod3` | Real | `Mod3` (fixed) | Not conventional |
| `Mod4` | Real | `Mod4` (fixed) | Not conventional |
| `Mod5` | Real | `Mod5` (fixed) | Not conventional |
| `Alt` | Virtual | `Mod1` | The usual [Alt] |
| `Meta` | Virtual | `Mod1` | The legacy [Meta] key |
| `NumLock` | Virtual | `Mod2` | The usual [NumLock] |
| `Super` | Virtual | `Mod4` | The usual [Super]/GUI |
| `LevelThree` | Virtual | `Mod5` | [ISO][ISO9995] level 3, aka [AltGr] |
| `LevelFive` | Virtual | `Mod3` | [ISO][ISO9995] level 5 |
[usual modifiers]: @ref usual-modifiers
[Shift]: https://en.wikipedia.org/wiki/Control_key
[Lock]: https://en.wikipedia.org/wiki/Caps_Lock
[Control]: https://en.wikipedia.org/wiki/Control_key
[Alt]: https://en.wikipedia.org/wiki/Alt_key
[AltGr]: https://en.wikipedia.org/wiki/AltGr_key
[NumLock]: https://en.wikipedia.org/wiki/Num_Lock
[Meta]: https://en.wikipedia.org/wiki/Meta_key
[Super]: https://en.wikipedia.org/wiki/Super_key_(keyboard_button)
A modifier key can report its state in one of the following 3 ways:
<dl>
<dt><a name="depressed-mod-def">Depressed</a></dt>
<dd>Active while depressed; e.g. the usual Shift.</dd>
<dt><a name="latched-mod-def">Latched</a></dt>
<dd>
Activated when pressed and deactivated after the next
non-modifier key press.
</dd>
<dt><a name="locked-mod-def">Locked</a></dt>
<dd>
Activated when pressed and deactivated when pressed again;
e.g. the usual Caps Lock.
</dd>
</dl>
See [modifiers declaration and binding] for further details.
</dd>
[depressed]: @ref depressed-mod-def
[latched]: @ref latched-mod-def
[locked]: @ref locked-mod-def
<dt><a name="level-def">Shift Level</a></dt>
<dd>
A key may produce different
results depending of the active modifiers: e.g. for a Latin script,
pressing the key A produces “a” and holding Shift while pressing A
produces “A”.
This various results are organized in an ordered list; the _index_
of each entry is called a <a name="level-index-def">shift level</a>
or simply level. By convention the lowest level is the result when
no modifier is active.
Example for the key `A` on a latin script keyboard:
| Level | Description | Keysym | Active key modifiers |
|-------|--------------------------------|--------|----------------------|
| 1 | Lower case letters | `a` | None |
| 2 | Upper case letters. | `A` | `Shift` |
| 3 | Alternative lower case letters | `ae` | `AltGr` |
| 4 | Alternative upper case letters | `AE` | `Shift` + `AltGr` |
A key shift level is the logical _state_ of a key corresponding to
the current shift level it used.
Key shift levels are derived from the modifiers states, but not
necessarily in the same way for all keys. For example, for Latin
script the Caps Lock modifier selects the level 2 for alphabetic
keys such as `A` but has no effect on a numeric key.
There are groups of keys with the same characteristics: letters,
punctuation, numeric keypad, etc. The meaning of their levels is
identical and thus can be shared: this generalization is called
a _key type_ (see hereinafter).
</dd>
<dt><a name="key-type-def">Key type</a></dt>
<dd>
A key type defines the levels available for a key and
how to derive the active level from the modifiers states. Examples:
- `ONE_LEVEL`: the key has only one level, i.e. it is not affected
by any modifiers. Example: the modifiers themselves.
- [`TWO_LEVEL`][TWO_LEVEL]: the key has two levels:
- Level 1: default level, active when the `Shift` modifier is _not_ active.
- Level 2: level activated with the `Shift` modifier.
- [`FOUR_LEVEL`][FOUR_LEVEL]: see the example in the previous section.
See [xkb_types] for further details.
</dd>
<dt><a name="layout-def">Layout</a></dt>
<dd>
A mapping of keycodes to symbols, actions and key types.
A user who deals with multiple languages may need two or more
different layouts: e.g. a layout for Arabic and another one for
English. In this context, layouts are called _groups_ in XKB,
as defined in the [standard ISO/IEC 9995][ISO9995].
Layouts are ordered and identified by their index. Example:
- Layout 1: Arabic
- Layout 2: English
</dd>
<dt><a name="key-action-def">Key Action</a></dt>
<dd>
In XKB world, a key action defines the effect a key
has on the state of the keyboard or the state of the display server.
Examples:
- Change the state of a modifier.
- Change the active group.
- Move the mouse pointer.
See the section “[Key actions][actions]” for further details.
</dd>
<dt><a name="indicator-def">Indicator</a></dt>
<dd>
A keyboard indicator is a mean to report a specific aspect of the
keyboard state.
<dl>
<dt><em>Physical</em> indicator</dt>
<dd>
Typically a labelled LED on the keyboard, e.g. “Caps Lock” and
“Num Lock”.
</dd>
<dt><em>Logical</em> indicator</dt>
<dd>
A customizable derived state of the keyboard.
Its changes creates events that can be monitored.
There are two categories:
- _Real_ indicators are those associated to a physical indicator.
For example, the “Caps Lock” logical modifier controls the
corresponding physical LED.
Because indicators are customizable, if one misses a “Num Lock”
LED, one could define instead the “Caps Lock” _indicator_ to
activate its LED when the “Num Lock” _modifier_ is active.
- _Virtual_ indicators are not associated to a physical indicator.
Their effect is only visible for programs monitoring them.
Note that the meanings of _real_ and _virtual_ is slightly
different than the one used for [modifier].
</dd>
</dl>
See: <code>[xkb_keycodes][indicator name]</code> to define indicators and
<code>[xkb_compat][indicator effect]</code> to define their effects.
</dd>
<dt><a name="keymap-def">Keymap</a></dt>
<dd>
The _complete_ definition of the
mapping of raw keycodes to symbols and actions.
It fully defines the behavior of a keyboard.
Depending of the context, a keymap may refer to:
- the software object defined and managed by libxkbcommon;
- the text configuration used to create this software object.
See @ref keymap-components-intro and [xkb_keymap] for further details.
</dd>
<dt>Keyboard configuration database @anchor database-def</dt>
<dd>
A database that provides the [keymap components](@ref keymap-components-intro).
\*nix OSs uses the _standard_ database [xkeyboard-config]. One may extend
this database with _custom_ layouts: see “@ref user-configuration ""” for
further details.
</dd>
</dl>
[keycode]: @ref keycode-def
[keysym]: @ref keysym-def
[keysyms]: @ref keysym-def
[modifier]: @ref modifier-def
[modifiers]: @ref modifier-def
[real modifier]: @ref real-modifier-def
[real modifiers]: @ref real-modifier-def
[virtual modifier]: @ref virtual-modifier-def
[virtual modifiers]: @ref virtual-modifier-def
[level]: @ref level-def
[shift level]: @ref level-def
[level index]: @ref level-index-def
[key type]: @ref key-type-def
[key types]: @ref key-type-def
[layout]: @ref layout-def
[action]: @ref key-action-def
[indicator]: @ref indicator-def
[keymap]: @ref keymap-def
[database]: @ref database-def
[ISO9995]: https://en.wikipedia.org/wiki/ISO/IEC_9995
## Introduction to the XKB text format
The XKB text format uses a syntax similar to the [C programming language][C].
Note that the similarity with C stops here: the XKB text format is only a
_configuration_ format and is not intended for programming.
The XKB text format is used to configure a _keyboard keymap_, which is
introduced in “@ref xkb-the-config ""”. It has the following two main use cases,
illustrated in the [diagram hereinafter](@ref xkb-keymap-components-diagram):
- __Server:__ Load a keymap from the keymap configuration database, then handle
input events by updating the keyboard state. The keymap is assembled from
an [RMLVO configuration][RMLVO] and its corresponding
<strong>[KcCGST components][KcCGST]</strong> files.
@see xkb_keymap::xkb_keymap_new_from_names2
@see [xkeyboard-config] for the implementation of the *standard* keymap
configuration database.
@see “@ref user-configuration ""” to add a *custom* layout or option.
- __Client:__ Load the active keymap from the server, then handle update events
sent by the server. The <strong>[complete keymap]</strong> is directly
available in a _self-contained_ file.
@see xkb_keymap::xkb_keymap_new_from_string
@anchor xkb-keymap-components-diagram
@dotfile xkb-keymap-components "XKB text format use cases"
[C]: https://en.wikipedia.org/wiki/C_(programming_language)#Syntax
[RMLVO]: @ref RMLVO-intro
[KcCGST]: @ref KcCGST-intro
[complete keymap]: @ref keymap-intro
### XKB file
There are two kinds of files for the XKB text format:
<!-- NOTE:
The XKB protocol (https://www.x.org/releases/current/doc/kbproto/xkbproto.html)
uses “Keyboard description” and “Keyboard components” rather than “keymap” and
“keymap components”.
-->
<dl>
<dt>Keymap file @anchor keymap-file-def</dt>
<dd>
A file with the _complete_ description of the [keymap] object.
It is the kind of file that the server sends to the client (see
the [diagram](@ref xkb-keymap-components-diagram) above).
Its top-level structure consists of the [xkb_keymap] block.
</dd>
<!-- TODO: not sure of the following -->
<!--
<dt>Partial keymap</dt>
<dd>
A keymap text configuration with one or more keymap sections. Some
sections may be missing and [include] statements may not be resolved.
</dd>
<dt>Complete keymap</dt>
<dd>
A keymap text configuration consisting of a `%xkb_keymap` block with all
mandatory sections; all [include] statements are resolved so that it is
self-contained.
See the [xkb_keymap] block for further details.
</dd>
-->
<dt>Keymap _component_ file @anchor keymap-component-file-def</dt>
<dd>
A file with the description of a _particular_ [KcCGST component][KcCGST].
It is the kind of file that the server uses to assemble a [keymap file].
Its top-level structure consists of a _single type_ of [keymap sections].
A component file may contain multiple such sections.
</dd>
</dl>
[keymap file]: @ref keymap-file-def
[keymap component file]: @ref keymap-component-file-def
[keymap sections]: @ref keymap-section-def
[section]: @ref keymap-section-def
[keymap components]: @ref keymap-component-def
### Keymap components {#keymap-components-intro}
[Keymap components][keymap components] are described with [keymap sections].
They are grouped in [keymap component files][keymap component file] to form a
[keyboard configuration database][database].
<dl>
<dt>Keymap _component_ @anchor keymap-component-def</dt>
<dd>
A part of the keymap _object_. The set of keymap components is referred as
[KcCGST]. They are presented in the [table hereinafter][keymap components table].
</dd>
<dt>Keymap _section_ @anchor keymap-section-def</dt>
<dd>
A part of the keymap _text configuration_ dedicated to one of the
[keymap components][keymap components table].
</dd>
<dt>Component _folder_</dt>
<dd>
A folder in the [keymap configuration database][database], dedicated to files
with partial definitions of the same keymap section.
</dd>
</dl>
[keymap components table]: @ref keymap-components-table
@anchor keymap-components-table
<table>
<caption>
Keymap components
</caption>
<tr>
<th>[Component](@ref keymap-component-def)</th>
<th>[Section][section] in a [keymap][xkb_keymap]</th>
<th>Folder in a keymap configuration database</th>
<th>Description</th>
</tr>
<tr>
<th><u>K</u>ey <u>c</u>odes</th>
<td>[xkb_keycodes]</td>
<td>`keycodes`</td>
<td>
A translation of the raw [key codes][keycode] from the keyboard into
symbolic names.
</td>
</tr>
<tr>
<th><u>C</u>ompatibility</th>
<td>[xkb_compat]</td>
<td>`compat`</td>
<td>
A specification of what internal actions modifiers and various
special-purpose keys produce.
</td>
</tr>
<tr>
<th>(<u>G</u>eometry)</th>
<td>xkb_geometry</td>
<td>`geometry`</td>
<td>
A description of the physical layout of a keyboard.
@attention This legacy feature is [not supported](@ref geometry-support)
by _xkbcommon_.
</td>
</tr>
<tr>
<th>Key <u>s</u>ymbols</th>
<td>[xkb_symbols]</td>
<td>`symbols`</td>
<td>
A translation of symbolic [key codes][keycode] into actual [key symbols][keysyms]
(keysyms).
</td>
</tr>
<tr>
<th>Key <u>t</u>ypes</th>
<td>[xkb_types]</td>
<td>`types`</td>
<td>
Types describe how a pressed key is affected by active [modifiers]
such as Shift, Control, Alt, etc.
</td>
</tr>
</table>
### Comments
Comments are introduced following either `//` or `#` until the end of the line.
### Literals
<dl>
<dt>String literal @anchor keymap-string-literal</dt>
<dd>
A string is surrounded by double quotes: “<code>"</code>”.
The following _escape sequences_ are supported:
| Escape sequence | Meaning |
| ------------------ | -------------------------------------------------------- |
| `\\` | Backslash “`\`” |
| `\"` | Double quote “`"`” |
| `\b` | Backspace |
| `\e` | Escape |
| `\f` | Form feed |
| `\n` | Line feed (newline) |
| `\r` | Carriage return |
| `\t` | Horizontal tabulation |
| `\v` | Vertical tabulation |
| `\` + octal number | Corresponding ASCII character: `\1` → `SOH`, `\42` → `"`. Up to **4** octal digits `0‥7` are parsed. The result must fit into a byte. |
| `\u{` + hexadecimal number + `}` | `\u{NNNN}` produce the corresponding [Unicode code point] `U+NNNN`, encoded in [UTF-8]. Supported code points are in the range `U+0001‥U+10FFFF`. |
[Unicode code point]: https://en.wikipedia.org/wiki/Unicode#Codespace_and_code_points
[UTF-8]: https://en.wikipedia.org/wiki/UTF-8
@note The string _encoding_ is unspecified and not validated, but for best
results, stick to ASCII.
@since \<1.9.0: Octal escape sequences accept up to **3** digits.
@since 1.9.0: Octal escape sequences accept up to **4** digits.
Added <code>\\"</code> and `\u{NNNN}` escape sequences.
<!-- TODO: check UTF-8 encoding result -->
</dd>
<dt>Number literal</dt>
<dd>
A number can be written in three forms:
- _decimal integer:_ `1`, `123`, etc.
- _decimal floating-point number:_ `1.23`, etc.
- _hexadecimal integer:_ prefixed with `0x`: `0x123`, `0xff`, `0xAB`, etc.
</dd>
</dl>
### Keysyms {#keysym-syntax}
[Keysyms][keysym] may be written in multiple ways:
<dl>
<dt>Name</dt>
<dd>
Keysym names are defined in `xkbcommon/xkbcommon-keysyms.h`; remove the
`XKB_KEY_` prefix to get the name.
Example: the keysym `0xffbe = XKB_KEY_F1` has the name `F1`.
</dd>
<dt>Unicode</dt>
<dd>
The *Unicode* syntax `Unnnn` denotes a keysym whose corresponding character is
the Unicode code point `U+nnnn`, where `nnnn` is an hexadecimal number in the
range `0x100 .. 0x10ffff`. The resulting keysym value is `0x01000000 + nnnn`.
Example: `U1F3BA` has value `0x0101F3BA` and corresponds to the code point
`U+1F3BA`: ‘🎺’ (TRUMPET).
</dd>
<dt>String literal</dt>
<dd>
A keysym or list of keysyms can be written as a *string literal*, with the
following semantics:
1. The string must be encoded in UTF-8.
2. If the encoding is invalid, it raises a syntax error.
3. If the string expands to 0 Unicode code point, the resulting keysym is
`NoSymbol`.
4. If the string expands to 1 Unicode code point, the resulting keysym is the
output of `xkb_utf32_to_keysym`.
5. Otherwise the string expands to a list `{ ... }` with each Unicode code point
converted via `xkb_utf32_to_keysym`.
@note This is only possible where multiple keysyms is valid, e.g. in the
@ref key-multiple-symbols-per-level "key symbols".
Examples:
<table>
<thead>
<tr>
<th>Keysym string</th>
<th>Keysym name</th>
<th>Keysym value</th>
</tr>
</thead>
<tbody>
<tr>
<td>`""`</td>
<td>`NoSymbol`</td>
<td>`0x0000`</td>
</tr>
<tr>
<td>`"a"`</td>
<td>`a`</td>
<td>`0x0061`</td>
</tr>
<tr>
<td>`"ü"`</td>
<td>`udiaeresis`</td>
<td>`0x00dc`</td>
</tr>
<tr>
<td>`"🎺"`</td>
<td>`U1F3BA`</td>
<td>`0x0101F3BA`</td>
</tr>
<tr>
<td>`"g̃"`</td>
<td>`{g, combining_tilde}`</td>
<td>`{0x0101F3BA, 0x01000303}`</td>
</tr>
</tbody>
</table>
@sa @ref keysyms-string "Keysym strings"
@since 1.9.0
</dd>
<dt>Numeric value</dt>
<dd>
A keysym can be written directly with its *numeric* value: e.g. `0x61` is `a`.
@note Digits `0 .. 9` have a special treatment because they are interpreted as
names, not values. E.g. `1` is the keysym with name `1` and value `0x31`.
@warning This syntax should be avoided for its poor readability, except if it
is not possible to write the keysym with the previous syntaxes.
</dd>
</dl>
### Keywords
The following table presents the keywords used in the format. They are
_case-sensitive_.
<!-- NOTE: keywords are defined in `src/xkbcomp/keywords.gperf` -->
| Keyword | Use |
| ----------------------- | ------------------------------ |
| `action` | Action of an [interpret statement](@ref interpret-action) |
| `alias` | [Keycode alias](@ref keycode-alias) |
| `alphanumeric_keys` | [Section flag](@ref section-flag-alphanum) |
| `alternate_group` | [Section flag](@ref section-flag-alt-group) |
| `alternate` | Merge mode qualifier for [include] statements |
| `augment` | Merge mode qualifier for [include] statements |
| `default` | [Section flag](@ref section-flag-default) |
| `function_keys` | [Section flag](@ref section-flag-function) |
| `group` | <span class="todo">TODO</span> |
| `hidden` | [Section flag](@ref section-flag-hidden) |
| `include` | [Include statement][include] |
| `indicator` | Indicator statement in either the [keycode section](@ref indicator-name) or the [compatibility section](@ref indicator-effect) |
| `interpret` | [Interpret statement][interpret] |
| `key` | [Key statement](@ref key-statement) |
| `keypad_keys` | [Section flag](@ref section-flag-keypad) |
| `keys` | Legacy [geometry element][xkb_geometry] |
| `logo` | Legacy [geometry element][xkb_geometry] |
| `mod_map` | Alias of `modifier_map` |
| `modifier_keys` | [Section flag](@ref section-flag-modifier) |
| `modmap` | Alias of `modifier_map` |
| `modifier_map` | [Real modifier bindings](@ref modmap-statement) |
| `outline` | Legacy [geometry element][xkb_geometry] |
| `overlay` | Legacy [geometry element][xkb_geometry] |
| `override` | Merge mode qualifier for [include] statements |
| `partial` | [Section flag](@ref section-flag-partial) |
| `replace` | Merge mode qualifier for [include] statements |
| `row` | Legacy [geometry element][xkb_geometry] |
| `section` | Legacy [geometry element][xkb_geometry] |
| `shape` | Legacy [geometry element][xkb_geometry] |
| `solid` | Legacy [geometry element][xkb_geometry] |
| `text` | Legacy [geometry element][xkb_geometry] |
| `type` | [Key type statement](@ref key-type-statement) |
| `virtual_modifiers` | [Virtual modifiers mappings](@ref virtual-modifier-statements) |
| `virtual` | Flag for the [indicator statement](@ref indicator-name) |
| `xkb_compat_map` | Alias of `xkb_compatibility_map` |
| `xkb_compat` | Alias of `xkb_compatibility_map` |
| `xkb_compatibility_map` | Declare a [compatibility section][xkb_compat] |
| `xkb_compatibility` | Alias of `xkb_compatibility_map` |
| `xkb_geometry` | Declare a [geometry section][xkb_geometry] |
| `xkb_keycodes` | Declare a [keycodes section][xkb_keycodes] |
| `xkb_keymap` | Declare a [keymap block][xkb_keymap] |
| `xkb_layout` | Declare a legacy [layout compound section][xkb_layout] |
| `xkb_semantics` | Declare a legacy [semantics compound section][xkb_semantics] |
| `xkb_symbols` | Declare a [symbols section][xkb_symbols] |
| `xkb_types` | Declare a [key types section ][xkb_types] |
[include]: @ref xkb-include
[interpret]: @ref interpret-statements
[interpretations]: @ref interpret-statements
[xkb_geometry]: @ref the-xkb_geometry-section
[xkb_layout]: @ref legacy-layout-section
[xkb_semantics]: @ref legacy-semantics-section
### Built-in settings
<!--
TODO: SetMods is not a keyword, but how call it for user-facing doc?
-->
There are many built-in settings; they are explained in the following relevant
sections.
These settings are _case-insensitive_, e.g. the following strings denote
the same key word: `SETMODS`, `SetMods`, `setMods` and `setmods`.
### Merge modes {#merge-mode-def}
Each statement has a **merge mode** property that defines how to handle
*conflicts* with previous statements. This property can be set explicitly by
prefixing the statement with one of the merge modes presented hereinafter.
<dl>
<dt>@anchor merge-mode-augment augment</dt>
<dd>
If two declarations conflict, update the properties which are *explicitly*
defined in the *new* declaration, *only* if they were *implicit* in the *old*
declaration.
```c
key <A> { [a , NoSymbol , ae ] };
augment key <A> { [Greek_alpha, Greek_ALPHA, NoSymbol, AE] };
// Result
key <A> { [a , Greek_ALPHA, ae , AE] };
```
</dt>
<dt>@anchor merge-mode-override override</dt>
<dd>
If two declarations conflict, update only the properties which are
*explicitly* defined in the *new* declaration.
@note @anchor merge-mode-default Override is the *default* merge mode.
```c
key <A> { [a , NoSymbol , ae ] };
// Explicit merge mode
override key <A> { [Greek_alpha, Greek_ALPHA, NoSymbol, AE] };
// Result
key <A> { [Greek_alpha, Greek_ALPHA, ae , AE] };
```
```c
key <A> { [a , NoSymbol , ae ] };
// Implicit merge mode is override
key <A> { [Greek_alpha, Greek_ALPHA, NoSymbol, AE] };
// Result
key <A> { [Greek_alpha, Greek_ALPHA, ae , AE] };
```
</dt>
<dt>@anchor merge-mode-replace replace</dt>
<dd>
If two declarations conflict, ignore the old declaration and use the new one.
```c
key <A> { [a , NoSymbol , ae ] };
replace key <A> { [Greek_alpha, Greek_ALPHA, NoSymbol, AE] };
// Result
key <A> { [Greek_alpha, Greek_ALPHA, NoSymbol, AE] };
```
</dt>
<dt>@anchor merge-mode-alternate alternate</dt>
<dd>
Legacy merge mode for keycodes. Its purpose is to allow to assign the same key
name to multiple key codes, which is not allowed otherwise. This is unfortunately
poorly documented and not used in xkeyboard-config. The xkblib specification
implies that this was part of the overlay functionality, which is currently not
supported by libxkbcommon.
@warning This merge mode is not supported by libxkbcommon and is ignored.
</dd>
</dl>
[default merge mode]: @ref merge-mode-default
### The include mechanism {#xkb-include}
#### Syntax
Statements of the form:
```c
// Implicit section name: use the default map
include "<PATH>"
// Explicit section name
include "<PATH>(<SECTION_NAME>)"
```
will merge data from another [section] of the *same type*, possibly located in
another file. Note that the statement does not have a trailing semicolon.
If no section name is provided, the [default map] is looked up.
[default map]: @ref default-map-def
The path is usually relative to its corresponding directory in a XKB
configuration: e.g. given the configuration directory `<XKB>`, files of
section type `xkb_symbols` are looked up in `<XKB>/symbols`. Since 1.11,
the paths can also be absolute or use **%-expansion**:
@anchor keymap-include-percent-expansion
<!--
[WARNING]: Doxygen parsing is a mess. \% does not work as expected
in Markdown code quotes, e.g. `\%H` gives `\H`. But using <code> tags
or %%H seems to do the job though.
-->
<dl>
<dt>`%%`</dt>
<dd>A literal %.</dd>
<dt><code>\%H</code></dt>
<dd>The value of the `$HOME` environment variable.</dd>
<dt><code>\%S</code></dt>
<dd>
The *main* system-installed XKB directory of the corresponding [component]
\(usually `/usr/share/X11/xkb/<component>`).
This enables e.g. to override a system file using @ref user-configuration ""
with the exact *same name*:
```c
// File: ~/.config/xkb/symbols/de
xkb_symbols "basic" {
// Include the system file /usr/share/X11/xkb.
//
// Note that it is not be possible to use `include "de(basic)"` because
// it would create an include *loop*.
include "%S/de(basic)"
// Override the system file entries
key <AB01> { [z, Z] };
key <AD06> { [y, Y] };
}
```
</dd>
<dt><code>\%E</code></dt>
<dd>
The *extra* system-wide XKB directory of the corresponding [component]
\(usually `/etc/xkb/<component>`).
</dd>
</dl>
[component]: @ref keymap-components-table
@warning Absolute paths and `%`-expansion are supported by libxkbcommon but not
by the legacy X11 tools.
The `include` keyword uses the *default* [merge mode]. The following keywords
can be used instead to use the corresponding *explicit* [merge modes][]:
- [`augment`][augment]
- [`override`][override]
- [`replace`][replace]
[merge mode]: @ref merge-mode-def
[merge modes]: @ref merge-mode-def
[augment]: @ref merge-mode-augment
[override]: @ref merge-mode-override
[replace]: @ref merge-mode-replace
*Multiple files* can be included using the same statement. They are separated using one
of the following [merge mode] prefixes:
- ‘|’ selects the <strong>[augment]</strong> merge mode.
- ‘+’ selects the <strong>[override]</strong> merge mode (default).
- ‘^’ selects the <strong>[replace]</strong> merge mode.
The following example illustrates the complete syntax:
```c
// Default merge mode, 1 file with an implicit section name
include "<PATH>"
// Augment merge mode, 1 file with an implicit section name
augment "<PATH>(<SECTION_NAME>)"
// Absolute path and %-expansion
include "/usr/share/X11/xkb/symbols/pc"
include "%S/pc"
// Override merge mode, 2 files: a first file with an implicit section name merged
// using the augment mode with a second file with an explicit section name
override "<PATH_1>|<PATH_2>(<SECTION_NAME>)
```
#### Processing
@important Since xkbcommon 1.9.0 the included files are processed in *isolation*
and are not affected by the parent file (e.g. defaults), except for the virtual
modifiers indexes.
@important Since xkbcommon 1.9.0 local merge modes are *not* propagated outside
the section scope, i.e. an included file does not leaks its local merge modes to
its parent.
The statement is processed as follow:
1. Set PARENT as the current [section] containing the include statement.
2. Set INCLUDED_MERGE_MODE to the merge mode corresponding to the keyword.
3. Initialize an empty [section] as INCLUDED.
4. Select the first file as the current file to process.
5. Set CURRENT_MERGE_MODE to the merge mode corresponding to the current file
merge mode *prefix*.
6. The current file path is searched sequentially in the
[XKB configuration path list]:
- If a section name is provided, select the first *exact match* of file +
section.
- If no section name is provided, select the first *explicit* [default map]
in matched files, else if no exact match was found in the path list, then
fallback to the first *implicit* [default map] as a weak match.
Then if no match is found, raise an error; else go to the next step.
7. The current file is processed and results in the CURRENT [section].
8. The INCLUDED [section] is merged with the CURRENT [section] using the merge mode
CURRENT_MERGE_MODE.
9. If they are more files, select the next file as the current file and go to
step 5). Else go to step 10).
10. Once all files have been processed, merge PARENT with INCLUDED using the
merge mode INCLUDED_MERGE_MODE.
[XKB configuration path list]: @ref xkb_context::xkb_context_include_path_append()
#### Example: include path list
Let’s illustrate using the following [XKB configuration path list][]:
1. `/home/<USER>/.config/xkb`: user configuration directory
(see @ref user-configuration "").
2. `/usr/share/X11/xkb`: system directory.
The relevant directory structure is:
- `/home/<USER>/.config/xkb`
- `symbols`
- `es`
- `my_own_file`
- `/usr/share/X11/xkb`
- `symbols`
- `es`
- `it`
Then the following file:
```c
xkb_symbols {
include "it" // Exists only in system directory
include "my_own_file" // Exists only in user directory
include "es" // Exists in both user and system directory
};
```
is equivalent to:
```c
xkb_symbols {
include "/usr/share/X11/xkb/symbols/it"
include "/home/<USER>/.config/xkb/symbols/my_own_file"
include "/home/<USER>/.config/xkb/symbols/es"
};
```
#### Example: simple include
Given the following files:
- `symbols/A`
```c
xkb_symbols {
key <A> { [a, A, ae, AE] };
include "B(S2)"
};
```
- `symbols/B`
```c
// This section is not used (does not match)
xkb_symbols "S1" {
key <B> { [b, B] };
};
// This section will be included (match the included section name)
xkb_symbols "S2" {
key <A> { [Greek_alpha, Greek_ALPHA] };
key <B> { [Greek_beta , Greek_BETA ] };
};
```
the resulting section in `A` will be:
```c
xkb_symbols {
// Key overridden: mix of old + new
key <A> { [Greek_alpha, Greek_ALPHA, ae, AE] };
// New key
key <B> { [Greek_beta , Greek_BETA ] };
};
```
#### Example: merge modes
Given the same file `symbols/B` of the previous example, the following section:
<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>
```c
xkb_symbols {
key <A> { [a, A, ae, AE] };
augment "B(S2)"
};
```
</td>
<td>
```c
xkb_symbols {
// Key unchanged
key <A> { [a, A, ae, AE] };
// New key
key <B> { [Greek_beta , Greek_BETA] };
};
```
</td>
</tr>
<tr>
<td>
```c
xkb_symbols {
key <A> { [a, A, ae, AE] };
replace "B(S2)"
};
```
</td>
<td>
```c
xkb_symbols {
// Key replaced
key <A> { Greek_alpha, Greek_ALPHA] };
// New key
key <B> { [Greek_beta , Greek_BETA ] };
};
```
</td>
</tr>
<tr>
<td>
```c
xkb_symbols {
key <A> { [a, A, ae, AE] };
// Two files merged together with the merge mode
// augment, then the result is merged this the
// statement above using the override merge mode
include "B(S1)|B(S2)"
};
```
</td>
<td>
```c
xkb_symbols {
// Key overridden: mix of old + new
key <A> { [Greek_alpha, Greek_ALPHA, ae, AE] };
// New key; "B(2)" had no effect with the
// merge mode augment "|"
key <B> { [b, B] };
};
```
</td>
</tr>
</tbody>
</table>
## The “xkb_keymap” block {#the-xkb_keymap-block}
A <strong>[keymap file]</strong> consists of a single top-level `xkb_keymap`
block, under which are nested the following sections:
<dl>
<dt><code>[xkb_keycodes]</code></dt>
<dd>
A translation of the hardware/evdev scancodes from the keyboard into
XKB symbolic keycodes.
</dd>
<dt><code>[xkb_types]</code></dt>
<dd>
A specification of the modifier mask, target level and preserved
modifiers various modifiers combination produce.
</dd>
<dt><code>[xkb_compat]</code></dt>
<dd>
A specification of what actions various special-purpose keys produce.
</dd>
<dt><code>[xkb_symbols]</code></dt>
<dd>
A translation of symbolic key codes into actual symbols and actions.
</dd>
</dl>
Overview of a keymap file:
```c
xkb_keymap {
xkb_keycodes "XXX" {
// ...
}
xkb_types "XXX" {
// ...
};
xkb_compatibility "XXX" {
// ...
};
xkb_symbols "XXX" {
// ...
};
};
```
@since 1.9.0 All the component are optional.
<!-- NOTE: do not use blank lines here! -->
@remark The XKB file format historically supported the following compound
section types:
<div>
- `xkb_semantics`: @anchor legacy-semantics-section *must* contain a [xkb_compat] section
and *can* contain a [xkb_types] section.
- `xkb_layout`: @anchor legacy-layout-section *must* contain [xkb_keycodes], [xkb_types]
and [xkb_symbols] sections and *can* contain [xkb_geometry] section.
- `xkb_keymap`: *must* contain [xkb_keycodes], [xkb_compat], [xkb_types] and
[xkb_symbols] sections and *can* contain [xkb_geometry] section.
</div>
Since such distinction is purely semantic and would have niche use cases lost to
history, these compound sections are treated equally as `xkb_keymap` in
libxkbcommon.
<!-- TODO: there might be several sections of the same type: explain syntax and how they are selected -->
<!-- TODO: sections may be named -->
## Section flags {#section-flags-def}
A section can have various **flags** applied to it, separated by whitespaces:
partial alphanumeric_keys
xkb_symbols "basic" {
...
}
### Generic flags
The possible flags are:
<dl>
<dt><code>partial</code>@anchor section-flag-partial</dt>
<dd>Indicates that the map doesn’t cover a complete keyboard.</dd>
<dt><code>default</code>@anchor section-flag-default</dt>
<dd>
@anchor default-map-def
Marks the symbol map as the *explicit* **default map** in the file. If no map is
marked as a default, the first map in the file is the *implicit* default. Only
**one** section can be marked as the default in each file.
</dd>
<dt><code>hidden</code>@anchor section-flag-hidden</dt>
<dd>Variant that can only be used internally.</dd>
</dl>
### Symbols flags
Additionally, `xkb_symbols` may also have the following flags:
<dl>
<dt><code>alphanumeric_keys</code>@anchor section-flag-alphanum</dt>
<dd>Indicates that the map contains alphanumeric keys.</dd>
<dt><code>modifier_keys</code>@anchor section-flag-modifier</dt>
<dd>Indicates that the map contains modifier keys: Control, Shift, Alt, Meta, etc.</dd>
<dt><code>keypad_keys</code>@anchor section-flag-keypad</dt>
<dd>Indicates that the map contains keypad keys.</dd>
<dt><code>function_keys</code>@anchor section-flag-function</dt>
<dd>Indicates that the map contains function keys: F1, F2, etc.</dd>
<dt><code>alternate_group</code>@anchor section-flag-alt-group</dt>
<dd>Indicates that the map contains keys for an alternate group.</dd>
</dl>
If no `*_keys` flags are supplied, then the symbols section is assumed to cover
a complete keyboard.
At present, except for `default` (see: [default map]), none of the flags affect
key processing in libxkbcommon, and only serve as *metadata*.
## The “xkb_keycodes” section {#the-xkb_keycodes-section}
This is the simplest [section] type, and is the first one to be
compiled. The purpose of this is mostly to map between the
hardware/evdev scancodes and XKB [keycodes][keycode]. Each key is given a name
by which it can be referred to later, e.g. in the symbols section.
### Keycode statements
Statements of the form:
<TLDE> = 49;
<AE01> = 10;
The above would let 49 and 10 be valid keycodes in the keymap, and
assign them the names `TLDE` and `AE01` respectively. The format
`<WXYZ>` is always used to refer to a key by name.
The naming convention `<AE01>` is based on the
[standard ISO/IEC 9995-1][ISO9995-1]. It denotes the position of the
key in the keyboard grid. It means: the main alphanumeric section
(`A`), row `E` and column `01`.
The following figure illustrates the grid on a staggered standard
US QWERTY keyboard. `<AE01>` corresponds to the key `1`.
```
\ 99 \ 00 \ 01 \ 02 \ 03 \ 04 \ 05…
\ \ \ \ \ \ \
-----------------------------------------
E \ \ ^ \ 1 \ 2 \ 3 \ 4 \ 5…
------------------------------------------
D \ Tab \ Q \ W \ E \ R \ T…
-------------------------------------------
C \Caps \ A \ S \ D \ F \ G…
--------------------------------------------
B \Shift \ Z \ X \ C \ V \ B…
---------------------------------------------
A \Ctrl\GUI \Alt \Space…
----------------------------------------------
```
[ISO9995-1]: https://en.wikipedia.org/wiki/ISO/IEC_9995#ISO/IEC_9995-1
In the common case this just maps to the evdev scancodes from
`/usr/include/linux/input.h`, e.g. the following definitions:
#define KEY_GRAVE 41
#define KEY_1 2
correspond to the ones above. Similar definitions appear in the
xf86-input-keyboard driver. Note that in all current keymaps there’s a
constant offset of 8 (for historical reasons).
Note that contrary to xkbcommon, the X11 protocol supports keycodes
only up to `255`. Therefore, when interfacing with X11, keymaps and applications
using keycodes beyond `255` should expect warnings.
If there’s a conflict, like the same name given to different keycodes,
or same keycode given different names, it is resolved according to the
[merge mode] which applies to the definitions.
### Alias statements {#keycode-alias}
Statements of the form:
alias <MENU> = <COMP>;
Allows to refer to a previously defined key (here `<COMP>`) by another
name (here `<MENU>`). Conflicts are handled similarly to keycode
statements.
### LED name statements {#indicator-name}
[indicator name]: @ref indicator-name
Statements of the form:
indicator 1 = "Caps Lock";
indicator 2 = "Num Lock";
indicator 3 = "Scroll Lock";
Assigns a name to the keyboard LED (AKA [indicator]) with the given
index. The LED may be referred by this name later in the compat
section and by the user.
@todo `virtual` flag
## The “xkb_types” section {#the-xkb_types-section}
<!--
Ivan Pascal’s doc:
https://web.archive.org/web/20190724070654/http://pascal.tsu.ru/en/xkb/gram-types.html
-->
This [section] is the second to be processed, after `xkb_keycodes`.
However, it is completely independent and could have been the first to
be processed (it does not refer to specific keys as specified in the
`xkb_keycodes` section).
This section defines [key types], which, given a key and a keyboard
state (i.e. modifier state and group), determine the [shift level] to
be used in translating the key to [keysyms]. These types are assigned
to each group in each key, in the `xkb_symbols` section.
Key types are called this way because, in a way, they really describe
the “type” of the key (or more correctly, a specific group of the
key). For example, an ordinary keymap will provide a type called
`KEYPAD`, which consists of two levels, with the second level being
chosen according to the state of the Num Lock (or Shift) modifiers.
Another example is a type called `ONE_LEVEL`, which is usually
assigned to keys such as Escape; these have just one level and are not
affected by the modifier state. Yet more common examples are
[`TWO_LEVEL`][TWO_LEVEL] (with Shift choosing the second level),
[`ALPHABETIC`][ALPHABETIC] (where Caps Lock may also choose the second
level), etc.
### How key types work
Key types define a _mapping_ between the [modifiers] and [shift levels].
Key types have four parameters:
<dl>
<dt>@ref key-type-level-name "Shift level names"</dt>
<dd>Declare [shift levels]. Mainly for documentation.</dd>
<dt>@ref key-type-modifiers "Modifiers filter"</dt>
<dd>Declare what modifiers should be taken into account in the mapping.</dd>
<dt>@ref key-type-map "Modifiers mapping"</dt>
<dd>Lookup table to translate modifiers combinations into shift levels.</dd>
<dt>@ref key-type-preserve "Modifiers preservation"</dt>
<dd>Tweak the computation of [consumed modifiers].</dd>
</dl>
[consumed modifiers]: @ref consumed-modifiers
[shift levels]: @ref level-def
Key types are used to compute:
- the [shift level][]: see xkb_state::xkb_state_key_get_level().
- the [consumed modifiers][]: see xkb_state::xkb_state_key_get_consumed_mods() and
xkb_state::xkb_state_key_get_consumed_mods2().
The following diagram presents an overview of theses computations:
@anchor xkb-types-explanation-diagram
@dotfile xkb-types-explanation "Use of key types to compute shift level and consumed modifiers"
### Type definitions {#key-type-statement}
Statements of the form:
type "FOUR_LEVEL" { ... }
The above would create a new type named [`FOUR_LEVEL`][FOUR_LEVEL].
The body of the definition may include statements of the following
forms:
#### “level_name” statements {#key-type-level-name}
level_name[Level1] = "Base";
Mandatory for each level in the type.
Gives each level in this type a descriptive name. It isn’t used
for anything.
Note: A level may be specified as Level\[1-8\] or just a number (can
be more than 8).
#### “modifiers” statement {#key-type-modifiers}
modifiers = Shift+Lock+LevelThree;
Mandatory, should be specified only once.
A mask of real and virtual [modifiers]. These are the only modifiers
being considered when matching the modifier state against the type.
The other modifiers, whether active or not, are masked out in the
calculation.
#### “map” entry statements {#key-type-map}
map[Shift+LevelThree] = Level4;
Should have at least as many mappings as there are levels in the type.
If the active modifiers, masked with the type’s modifiers (as stated
above), match (i.e. equal) the modifiers inside the `map[]` statement,
then the level in the right hand side is chosen. For example, in the
above, if in the current keyboard state the `Shift` and `LevelThree`
modifiers are active, while the `Lock` modifier is not, then the
keysym(s) in the 4th level of the group will be returned to the user.
#### “preserve” statements {#key-type-preserve}
map[Shift+Lock+LevelThree] = Level5;
preserve[Shift+Lock+LevelThree] = Lock;
When a key type is used for keysym translation, its modifiers are said
to be [consumed](@ref consumed-modifiers) in this translation. For
example, in a simple US keymap, the “G” key is assigned an ordinary
[`ALPHABETIC`][ALPHABETIC] key type, whose modifiers are `Shift` and
`Lock`; then for the “G” key, these two modifiers are consumed by the
translation. This information is relevant for applications which
further process the modifiers, since by then the consumed modifiers
have already “done their part” and should be masked out.
However, sometimes even if a modifier had already affected the key
translation through the type, it should *not* be reported as consumed,
for various reasons. In this case, a `preserve[]` statement can be
used to augment the map entry. The modifiers inside the square
brackets should match one of the `map[]` statements in the type (if
there is no matching map entry, one mapping to Level1 is implicitly
added). The right hand side should consists of modifiers from the
type’s modifiers; these modifiers are then “preserved” and not
reported as consumed.
@attention Consuming a *locked* modifier does *not* unlock it and it
can be consumed again in further keysym translations.
@note Remember that @ref keysym-transformations may affect the resulting
keysym when some modifiers are not [consumed](@ref consumed-modifiers).
@remark `preserve` statements may be used to tweak keyboard shorcuts.
@remark@figure
@figcaption
Example of use of `preserve` to tweak `Control` shortcuts. Note it would
require further work in order to support other modifiers.
@endfigcaption
```c
xkb_types {
// ...
type "TWO_LEVEL_PLUS_CONTROL" {
modifiers = Shift + Control;
map[None] = Level1;
map[Shift] = Level2;
map[Control] = Level3;
map[Control+Shift] = Level4;
// Using preserve will make Control not consumed and allow
// applications to detect keyboard shortcuts with alternative
// keysyms in levels 3 and 4 rather than the levels 1 and 2.
preserve[Control] = Control;
preserve[Control+Shift] = Control;
level_name[Level1] = "Base";
level_name[Level2] = "Shift";
level_name[Level3] = "Tweaked Control";
level_name[Level4] = "Tweaked Control + Shift";
};
};
xkb_symbols {
// ...
// The following key would produce Greek keysym on Base and Shift levels,
// but will produce the corresponding ASCII Latin keysyms when using Control.
key <AC01> {
type[Group1]="TWO_LEVEL_PLUS_CONTROL",
[Greek_alpha, Greek_ALPHA, a, A]
};
};
```
@endfigure
<!--
Feature removed in libxkbcommon
### Set default values
To change the default value of any key type field, use the following syntax:
```c
type.FIELD = VALUE;
```
E.g.
```c
type.modifiers = Shift;
```
-->
### Key types examples {#key-type-examples}
#### Definitions examples
<!-- The following examples come from the [xkeyboard-config] project. -->
@note The convention is that `Lock` affect only “alphabetic” types.
For such types, `Lock` “cancels” `Shift` by default, i.e. `Shift+Lock`
has the same result as neither modifier. “<em>semi</em>-alphabetic”
types have an asymmetry: their first two levels are alphabetic while the
next are not.
##### Two levels
The following examples compare two basic types with *two levels*:
[`TWO_LEVEL`][TWO_LEVEL] and [`ALPHABETIC`][ALPHABETIC].
They differ on their handling of the `Lock` modifier. See the
[next section](@ref key-type-mappings-examples) for an illustration
with concrete layouts.
[TWO_LEVEL]: @ref TWO_LEVEL
[ALPHABETIC]: @ref ALPHABETIC
<!-- NOTE: In the following code excerpts, the empty comments are intented
to enable code alignment when scrren is large enough to display two
example on the same row. -->
<div class="example-container">
<div class="example">
<div class="example-inner">
<div class="example-title">`TWO_LEVEL` @anchor TWO_LEVEL</div>
@figure@figcaption
Definition code ([source][two-type-src])
@endfigcaption
```c
type "TWO_LEVEL" {
// Only care about Shift; Lock will be filter out
modifiers = Shift;
// Define mapping
map[None] = Level1; // No modifier -> level 1
map[Shift] = Level2; // Exactly Shift -> level 2
// (no map entry with Lock)
// Define level names
level_name[Level1] = "Base";
level_name[Level2] = "Shift";
};
```
@endfigcaption
@figure@figcaption
Mapping test
@endfigcaption
| *Active* modifiers | *Filtered* modifiers | Match? | Shift level |
| ------------------ | -------------------- | ------ | ----------- |
| (none) | (none) | Yes | 1 |
| `Shift` | `Shift` | Yes | 2 |
| `Lock` | (none) | Yes | 1 |
| `Shift + Lock` | `Shift` | Yes | 2 |
@endfigcaption
</div>
</div>
<div class="example">
<div class="example-inner">
<div class="example-title">`ALPHABETIC` @anchor ALPHABETIC</div>
@figure@figcaption
Definition code ([source][alphabetic-type-src])
@endfigcaption
```c
type "ALPHABETIC" {
// Only care about Shift and Lock
modifiers = Shift + Lock;
// Define mapping
map[None] = Level1; // No modifier -> level 1
map[Shift] = Level2; // Exactly Shift -> level 2
map[Lock] = Level2; // Exactly Lock -> level 2
// Define level names
level_name[Level1] = "Base";
level_name[Level2] = "Caps";
};
```
@endfigcaption
@figure@figcaption
Mapping test
@endfigcaption
| *Active* modifiers | *Filtered* modifiers | Match? | Shift level |
| ------------------ | -------------------- | ------ | ----------- |
| (none) | (none) | Yes | 1 |
| `Shift` | `Shift` | Yes | 2 |
| `Lock` | `Lock` | Yes | 2 |
| `Shift + Lock` | `Shift + Lock` | No | 1 |
@endfigcaption
</div>
</div>
</div>
##### Four levels
The following examples compare basic types with *four levels*:
[`FOUR_LEVEL`][FOUR_LEVEL],
[`FOUR_LEVEL_SEMIALPHABETIC`][FOUR_LEVEL_SEMIALPHABETIC] and
[`FOUR_LEVEL_ALPHABETIC`][FOUR_LEVEL_ALPHABETIC].
They differ on their handling of the `Lock` modifier.
See the [next section](@ref key-type-mappings-examples)
for an illustration with concrete layouts.
[FOUR_LEVEL]: @ref FOUR_LEVEL
[FOUR_LEVEL_SEMIALPHABETIC]: @ref FOUR_LEVEL_SEMIALPHABETIC
[FOUR_LEVEL_ALPHABETIC]: @ref FOUR_LEVEL_ALPHABETIC
<div class="example-container">
<div class="example">
<div class="example-inner">
<div class="example-title">`FOUR_LEVEL` @anchor FOUR_LEVEL</div>
@figure@figcaption
Definition code ([source][four-level-src])
@endfigcaption
```c
type "FOUR_LEVEL" {
modifiers = Shift + LevelThree;
map[None] = Level1;
map[Shift] = Level2;
// (no map entry with Lock)
// (no map entry with Lock)
map[LevelThree] = Level3;
map[Shift+LevelThree] = Level4;
// (no map entry with Lock)
// (no map entry with Lock)
// (no preserve entry with Lock)
// (no preserve entry with Lock)
level_name[Level1] = "Base";
level_name[Level2] = "Shift";
level_name[Level3] = "AltGr";
level_name[Level4] = "Shift AltGr";
};
```
@endfigcaption
@figure@figcaption
Mapping test
@endfigcaption
| *Active* modifiers | *Filtered* modifiers | Match? | Shift level |
| ----------------------- | -------------------- | ------ | ----------- |
| (none) | (none) | Yes | 1 |
| `Shift` | `Shift` | Yes | 2 |
| `Lock` | (none) | Yes | 1 |
| `Shift+Lock` | `Shift` | Yes | 2 |
| `LevelThree` | `LevelThree` | Yes | 3 |
| `LevelThree+Shift` | `LevelThree+Shift` | Yes | 4 |
| `LevelThree+Lock` | `LevelThree` | Yes | 3 |
| `LevelThree+Shift+Lock` | `LevelThree+Shift` | Yes | 4 |
@endfigcaption
</div>
</div>
<div class="example">
<div class="example-inner">
<div class="example-title">`FOUR_LEVEL_SEMIALPHABETIC` @anchor FOUR_LEVEL_SEMIALPHABETIC</div>
@figure@figcaption
Definition code ([source][four-level-semialphabetic-src])
@endfigcaption
```c
type "FOUR_LEVEL_SEMIALPHABETIC" {
modifiers = Shift + Lock + LevelThree;
map[None] = Level1;
map[Shift] = Level2;
map[Lock] = Level2;
map[Shift+Lock] = Level1;
map[LevelThree] = Level3;
map[Shift+LevelThree] = Level4;
map[Lock+LevelThree] = Level3;
map[Shift+Lock+LevelThree] = Level4;
preserve[Lock+LevelThree] = Lock;
preserve[Shift+Lock+LevelThree] = Lock;
level_name[Level1] = "Base";
level_name[Level2] = "Shift";
level_name[Level3] = "AltGr";
level_name[Level4] = "Shift AltGr";
};
```
@endfigcaption
@figure@figcaption
Mapping test
@endfigcaption
| *Active* modifiers | *Filtered* modifiers | Match? | Shift level |
| ----------------------- | ----------------------- | ------ | ----------- |
| (none) | (none) | Yes | 1 |
| `Shift` | `Shift` | Yes | 2 |
| `Lock` | `Lock` | Yes | 2 |
| `Shift+Lock` | `Shift+Lock` | Yes | 1 |
| `LevelThree` | `LevelThree` | Yes | 3 |
| `LevelThree+Shift` | `LevelThree+Shift` | Yes | 4 |
| `LevelThree+Lock` | `LevelThree+Lock` | Yes | 3 |
| `LevelThree+Shift+Lock` | `LevelThree+Shift+Lock` | Yes | 4 |
@endfigcaption
</div>
</div>
<div class="example">
<div class="example-inner">
<div class="example-title">`FOUR_LEVEL_ALPHABETIC` @anchor FOUR_LEVEL_ALPHABETIC</div>
@figure@figcaption
Definition code ([source][four-level-alphabetic-src])
@endfigcaption
```c
type "FOUR_LEVEL_ALPHABETIC" {
modifiers = Shift + Lock + LevelThree;
map[None] = Level1;
map[Shift] = Level2;
map[Lock] = Level2;
map[Shift+Lock] = Level1;
map[LevelThree] = Level3;
map[Shift+LevelThree] = Level4;
map[Lock+LevelThree] = Level4;
map[Shift+Lock+LevelThree] = Level3;
// (no preserve entry with Lock)
// (no preserve entry with Lock)
level_name[Level1] = "Base";
level_name[Level2] = "Shift";
level_name[Level3] = "AltGr";
level_name[Level4] = "Shift AltGr";
};
```
@endfigcaption
@figure@figcaption
Mapping test
@endfigcaption
| *Active* modifiers | *Filtered* modifiers | Match? | Shift level |
| ----------------------- | ----------------------- | ------ | ----------- |
| (none) | (none) | Yes | 1 |
| `Shift` | `Shift` | Yes | 2 |
| `Lock` | `Lock` | Yes | 2 |
| `Shift+Lock` | `Shift+Lock` | Yes | 1 |
| `LevelThree` | `LevelThree` | Yes | 3 |
| `LevelThree+Shift` | `LevelThree+Shift` | Yes | 4 |
| `LevelThree+Lock` | `LevelThree+Lock` | Yes | 4 |
| `LevelThree+Shift+Lock` | `LevelThree+Shift+Lock` | Yes | 3 |
@endfigcaption
</div>
</div>
</div>
[two-type-src]: https://gitlab.freedesktop.org/xkeyboard-config/xkeyboard-config/-/blob/022c3ca1db12e505cbd5ce8bf19c432d6a70c7e5/types/basic#L14
[alphabetic-type-src]: https://gitlab.freedesktop.org/xkeyboard-config/xkeyboard-config/-/blob/022c3ca1db12e505cbd5ce8bf19c432d6a70c7e5/types/basic#L21
[four-level-src]: https://gitlab.freedesktop.org/xkeyboard-config/xkeyboard-config/-/blob/022c3ca1db12e505cbd5ce8bf19c432d6a70c7e5/types/extra#L8
[four-level-alphabetic-src]: https://gitlab.freedesktop.org/xkeyboard-config/xkeyboard-config/-/blob/022c3ca1db12e505cbd5ce8bf19c432d6a70c7e5/types/extra#L20
[four-level-semialphabetic-src]: https://gitlab.freedesktop.org/xkeyboard-config/xkeyboard-config/-/blob/022c3ca1db12e505cbd5ce8bf19c432d6a70c7e5/types/extra#L36
#### Examples with standard keyboard layouts {#key-type-mappings-examples}
<details>
<summary>See the detailed table of mappings</summary>
The following table compares the mappings of various key types for the modifiers
`Shift`, `Lock` and `LevelThree`, using the standard layouts [`us`][us-layout]
(US English) and [`es`][es-layout] (Spanish).
[us-layout]: https://gitlab.freedesktop.org/xkeyboard-config/xkeyboard-config/-/blob/022c3ca1db12e505cbd5ce8bf19c432d6a70c7e5/symbols/us#L3
[es-layout]: https://gitlab.freedesktop.org/xkeyboard-config/xkeyboard-config/-/blob/022c3ca1db12e505cbd5ce8bf19c432d6a70c7e5/symbols/es#L3
| Key | Layout | Key type | Active modifiers | Level | Keysym | Comment |
| ------ | ------ | ------------------------------- | ------------------------------- | ----- | ------------ | ----------- |
| `AE01` | [`us`][us-layout] | [`TWO_LEVEL`][TWO_LEVEL] | (none) | 1 | `1` | |
| ^ | ^ | ^ | `Shift` | 2 | `exclam` | |
| ^ | ^ | ^ | `Lock` | 1 | `1` | `Lock` filtered out |
| ^ | ^ | ^ | `Shift` + `Lock` | 2 | `exclam` | `Lock` filtered out |
| ^ | ^ | ^ | `LevelThree` | 1 | `1` | `LevelThree` filtered out |
| ^ | ^ | ^ | `LevelThree` + `Shift` | 2 | `exclam` | `LevelThree` filtered out |
| ^ | ^ | ^ | `LevelThree` + `Lock` | 1 | `1` | Modifiers `LevelThree` and `Lock` filtered out |
| ^ | ^ | ^ | `LevelThree` + `Shift` + `Lock` | 2 | `exclam` | Modifiers `LevelThree` and `Lock` filtered out |
| ^ | [`es`][es-layout] | [`FOUR_LEVEL`][FOUR_LEVEL] | (none) | 1 | `1` | |
| ^ | ^ | ^ | `Shift` | 2 | `exclam` | |
| ^ | ^ | ^ | `Lock` | 1 | `1` | `Lock` filtered out |
| ^ | ^ | ^ | `Shift` + `Lock` | 2 | `exclam` | `Lock` filtered out |
| ^ | ^ | ^ | `LevelThree` | 3 | `bar` | |
| ^ | ^ | ^ | `LevelThree` + `Shift` | 4 | `exclamdown` | |
| ^ | ^ | ^ | `LevelThree` + `Lock` | 3 | `bar` | `Lock` filtered out |
| ^ | ^ | ^ | `LevelThree` + `Shift` + `Lock` | 4 | `exclamdown` | `Lock` filtered out |
| `AD01` | [`us`][us-layout] | [`ALPHABETIC`][ALPHABETIC] | (none) | 1 | `q` | |
| ^ | ^ | ^ | `Shift` | 2 | `Q` | |
| ^ | ^ | ^ | `Lock` | 2 | `Q` | |
| ^ | ^ | ^ | `Shift` + `Lock` | 1 | `q` | `Lock` cancelled by `Shift` |
| ^ | ^ | ^ | `LevelThree` | 1 | `q` | `LevelThree` filtered out |
| ^ | ^ | ^ | `LevelThree` + `Shift` | 1 | `q` | `LevelThree` filtered out |
| ^ | ^ | ^ | `LevelThree` + `Lock` | 2 | `Q` | `LevelThree` filtered out |
| ^ | ^ | ^ | `LevelThree` + `Shift` + `Lock` | 1 | `q` | `LevelThree` filtered out, `Lock` cancelled by `Shift` |
| ^ | [`es`][es-layout] | [`FOUR_LEVEL_SEMIALPHABETIC`][FOUR_LEVEL_SEMIALPHABETIC] | (none) | 1 | `q` | |
| ^ | ^ | ^ | `Shift` | 2 | `Q` | |
| ^ | ^ | ^ | `Lock` | 2 | `Q` | |
| ^ | ^ | ^ | `Shift` + `Lock` | 1 | `q` | `Lock` cancelled by `Shift` |
| ^ | ^ | ^ | `LevelThree` | 3 | `at` | |
| ^ | ^ | ^ | `LevelThree` + `Shift` | 4 | `Greek_OMEGA`| |
| ^ | ^ | ^ | `LevelThree` + `Lock` | 3 | `at` | `Lock` does not affect `LevelThree` combos |
| ^ | ^ | ^ | `LevelThree` + `Shift` + `Lock` | 4 | `Greek_OMEGA`| `Lock` does not affect `LevelThree` combos |
| `AD05` | [`us`][us-layout] | [`ALPHABETIC`][ALPHABETIC] | (none) | 1 | `t` | |
| ^ | ^ | ^ | `Shift` | 2 | `T` | |
| ^ | ^ | ^ | `Lock` | 2 | `T` | |
| ^ | ^ | ^ | `Shift` + `Lock` | 1 | `t` | `Lock` cancelled by `Shift` |
| ^ | ^ | ^ | `LevelThree` | 1 | `t` | `LevelThree` filtered out |
| ^ | ^ | ^ | `LevelThree` + `Shift` | 1 | `t` | `LevelThree` filtered out |
| ^ | ^ | ^ | `LevelThree` + `Lock` | 2 | `T` | `LevelThree` filtered out |
| ^ | ^ | ^ | `LevelThree` + `Shift` + `Lock` | 1 | `t` | `LevelThree` filtered out, `Lock` cancelled by `Shift` |
| ^ | [`es`][es-layout] | [`FOUR_LEVEL_ALPHABETIC`][FOUR_LEVEL_ALPHABETIC] | (none) | 1 | `t` | |
| ^ | ^ | ^ | `Shift` | 2 | `T` | |
| ^ | ^ | ^ | `Lock` | 2 | `T` | |
| ^ | ^ | ^ | `Shift` + `Lock` | 1 | `t` | `Lock` cancelled by `Shift` |
| ^ | ^ | ^ | `LevelThree` | 3 | `tslash` | |
| ^ | ^ | ^ | `LevelThree` + `Shift` | 4 | `Tslash` | |
| ^ | ^ | ^ | `LevelThree` + `Lock` | 4 | `Tslash` | |
| ^ | ^ | ^ | `LevelThree` + `Shift` + `Lock` | 3 | `tslash` | `Lock` cancelled by `Shift` |
</details>
## The “xkb_compat” section {#the-xkb_compat-section}
This [section] is the third to be processed, after `xkb_keycodes` and
`xkb_types`.
### Interpret statements {#interpret-statements}
Statements of the form:
interpret Num_Lock+Any { ... }
interpret Shift_Lock+AnyOf(Shift+Lock) { ... }
The <code>[xkb_symbols]</code> section (see below)
allows the keymap author to perform, among other things, the following
things for each key:
- Bind a sequence of [actions], like `SetMods` or `LockGroup`, to the key.
Actions, like symbols, are specified for each level of each group
in the key separately.
- Add a [virtual modifier] to the key’s virtual modifier mapping
(`vmodmap`).
- Specify whether the key should repeat or not.
However, doing this for each key (or level) is tedious and inflexible.
Interpret’s are a mechanism to apply these settings to a bunch of
keys/levels at once.
@anchor interpret-mechanism
Each interpret specifies a condition by which it attaches to certain
levels. The condition consists of two parts:
- A <strong>[keysym]</strong>. If the level has a different (or more than one)
keysym, the match fails. Leaving out the keysym is equivalent to using the
special value `Any` or the `NoSymbol` keysym, which always matches
successfully.
- A <strong>[modifier] predicate</strong>. The predicate consists of:
- A __mask__ of _real_ modifiers: a `+`-separated list of modifiers or
the special value `all`, which denotes all the modifiers.
The modifiers are matched against the key’s modifier map (`modmap`).
- A __matching operation__, that is one of the following:
* `AnyOfOrNone` – The modmap must either be empty or include at
least one of the specified modifiers.
* `AnyOf` – The modmap must include at least one of the specified
modifiers.
* `Any` – Alias for `AnyOf(all)`.
* `NoneOf` – The modmap must not include any of the specified
modifiers.
* `AllOf` – The modmap must include all of the specified modifiers
(but may include others as well).
* `Exactly` – The modmap must be exactly the same as the specified
modifiers.
Leaving out the predicate is equivalent to using `AnyOfOrNone(all)`.
Leaving out just the matching condition is equivalent to using
`Exactly`.
An interpret may also include `useModMapMods = level1;` – see below.
If a [level] fulfils the conditions of several interprets, only the
most specific one is used:
- A specific keysym will always match before a generic `NoSymbol`
condition.
- If the keysyms are the same, the interpret with the more specific
matching operation is used. The above list is sorted from least to
most specific.
- If both the keysyms and the matching operations are the same (but the
modifiers are different), the first interpret is used.
As described above, once an interpret “attaches” to a level, it can bind
an action to that level, add one virtual modifier to the key’s vmodmap,
or set the key’s repeat setting. You should note the following:
- The key repeat is a property of the entire key; it is not
level-specific. In order to avoid confusion, it is only inspected
for the first level of the first group; the interpret’s repeat
setting is ignored when applied to other levels.
- If one of the above fields was set directly for a key in
`xkb_symbols`, the explicit setting takes precedence over the
interpret.
The body of the statement may include statements of the following
forms (all of which are optional):
#### “useModMapMods” statement
useModMapMods = level1;
When set to `level1`, the interpret will only match keysyms which are
on the first level of the first group of the keys. This can be useful
in conjunction with e.g. a [`virtualModifier`](@ref interpret-virtualModifier)
statement, because `virtualModifier` is an attribute of the key rather than a
specific level.
Note: the other possible value is `any` and is the default value.
See [virtual modifier map] for further information.
#### “virtualModifier” statement {#interpret-virtualModifier}
virtualModifier = NumLock;
Add this virtual modifier to the key’s `vmodmap`. The given virtual
modifier must be declared at the top level of the file with a
`virtual_modifiers` statement, e.g.:
virtual_modifiers NumLock;
See [virtual modifier map] for further information.
#### “repeat” statement {#interpret-repeat}
repeat = True;
Set whether the key should repeat or not. Must be a boolean value.
#### “action” statement {#interpret-action}
action = LockMods(modifiers=NumLock);
Bind this action to the matching levels. See [key actions][actions]
for the list of available key actions.
Since 1.9.0, it is also possible to assign a sequence of actions, mirroring
the feature used in the [key statement](@ref key-multiple-symbols-per-level).
action = {SetMods(modifiers=NumLock),SetGroup(group=2)};
### LED map statements {#indicator-effect}
[indicator effect]: @ref indicator-effect
Statements of the form:
indicator "Shift Lock" { ... }
This statement specifies the behavior and binding of the LED (AKA
[indicator]) with the given name (“Shift Lock” above). The name should
have been declared previously in the `xkb_keycodes` section (see
[LED name][indicator name] statement), and given an index there.
If it wasn’t, it is created with the next free index.
The body of the statement describes the conditions of the keyboard
state which will cause the LED to be lit. It may include the following
statements:
#### “modifiers” statement
modifiers = ScrollLock;
If the given [modifiers] are in the required state (see below), the
LED is lit.
#### “whichModState” statement
whichModState = Latched+Locked;
Can be any combination of:
* `base`, `latched`, `locked`, `effective`
* `any` (i.e. all of the above)
* `none` (i.e. none of the above)
* `compat` (legacy value, treated as effective)
This will cause the respective portion of the modifier state (see
`struct xkb_state`) to be matched against the modifiers given in the
`modifiers` statement.
Here’s a simple example:
indicator "Num Lock" {
modifiers = NumLock;
whichModState = Locked;
};
Whenever the NumLock modifier is locked, the Num Lock LED will light
up.
#### “groups” statement
groups = All - group1;
If the given groups are in the required state (see below), the LED is
lit.
#### “whichGroupState” statement
whichGroupState = Effective;
Can be any combination of:
* `base`, `latched`, `locked`, `effective`
* `any` (i.e. all of the above)
* `none` (i.e. none of the above)
This will cause the respective portion of the group state (see
`struct xkb_state`) to be matched against the groups given in the
`groups` statement.
Note: the above conditions are disjunctive, i.e. if any of them are
satisfied the LED is lit.
### Set default values
One may change the default values of the following statements:
- `interpret`: use `interpret.FIELD = VALUE;`
- `indicator`: use `indicator.FIELD = VALUE;`
- actions: use `ACTION_NAME.FIELD = VALUE;`.
E.g. `setMods.clearLocks= True;`.
## The “xkb_symbols” section {#the-xkb_symbols-section}
<!--
Ivan Pascal’s doc:
https://web.archive.org/web/20190723233834/http://pascal.tsu.ru/en/xkb/gram-symbols.html
-->
<!-- TODO complete this section -->
This [section] is the fourth to be processed, after `xkb_keycodes`,
`xkb_types` and `xkb_compat`.
Statements of the form:
xkb_symbols "basic" {
...
}
Declare a symbols map named `basic`. Statements inside the curly braces only
affect the symbols map.
### Name statements
Statements of the form:
name[Group1] = "US/ASCII";
groupName[1] = "US/ASCII";
Gives the name “US/ASCII” to the first group of symbols. Other groups can be
named using a different group index (ex: `Group2`), and with a different name.
A group must be named.
`group` and `groupName` mean the same thing, and the `Group` in `Group1` is
optional.
### Key statement {#key-statement}
Statements of the form:
key <AD01> { ... };
defines the *key description* of the [keycode] `<AD01>` and is the main type
of record of the `xkb_symbols` section. The possible keycodes are defined in the
[`xkb_keycodes`](@ref the-xkb_keycodes-section) section.
A key description consists of:
<dl>
<dt>Groups</dt>
<dd>
Each key may have one or more associated [groups]. Each group can be
configured with the following parameters:
- @ref key-type-setting "Type"</dt>
- @ref key-symbols-table "Symbols"</dt>
- @ref key-actions-table "Actions"</dt>
</dd>
<dt>Additional attributes</dt>
<dd>
These attributes are usually set via the <code>[xkb_compat]</code>
section, but may be also set directly:
- @ref key-virtual-modifiers "Virtual modifiers"
- @ref key-repeat "Repeat"
</dd>
</dl>
@warning Using multiple groups in *symbols* files is not recommended, because
some tools rely on the assumption that an `xkb_symbols` section only affect a
single group. It is fine with a *keymap* file though.
@note In what follows we assume the common use case with a *single* group, which
benefits from a special syntax. See the section @ref key-groups "Multiple groups"
for the general syntax.
[groups]: @ref layout-def
#### Symbols {#key-symbols-table}
The main part of the key description is the *symbols table*. It maps shift levels
to keysyms, e.g.:
```c
key <AD01> { [ q, Q ] }; // Level 1 → `q`, Level 2 → `Q`
```
Symbols are named using the symbolic names from the
`xkbcommon/xkbcommon-keysyms.h` file. See the @ref keysym-syntax "keysym syntax"
for further information. A group of symbols is enclosed in brackets
and separated by commas. Each element of the symbol arrays corresponds to a
different [shift level]. In this example, the symbol (keysym) `XKB_KEY_q` for
level 1 and `XKB_KEY_Q` for level 2. These levels are configured by the
@ref key-type-setting "key type", presented in the next section.
@remark Remember that @ref keysym-transformations may affect the resulting
keysym when some modifiers are not [consumed](@ref consumed-modifiers).
@remark Trailing `NoSymbol` are dropped.
@anchor key-multiple-symbols-per-level As an extension to the XKB legacy format,
libxkbcommon supports multiple key symbols and actions per level (the latter
since version 1.8.0):
```c
key <AD08> { [ {i, j} , U0132 ] }; // IJ Dutch digraph
key <AC05> { [ {g, U0303} , {G, U0303} ] }; // G̃ Guarani letter
key <AB05> { [ {U0644, U0627}, {U0644, U0622}] }; // لا لآ Arabic Lam-Alef ligatures decomposed
key <AD01> { [ {c, U2019, h} , {C, U2019, h} ] }; // C’H Breton trigraph
```
In this example, the keycode `<AD08>` produces two symbols on level 1
(`XKB_KEY_i` and `XKB_KEY_j`) and one symbol (Unicode keysym `U0132` for “IJ”)
on level 2. `<AD08>` and `<AD01>` produce letters that have no *precomposed*
code point in Unicode. Key `<AB05>` avoids the need of using Compose.
@anchor keysyms-string Since 1.9.0, UTF-8-encoded *strings* may be used to
denote a list of keysyms corresponding to the encoded Unicode code points.
E.g. the previous example can be also written more intuitively as:
```c
key <AD08> { [ "ij" , "IJ" ] }; // IJ Dutch digraph
key <AC05> { [ "g̃" , "G̃" ] }; // G̃ Guarani letter
// NOTE: We use U+200E LEFT-TO-RIGHT MARK in order to display the strings in
// in the proper order.
key <AB05> { [ "لا" , "لآ" ] }; // لا لآ Arabic Lam-Alef ligatures decomposed
key <AD01> { [ "c’h", "C’h" ] }; // C’H Breton trigraph
```
When no actions are explicitly given, they are automatically filled
thanks to [interpretations] from the [compat section][xkb_compat].
In the following example,
key <LCTL> { [ { Control_L, ISO_Group_Shift } ] };
is equivalent to (given standard definitions from `xkeyboard-config`):
key <LCTL> {
symbols[1] = [ { Control_L, ISO_Group_Shift } ],
actions[1] = [ { SetMods(modifiers=Control), SetGroup(group=+1) } ]
};
When using this example with e.g. two layouts `fr,us` (respectively Azerty and
Qwerty layouts), typing `Control + A` in the first layout `fr` will in fact
result in `Control + Q`, because the actions are run sequentially: first set the
base modifiers to Control, then switch to the second layout while `Control` is
pressed.
@remark
Given a level, keysyms and actions may have a *different count*. For instance,
the following would achieve the same effect than the former example with only
1 keysym, but it requires to use 2 explicit actions:
```c
key <LCTL> {
symbols[1] = [ Control_L ],
actions[1] = [ { SetMods(modifiers=Control), SetGroup(group=+1) } ]
};
```
@note
There are some *limitations* with this extension:
- For now, *at most one* action of each following categories is allowed per
level:
- [modifier actions][]: `SetMods`, `LatchMods`, `LockMods`;
- [group actions][]: `SetGroup`, `LatchGroup`, `LockGroup`.
Some examples of actions combination:
- `SetMods` + `SetGroup`: ok
- `SetMods` + `SetMods`: *error*
- `SetMods` + `LockMods`: *error*
- `SetMods` + `LockGroup`: ok
- Multiple actions are only supported from version 1.8.0.
<div>
@since 1.8.0: When using multiple keysyms or actions per level, `NoSymbol` and
`NoAction()` are dropped in order to normalize the levels:
```c
// Before normalization
key <> { [{NoSymbol}, {a, NoSymbol}, {NoSymbol,b}, {a, NoSymbol, b}] };
// After normalization
key <> { [NoSymbol, a, b, {a, b}] };
```
</div>
<div>
@since 1.9.0: Trailing `NoSymbol` and `NoAction()` are dropped in groups:
```c
// Before normalization
key <> { [a, NoSymbol] };
// After normalization
key <> { [a] };
```
This affects the automatic key type detection.
</div>
<div>
@since 1.9.0: Added support for keysyms and actions lists of length 0 and 1,
respectively `{}` and `{a}`. `{}` is equivalent to the corresponding `NoSymbol`
or `NoAction()`.
</div>
@warning Keymaps containing multiple key symbols per level are not supported
by the various X11-related tools (`setxkbmap`, `xkbcomp`, etc.).
[symbols table]: @ref key-symbols-table
#### Type {#key-type-setting}
Each key has a [key type] set per group. This key type is defined in the
<code>[xkb_types]</code> section. Its associated [shift levels] are used to
index the [symbols table] presented in the previous section.
A key type is set using the following syntax:
<!-- TODO: it also works without the group index -->
```c
key <AD01> {
type[Group1] = "TWO_LEVEL", // Type
[q, Q] // Symbols
};
```
The name of the key type is enclosed between double quotes.
The key type may be omitted and will default to:
- `key.type` global defaults, if set.
- a standard type using the following **heuristic**:
<!-- See: xkbcomp/symbols.c (FindAutomaticType) -->
- **1** keysym: `ONE_LEVEL`
- **2** keysyms:
- if the two keysyms are letter and the first is lower case and the other
upper case, then [`ALPHABETIC`][ALPHABETIC];
- if one of the keysyms is numpad, then `KEYPAD` else [`TWO_LEVEL`][TWO_LEVEL].
- **3 or 4** keysyms (a missing 4th keysym is set to `NoSymbol`):
- if the first two keysyms are letters and the first is lower case and the
other upper case:
- if the last two keysyms are letters and the first is lower case and the
other upper case then [`FOUR_LEVEL_ALPHABETIC`][FOUR_LEVEL_ALPHABETIC];
- else [`FOUR_LEVEL_SEMIALPHABETIC`][FOUR_LEVEL_SEMIALPHABETIC].
- if one of the first two keysyms is numpad, then `FOUR_LEVEL_KEYPAD`;
- else [`FOUR_LEVEL`][FOUR_LEVEL].
@figure@figcaption
Commented examples for inferred types:
@endfigcaption
```c
// 1 to 2 keysyms
key <LFSH> { [Shift_L] }; // Type: ONE_LEVEL
key <AE01> { [1, exclam] }; // Type: TWO_LEVEL
key <AD01> { [q, Q] }; // Type: ALPHABETIC
key <KP1> { [KP_End, KP_1] }; // Type: KEYPAD
// Edge case: this is consider alphabetic, although
// the lower case does not correspond to the upper case.
key <AD01> { [q, N] }; // Type: ALPHABETIC
// 3 to 4 keysyms
key <AE01> { [1, exclam, bar] }; // Type: FOUR_LEVEL
key <AE01> { [1, exclam, bar, exclamdown] }; // Type: FOUR_LEVEL
key <AD01> { [q, Q, at] }; // Type: FOUR_LEVEL_SEMIALPHABETIC
key <AD01> { [q, Q, at, Greek_OMEGA] }; // Type: FOUR_LEVEL_SEMIALPHABETIC
key <AD05> { [t, T, tslash, Tslash] }; // Type: FOUR_LEVEL_ALPHABETIC
// The inferred type is `FOUR_LEVEL`, but using `LevelThree+Lock`
// will produce `Q`, because of the keysyms transformations and
// the corresponding internal capitalization processing.
key <AE01> { [1, exclam, q, Q] }; // Type: FOUR_LEVEL
// Won’t work, because there is no heuristic for more than 4 keysyms
// It will trigger the warnings XKB-183 and XKB-516 and default to ONE_LEVEL,
// ignoring all the keysyms but the first one.
key <AD01> {[q, Q, at, any, masculine, U2642]};
// Will work as expected
key <AD01> {
type[Group1] = "EIGHT_LEVEL_SEMIALPHABETIC",
[q, Q, at, any, masculine, U2642]
};
```
@endfigure
#### Actions {#key-actions-table}
@note This is usually not set explicitly but via the
<em>[interpret mechanism]</em> by using the
[`action`](@ref interpret-action) statement in the
<code>[xkb_compat]</code> section.
@figure@figcaption
Example: Set the modifier action of the key `<LALT>` manually.
@endfigcaption
```c
key <LALT> {
symbols[Group1]=[Alt_L],
actions[Group1]=[SetMods(modifiers=modMapMods)]
};
```
@endfigure
For further details see [key actions][actions].
@remark Trailing `NoAction()` are dropped.
#### Multiple groups {#key-groups}
Each group represents a list of symbols mapped to a keycode:
name[Group1]= "US/ASCII";
name[Group2]= "Russian";
...
key <AD01> { [ q, Q ],
[ Cyrillic_shorti, Cyrillic_SHORTI ] };
A long-form syntax can also be used:
key <AD01> {
symbols[Group1]= [ q, Q ],
symbols[Group2]= [ Cyrillic_shorti, Cyrillic_SHORTI ]
};
Groups can also be omitted, but the brackets must be present. The following
statement only defines the Group3 of a mapping:
key <AD01> { [], [], [ q, Q ] };
@warning Using multiple groups in *symbols* files is not recommended, because
some tools rely on the assumption that an `xkb_symbols` section only affect a
single group. It is fine with a *keymap* file though.
#### Virtual modifiers {#key-virtual-modifiers}
@note This is usually not set explicitly but via the
<em>[interpret mechanism]</em> by using the
[`virtualModifier`](@ref interpret-virtualModifier) statement from the
<code>[xkb_compat]</code> section.
@remarks When setting a [modifier action](@ref modifiers-actions), it is required
to declare the corresponding virtual modifier using a
[`virtual_modifiers`](@ref virtual-modifier-statements) statement.
@figure@figcaption
Example: Set the virtual modifier of the key `<LALT>` to `Alt`.
@endfigcaption
```c
// Declare the virtual modifier that will be used
virtual_modifiers Alt;
key <LALT> {
virtualModifiers = Alt,
[ Alt_L ]
};
```
@endfigure
See [virtual modifier map] for further information.
[interpret mechanism]: @ref interpret-mechanism
#### Repeat {#key-repeat}
@note This is usually not set explicitly but via the
<em>[interpret mechanism]</em> by using the
[`repeat`](@ref interpret-repeat) statement in the
<code>[xkb_compat]</code> section.
@figure@figcaption
Example: make the `<LALT>` key not repeating.
@endfigcaption
```c
key <LALT> {
repeat = False,
[ Alt_L ]
};
```
@endfigure
### Real Modifier map {#modmap-statement}
Bind a [*real* modifier](@ref real-modifier) to a key, e.g.:
```c
// Bind the real modifier `Control` to the key `<LCTL>` and/or the first key with
// the keysym `Control_L`.
modifier_map Control { <LCTL>, Control_L };
```
See [real modifier map] for further information.
### Set default values
One may change the default values of the following statements:
- `key`: use `key.FIELD = VALUE;`. E.g. `key.type = "ALPHABETIC";`.
- `action`: use `ACTION_NAME.FIELD = VALUE;`.
E.g. `setMods.clearLocks= True;`.
## Modifiers declaration and binding {#modifiers-declaration-and-binding}
[modifiers declaration and binding]: @ref modifiers-declaration-and-binding
### Real and virtual modifiers
[Modifiers] are a particularly tricky part of XKB and deserve their own section.
For historical reasons they are divided in two categories:
<dl>
<dt><a name="real-modifier">Real modifier</a></dt>
<dd>
They are the **8** *predefined* (AKA *core*, *X11*) modifiers:
| Name | Description |
| --------- | -------------------------- |
| `Shift` | Used to type upper case letters of [bicameral scripts]; keyboard shortcuts |
| `Lock` | Used to type upper case letters of [bicameral scripts]: “Caps Lock” |
| `Control` | Used in keyboard shortcuts |
| `Mod1` | Generic modifier 1 |
| `Mod2` | Generic modifier 2 |
| `Mod3` | Generic modifier 3 |
| `Mod4` | Generic modifier 4 |
| `Mod5` | Generic modifier 5 |
[bicameral scripts]: https://en.wikipedia.org/wiki/Letter_case#Bicameral_script
They are the modifiers defined in the *core* X11 protocol. They are qualified as
“real”, because in the XKB protocol they denote the *bits* that *encode* the
modifiers state. See @ref modifiers-encoding "" for further information.
Since they are predefined, they require no [explicit declaration](@ref virtual-modifier-statements)
and have a *fixed* [encoding](@ref modifiers-encoding).
</dd>
<dt><a name="virtual-modifier">Virtual modifier</a></dt>
<dd>
They are the modifiers that are *not* predefined. They require an
[*explicit* declaration](@ref virtual-modifier-statements) and their
[encoding](@ref modifiers-encoding) is *user-defined*.
Note that in X11, the maximum of virtual modifiers is **16** (see
`XkbNumVirtualMods`), whereas up to **24** virtual modifiers can be defined in
libxkbcommon.
</dd>
</dl>
### Modifiers declarations {#virtual-modifier-statements}
*Virtual* modifiers must be declared before their first use with the
`virtual_modifiers` statement:
- Declare a *single* modifier:
```c
virtual_modifiers MyModifier;
```
- Declare *multiple* modifiers using a comma-separated list:
```c
virtual_modifiers M1, M2, M3.
```
Furthermore, it is possible to set the [explicit modifier encoding] with the
following syntax:
- Use a *real* modifier mask:
```c
// Single modifier: real modifier
virtual_modifiers M1 = Mod3;
// Single modifier: using mask as a plus-separated list
virtual_modifiers M2 = Mod4+Mod5;
// Multiple modifiers
virtual_modifiers M1 = Mod3, M2 = Mod4+Mod5;
```
- Use a *numeric* mask:
```c
virtual_modifiers M1 = 0x20;
virtual_modifiers M2 = 0xC0;
virtual_modifiers M1 = 0x20, M2 = 0xC0;
```
This can be done in the [`xkb_types`][xkb_types], [`xkb_compat`][xkb_compat] and
[`xkb_symbols`][xkb_symbols] sections.
### Modifiers key bindings {#modifiers-bindings}
[modifiers bindings]: @ref modifiers-bindings
Each key has two **modifiers maps**:
<dl>
<dt><a name="real-modifier-map">*Real* modifier map</a></dt>
<dd>
List the [*real* modifiers](@ref real-modifier) associated to the key.
It is used as a compatibility layer for the X11 core protocol and to apply
[interpretations].
See @ref set-real-mod-map "" for further information.
</dd>
<dt><a name="virtual-modifier-map">*Real* modifier map</a></dt>
<dd>
List the [*virtual* modifiers](@ref virtual-modifier) associated to the key.
It is used to set the [implicit encoding](@ref implicit-modifier-encoding)
of virtual modifiers.
See @ref set-virtual-mod-map "" for further information.
</dd>
</dl>
[real modifier map]: @ref real-modifier-map
[real modifier maps]: @ref real-modifier-map
[virtual modifier map]: @ref virtual-modifier-map
#### Setting the real modifier map {#set-real-mod-map}
The [real modifier map] is set in the [`xkb_symbols`][xkb_symbols] section
using the `modifier_map` statement:
- Bind *directly* to a **keycode**, e.g.:
```c
// Bind `Mod1` to the keycode <LALT>.
modifier_map Mod1 { <LALT> };
```
- Bind *indirectly* via a **keysym**, e.g.:
```c
// Bind `Mod1` looking up for the keysym `Alt_L`
modifier_map Mod1 { Alt_L };
```
Indirect bindings require to be resolved to a *single direct* bindings.
Given a keysym, there can be multiple keys that generate it, so the
corresponding key is chosen following this order:
1. by lowest group in which the keysym appears,
2. by lowest level,
3. by lowest key code.
- Bind using a comma-separated **list** of keycodes and keysyms:
```c
// Bind `Mod1` diretly to keycode <LALT> and indirectly via the keysym `Alt_L`
modifier_map Mod1 { <LALT>, Alt_L };
```
@note A key can be associated to _at most **one**_ real modifier.
There is also a special entry, `None`, that enable *deleting* a previous entry:
```c
modifier_map None { <LALT> };
```
@note `None` must use the *exact* same target (keycode or keysym) in order to
delete the corresponding previous entry:
```c
xkb_symbols {
key <LALT> { [Alt_L] };
modifier_map Mod1 { <LALT> };
// Does *not* delete previous entry (expected keycode, got keysym)
modifier_map None { Alt_L };
// *Does* delete previous entry (correct expected keycode)
modifier_map None { <LALT> };
};
```
#### Setting the virtual modifier map {#set-virtual-mod-map}
The [virtual modifier map] can be set in 2 ways:
- *Directly* in the [`xkb_symbols`][xkb_symbols] section using the
`virtualModifiers` key property:
```c
xkb_symbols {
// Virtual modifiers must be declared before use
virtual_modifiers Alt;
key <LALT> {
// Explicit virtual modifier map
virtualModifiers = Alt,
...
};
};
```
- *Indirectly* using [interpretations] in [`xkb_compat`][xkb_compat] and the
corresponding [`xkb_symbols`][xkb_symbols] keysyms:
```c
xkb_compat {
// Virtual modifiers must be declared before use
virtual_modifiers Alt, Super;
interpret Alt_L {
// Bind the virtual modifier…
virtualModifier = Alt;
// … independently of the group and level (default)
useModMap = AnyLevel;
};
interpret Super_L {
// Bind the virtual modifier…
virtualModifier = Super;
// … only if the keysym is on the first level of the first group
useModMap = Level1;
};
};
xkb_symbols {
// Successful bindings
key <LALT> { [Alt_L] };
key <LALT> { [No,Symbol, Alt_L] }; // independent of group and level
key <LALT> { [], [NoSymbol, Alt_L] }; // independent of group and level
key <LWIN> { [Super_L] };
// Unsuccessful bindings
key <LWIN> { [NoSymbol, Super_L] }; // requires first level
key <LWIN> { [], [Super_L] }; // requires first group
};
```
### Modifiers encoding {#modifiers-encoding}
[modifier encoding]: @ref modifiers-encoding
Each modifier has an associated **32 bit mask** used to *encode* it in the
keyboard state. The keyboard state represents active modifiers with the bitwise
OR of the encoding of each active modifiers.
@note Display servers may use a different encoding in their protocols:
- **Wayland protocol:** use the same *32-bit* encoding as libxkbcommon and
support its full range of modifiers.
- **X11 protocol:** use a *8-bit* encoding. It supports only using
[real modifiers](@ref real-modifier) to encode
[virtual modifiers](@ref virtual-modifier).
@important
- [Real modifiers](@ref real-modifier) have a *fixed predefined* encoding.
- [Virtual modifiers](@ref virtual-modifier) have a *user-defined* encoding.
Virtual modifiers require to be encoded by the user,
[*explicitly*](@ref explicit-modifier-encoding) and/or
[*implicitly*](@ref implicit-modifier-encoding), the combination resulting in their
[*effective*](@ref effective-modifier-encoding) encoding.
<dl>
<dt><a name="explicit-modifier-encoding">*Explicit* modifier encoding</a></dt>
<dd>
Virtual modifiers can optionally define an initial mapping using the
[`virtual_modifiers`](@ref virtual-modifier-statements) statements:
```c
virtual_modifiers M1 = Mod1; // Single real modifier
virtual_modifiers M2 = Mod4+Mod5;// Real modifier mask
virtual_modifiers M3 = 0x400; // Numeric mask
```
See @ref virtual-modifier-statements "" for further information.
@warning Although it is explicit, this may not be the
[effective encoding][effective modifier encoding], detailed hereinafter.
</dd>
<dt><a name="implicit-modifier-encoding">*Implicit* modifier encoding</a></dt>
<dd>
Virtual modifiers *always* compute their implicit encoding, which is defined for
a given virtual modifier by the bitwise OR of all the [real modifier maps]
where the virtual modifier is in the [virtual modifier map] of the corresponding
key.
Example:
```c
xkb_symbols {
virtual_modifiers Alt;
// Virtual modifier map: Alt is bound to <LALT>
// Note: alternatively one can use xkb_compat interpretations.
key <LALT> { virtualModifier = Alt };
// Real modifier map: Mod1 is bound to <LALT>
modifier_map Mod1 { <LALT> };
// Implicit encoding: Alt = Mod1
};
```
</dd>
<dt><a name="effective-modifier-encoding">*Effective* modifier encoding</a></dt>
<dd>
The effective encoding is the bitwise OR of the [explicit modifier encoding]
and the [implicit modifier encoding].
Example:
```c
xkb_symbols {
virtual_modifiers Alt, Super, Hyper = 0x400;
// Virtual modifier maps
// Note: alternatively one can use xkb_compat interpretations.
key <LALT> { virtualModifier = Alt }; // Alt is bound to <LALT>
key <LWIN> { virtualModifier = Super }; // Super is bound to <LWIN>
key <RWIN> { virtualModifier = Super }; // Super is bound to <RWIN>
key <HYPR> { virtualModifier = Hyper }; // Hyper is bound to <HYPR>
// Real modifier maps
modifier_map Mod1 { <LALT> }; // Mod1 is bound to <LALT>
modifier_map Mod4 { <LWIN> }; // Mod4 is bound to <LWIN>
modifier_map Mod5 { <RWIN> }; // Mod5 is bound to <RWIN>
modifier_map Mod3 { <HYPR> }; // Mod3 is bound to <HYPR>
};
```
| Encoding | Alt | Super | Hyper |
| --------- | ------ | ------------- | -------------- |
| Explicit | 0 | 0 | `0x400` |
| Implicit | `Mod1` | `Mod4 + Mod5` | `Mod3` |
| Effecitve | `Mod1` | `Mod4 + Mod5` | `0x400 + Mod3` |
</dd>
</dl>
[explicit modifier encoding]: @ref explicit-modifier-encoding
[implicit modifier encoding]: @ref implicit-modifier-encoding
[effective modifier encoding]: @ref effective-modifier-encoding
<!--
TODO: this requires the introduction of automated canonical modifiers, else we
rely only on the definition with explicit indexes.
### Canonical and non-canonical modifiers
A canonical modifier have an encoding defined by: `1u << index`.
@todo
-->
### Usual modifiers and associated keysyms {#usual-modifiers-keysyms}
The following table summarizes the modifiers defined in
[`xkeyboard-config` 2.44][xkeyboard-config]:
| Modifier | Type | Compat files | Associated keysyms |
|--------------|---------|------------------|-----------------------------------------------------------|
| `Shift` | Real | `compat/basic` | `Shift_L`, `Shift_R` |
| ^ | ^ | `compat/iso9995` | `Shift_L`, `Shift_R`, `ISO_Level2_Latch` |
| `Lock` | Real | `compat/basic`, | `Caps_Lock` |
| ^ | ^ | `compat/caps` | ^ |
| `Control` | Real | `compat/basic` | `Control_L`, `Control_R` |
| `Alt` | Virtual | `compat/misc`, | `Alt_L`, `Alt_R` |
| ^ | ^ | `compat/pc` | ^ |
| `Meta` | Virtual | `compat/misc` | `Meta_L`, `Meta_R` |
| `Super` | Virtual | `compat/misc` | `Super_L`, `Super_R` |
| `Hyper` | Virtual | `compat/misc` | `Hyper_L`, `Hyper_R` |
| `ScrollLock` | Virtual | `compat/misc` | `Scroll_Lock` |
| `NumLock` | Virtual | `compat/basic`, | `Num_Lock`, |
| ^ | ^ | `compat/level5` | (`ISO_Level5_Lock`) |
| `LevelThree` | Virtual | `compat/iso9995` | `ISO_Level3_Shift`, `ISO_Level3_Latch`, `ISO_Level3_Lock` |
| `LevelFive` | Virtual | `compat/level5` | `ISO_Level5_Shift`, `ISO_Level5_Latch`, `ISO_Level5_Lock` |
| `Kana_Lock` | Virtual | `compat/japan` | `Kana_Lock` |
| `Square` | Virtual | `compat/olpc` | `KP_Home` |
| `Cross` | Virtual | `compat/olpc` | `KP_Next` |
| `Circle` | Virtual | `compat/olpc` | `KP_End` |
| `Triangle` | Virtual | `compat/olpc` | `KP_Prior` |
### Modifiers portability {#modifiers-portability}
#### Avoid using numeric modifier masks
@note Any field that accept virtual modifier *names* is a virtual modifier
*mask*, denoting virtual modifiers *indices*. These indices are
implementation-specific and should not be leaked. Therefore any *numeric* value
used for these fields should be interpreted equally as a virtual modifier mask,
and is thus implementation-specific.
@important In order to preserve [modifier encoding] *portability*, XKB
implementations are recommended to **avoid *numeric* modifier masks** and to
**use virtual modifiers *names* whenever possible** when serializing the keymap.
This avoids *leaking* the indices of the modifiers.
#### xkbcomp and libxkbcommon implementations
@attention This section is not part of the keymap text format specification and
presents libxkbcommon’s *implementation details* that may change, solely for the
purpose of informing other XKB implementation.
**Users should not rely on this!**
Both X11 xkbcomp and libxkbcommon currently implement modifiers indices as follow:
1. Real modifiers have the following indices:
| Name | Index |
| --------- | ----- |
| `Shift` | 0 |
| `Lock` | 1 |
| `Control` | 2 |
| `Mod1` | 3 |
| `Mod2` | 4 |
| `Mod3` | 5 |
| `Mod4` | 6 |
| `Mod5` | 7 |
2. Virtual modifiers names are assigned to virtual modifier indices following
their order of appearance in a keymap component, if that name was not
previously assigned.
3. Indices are assigned in *ascending order*, from 0.
4. If an index is already assigned to a different name, then the next free index
is used.
5. The order of the relevant keymap components used for virtual mods assignment is:
1. [xkb_types]
2. [xkb_compat]
3. [xkb_symbols]
6. A virtual modifier *mask* always denotes virtual modifiers *indices*.
@note It suffices to declare all virtual modifiers in [xkb_types] \(or if empty,
whatever non-empty section afterwards, in the order specified above) in their
ascending indices order to use virtual modifiers indices
**compatible with libxkbcommon**.
### Example: define and use a modifier, step by step
We will use the example of the _real_ modifier `Shift` and the virtual
modifier `LevelThree` in `xkeyboard-config`.
In order to define and use a modifier, one must:
1. Define its behavior and [keysym] binding in the
<code>[xkb_compat]</code> section:
```c
// Declare virtual modifiers. Shift being real modifier,
// we do not need to add it here.
virtual_modifiers LevelThree;
// Set defaults. They are overridden if set directly in the xkb_symbols.
interpret.repeat= False; // only applied on first level
setMods.clearLocks= True;
latchMods.clearLocks= True;
latchMods.latchToLock= True;
// Default statement for real modifiers: any key bound to a real
// modifier via modifier_map will set this modifier at all its
// levels.
// Here only to illustrate: do not add it!
interpret Any + Any {
action= SetMods(modifiers=modMapMods);
};
// Shift being real modifier, we do not need a corresponding
// interpret statement because the previous one suffices.
// Let’s associate LevelThree to the keysym ISO_Level3_Shift
// First, match the keys and their levels with the
// ISO_Level3_Shift keysym and with any real modifier
// (Any = AnyOf(all)) in its modmap.
interpret ISO_Level3_Shift+Any {
// Only match the first level of the first group
useModMapMods= level1;
// Add the virtual modifier to the key’s vmodmap
virtualModifier= LevelThree;
// Activate the LevelThree modifier (depressed mode)
action= SetMods(modifiers=LevelThree);
};
// Then for keys and their levels with the
// ISO_Level3_Shift keysym but with either no real modifier
// in its modmap or a level higher than 1.
// Indeed:
// • In case the level is higher than 1 there is no match
// in the previous statement.
// • The condition is equivalent to
// ISO_Level3_Shift+AnyOfOrNone(all), but since
// the previous statement ISO_Level3_Shift+Any is more
// specific, it will be matched before this one.
interpret ISO_Level3_Shift {
// Activate the LevelThree modifier (depressed mode)
action= SetMods(modifiers=LevelThree);
};
```
2. Define [key types] that use it in the
<code>[xkb_types]</code> section:
```c
// Declare virtual modifiers. Shift being real modifier,
// we do not need to add it here.
virtual_modifiers LevelThree;
type "FOUR_LEVEL" {
// Key type modifier mask: all the modifiers used in the key type
modifiers = Shift + LevelThree;
map[None] = Level1;
map[Shift] = Level2;
map[LevelThree] = Level3;
map[Shift+LevelThree] = Level4;
level_name[Level1] = "Base";
level_name[Level2] = "Shift";
level_name[Level3] = "AltGr";
level_name[Level4] = "Shift AltGr";
};
```
3. Bind it to a [keycode] in the
<code>[xkb_symbols]</code> section:
1. Map [keysyms] used in the `xkb_compat` section hereinabove.
2. Bind [real modifiers] to keys using these keysyms with
`modifier_map`.
_Note:_ Only one key binding to real modifier is required.
The corresponding keysym must then be on the first level of
the first Group.
_Note:_ One can optionally bind directly a virtual modifier to a
key using `virtualmodifiers` instead of doing it in the
`xkb_compat` section. But the recommended way is to use the
`xkb_compat` section.
```c
// Shift: defined in pc symbols
key <LFSH> {[ Shift_L ]};
key <RTSH> {[ Shift_R ]};
modifier_map Shift { Shift_L, Shift_R };
// The previous will resolve to:
// modifier_map Shift { <LFSH>, <RTSH> };
// Thus the real modifier Shift is added to the modmap of
// <LFSH> and <RTSH>.
// The “Any + Any” interpret statement matches <LFSH> and <RTSH>,
// therefore these keys set the Shift modifier.
// LevelThree: defined in pc symbols
// With the following 2 lines:
// 1. The modifier keysym is on the first level of the first group.
// 2. The real modifier Mod5 is bound to <LVL3>,
// i.e. Mod5 is added to its modmap.
// 3. It matches the interpret statement “ISO_Level3_Shift+Any”,
// which adds the LevelThree modifier to the vmodmap of <LVL3>.
// 4. The mapping of LevelThree to real modifiers is the union
// of modmaps with corresponding vmodmaps containing
// LevelThree. In our case there is only one: therefore
// LevelThree maps to Mod5.
key <LVL3> {[ ISO_Level3_Shift ]};
modifier_map Mod5 { <LVL3> };
// LevelThree: defined in level3 symbols
// Not bound to a real modifier, so interpret statement
// “ISO_Level3_Shift” applies.
key <RALT> {[ISO_Level3_Shift], type[group1]="ONE_LEVEL" };
// Note: we could have the following line, but it is not necessary
// because we have the mappings of <LVL3>.
// modifier_map Mod5 { <RALT> };
// Warning: if we had the for example the following line, the
// mapping of LevelThree to real modifiers would be “Mod1+Mod5”.
// modifier_map Mod1 { <RALT> };
// Alternative definitions, without using interpret statements
virtual_modifiers LevelThree;
key <LVL3> { virtualmodifiers=LevelThree
, repeats=False
, symbols[Group1] = [ISO_Level3_Shift]
, actions[Group1] = [SetMods(modifiers=LevelThree)] };
modifier_map Mod5 { <LVL3> };
key <RALT> { repeat=False
, symbols[Group1] = [ISO_Level3_Shift]
, actions[Group1] = [SetMods(modifiers=LevelThree)]
, type[group1]="ONE_LEVEL" };
// FOUR_LEVEL key type example from latin symbols
key <AB05> {[b, B, leftdoublequotemark, leftsinglequotemark]};
```
## Key actions {#key-actions}
The following table provide an overview of the available actions:
| Category | Action name | Alias | Description |
|----------|---------------------|------------------|------------------------------------|
| [Ineffectual action] | [`NoAction`][NoAction] | | **Default action**: *implicitly* do nothing |
| ^ | [`VoidAction`][VoidAction] | | *Explicitly* do nothing |
| [Modifier action] | [`SetMods`][SetMods] | | Modifies the <em>[depressed]</em> modifiers |
| ^ | [`LatchMods`][Latchmods] | | Modifies the <em>[latched]</em> modifiers |
| ^ | [`LockMods`][LockMods] | | Modifies the <em>[locked]</em> modifiers |
| [Group action] | [`SetGroup`][SetGroup] | | Modifies the _base_ group |
| ^ | [`LatchGroup`][LatchGroup] | | Modifies the _latched_ group |
| ^ | [`LockGroup`][LockGroup] | | Modifies the _locked_ group |
| [Legacy action] | `MovePointer`| `MovePtr` | Move the mouse pointer |
| ^ | `PointerButton` | `PtrBtn` | Simulate a mouse button press |
| ^ | `LockPointerButton` | `LockPtrBtn` | Simulate a mouse button press, locked until the action’s key is pressed again. |
| ^ | `SetPointerDefault` | `SetPtrDflt` | Set the default select button (???)|
| ^ | [`SetControls`][SetControls] | | Set the standard XKB controls |
| ^ | [`LockControls`][LockControls] | | Lock the standard XKB controls |
| ^ | [`TerminateServer`][TerminateServer] | `Terminate` | Shut down the X server |
| ^ | `SwitchScreen` | | Switch virtual X screen |
| ^ | [`Private`][Private]| | Raw encoding of an action |
| [Unsupported legacy action]| [`RedirectKey`][redirectkey] | `Redirect` | Emulate pressing a key with a different key code |
| ^ | `ISOLock` | | Convert ordinary modifier key actions into lock actions while this action is active |
| ^ | `DeviceButton` | `DevBtn` | Emulate an event from an arbitrary input device such as a joystick |
| ^ | `LockDeviceButton` | `LockDevBtn` | Emulate an event from an arbitrary input device such as a joystick |
| ^ | `DeviceValuator` | `DevVal` | <span class="todo">TODO</span> |
| ^ | `MessageAction` | `Message` | Generate an arbitrary special-purpose XKB event |
Common syntax:
- Boolean values:
- `true`, `yes`, `on`
- `false`, `no`, `off`
### Ineffectual actions {#ineffectual-actions}
[ineffectual action]: @ref ineffectual-actions
[NoAction]: @ref no-action
[VoidAction]: @ref void-action
<dl>
<dt>`NoAction` @anchor no-action</dt>
<dd>
**Default action**: *implicitly* do nothing.
Does *not* override previous actions and is dropped.
No parameters.
</dd>
<dt>`VoidAction` @anchor void-action</dt>
<dd>
*Explicitly* do nothing.
*Does* override previous actions and is not dropped.
No parameters.
@note This is a libxkbcommon *extension*. In order to maintain backward-compatibility,
it serializes to `LockControls(controls=none,affect=neither)`.
@since 1.10.0
</dd>
</dl>
### Modifiers actions {#modifiers-actions}
[modifier action]: @ref modifiers-actions
[modifier actions]: @ref modifiers-actions
[SetMods]: @ref set-mods-action
[LatchMods]: @ref latch-mods-action
[LockMods]: @ref lock-mods-action
There are 3 modifiers actions:
<dl>
<dt>`SetMods` @anchor set-mods-action</dt>
<dd>
Modifies the <em>[depressed]</em> modifiers.
<table>
<caption>Parameters</caption>
<thead>
<tr>
<th>Name</th>
<th>Aliases</th>
<th>Data type</th>
<th>Default value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<th>`modifiers`</th>
<td>`mods`</td>
<td>Modifier mask</td>
<td>`none` (0)</td>
<td>
The list of modifiers to modify, separated by `+`, or the special value
`modMapMods`. The latter means the parameter value has to be read from the
`vmodmap` attribute of the key.
</td>
<tr>
<th>`clearLocks`</th>
<td></td>
<td>boolean</td>
<td>`false`</td>
<td>See its use [hereinafter](@ref set-modifier-action-effects)</td>
</tr>
</tbody>
</table>
</dd>
<dt>`LatchMods` @anchor latch-mods-action</dt>
<dd>
Modifies the <em>[latched]</em> modifiers
<table>
<caption>Parameters</caption>
<thead>
<tr>
<th>Name</th>
<th>Aliases</th>
<th>Data type</th>
<th>Default value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<th>`modifiers`</th>
<td>`mods`</td>
<td>Modifier mask</td>
<td>`none` (0)</td>
<td>see [`SetMods`][SetMods].</td>
<tr>
<th>`clearLocks`</th>
<td></td>
<td>boolean</td>
<td>`false`</td>
<td>See its use [hereinafter](@ref latch-modifier-action-effects)</td>
</tr>
<tr>
<th>`latchToLock`</th>
<td></td>
<td>boolean</td>
<td>`false`</td>
<td>See its use [hereinafter](@ref latch-modifier-action-effects)</td>
</tr>
<tr>
<th>`latchOnPress`</th>
<td></td>
<td>boolean</td>
<td>`false`</td>
<td>
Control whether [latched] modifiers are latched on key press or release (default).
See [hereinafter](@ref latch-modifier-action-effects) for further details.
@note Available since 1.11, only with `::XKB_KEYMAP_FORMAT_TEXT_V2`.
</tr>
</tbody>
</table>
</dd>
<dt>`LockMods` @anchor lock-mods-action</dt>
<dd>
Modifies the <em>[locked]</em> modifiers.
<table>
<caption>Parameters</caption>
<thead>
<tr>
<th>Name</th>
<th>Aliases</th>
<th>Data type</th>
<th>Default value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<th>`modifiers`</th>
<td>`mods`</td>
<td>Modifier mask</td>
<td>`none` (0)</td>
<td>see [`SetMods`][SetMods]</td>
<tr>
<th>`affect`</th>
<td></td>
<td>
enumeration:
- `lock`
- `unlock`
- `both`
- `neither`
</td>
<td>`both`</td>
<td>
- `lock`: the action only locks the modifier, but cannot unlock it.
- `unlock`: the action only unlocks modifier, but cannot lock it.
- `both`: the first key press locks the modifier and the second key
press releases the modifier..
- `neither`: do not lock nor unlock, i.e. do nothing.
</td>
</tr>
<tr>
<th>`unlockOnPress`</th>
<td></td>
<td>boolean</td>
<td>`false`</td>
<td>
Control whether [locked] modifiers are unlocked on key press or release.
See [hereinafter](@ref lock-modifier-action-effects) for further details.
@note Available since 1.11, only with `::XKB_KEYMAP_FORMAT_TEXT_V2`.
</td>
</tr>
</tbody>
</table>
</dd>
</dl>
@todo highlight that there is reference counting for
the modifiers, e.g. to manage multiple physical keys for the same modifier.
These actions perform different tasks on key press and on key release:
<table>
<caption>
Effects of modifiers actions @anchor modifier-actions-effects
</caption>
<thead>
<tr>
<th>Action</th>
<th>On key press</th>
<th>On key release</th>
</tr>
</thead>
<tbody>
<tr>
<th>`SetMods` @anchor latch-modifier-action-effects</th>
<td>
<ul>
<li>
Adds modifiers to <em>[depressed]</em> modifiers
</li>
</ul>
</td>
<td>
<ul>
<li>
Removes modifiers from <em>[depressed]</em> modifiers,
provided that no other key which affects the same
modifiers is logically down.
</li>
<li>
If <code>clearLocks=yes</code> and no other key
were operated simultaneously with this key,
then the modifiers will be removed as well from
the <em>[locked]</em> modifiers.
</li>
</ul>
</td>
</tr>
<tr>
<th>`LatchMods` @anchor set-modifier-action-effects</th>
<td>
- If `latchOnPress` is true, then:
- If `clearLocks` is true and target modifiers were locked,
then unlock them and clear the action.
- Otherwise add modifiers to the <em>[latched]</em> modifiers.
- Otherwise adds modifiers to <em>[depressed]</em> modifiers.
</td>
<td>
- If `latchOnPress` is false, then:
- Removes modifiers from <em>[depressed]</em> modifiers.
- If no keys were operated simultaneously with the latching modifier key:
- If `clearLocks` is true and target modifiers were locked,
then unlock then stop here and clear the action.
<!-- TODO: pending latch? -->
- Otherwise add modifiers to <em>[latched]</em> modifiers.
- If `latchToLock` is true and if the target modifiers are latched,
then unlatch them and <em>[lock][locked]</em> them.
- Latch target modifiers that were not used by `clearLocks` and
`latchToLock`.
- Otherwise unlatch the target modifiers and clear the action.
</td>
</tr>
<tr>
<th>`LockMods` @anchor lock-modifier-action-effects</th>
<td>
- If `unlockOnPress` is true and some of the target modifiers were
<em>[locked]</em> before the key press, then unlock them if `noUnlock`
false.
- Otherwise:
- add target modifiers to <em>[depressed]</em> modifiers;
- if `noLock` is false, add target modifiers to the <em>[locked]</em>
modifiers.
</td>
<td>
- If `unlockOnPress` is true and triggered unlocking on key press, do
nothing.
- Otherwise:
- remove modifiers from the <em>[depressed]</em> modifiers, if no
other key that affect the same modifiers is down;
- if `noUnlock` is false and if any target modifiers was locked before
the key press, *[unlock][locked]* them.
</td>
</tr>
</tbody>
</table>
### Group actions {#group-actions}
[group action]: @ref group-actions
[group actions]: @ref group-actions
[SetGroup]: @ref set-group-action
[LatchGroup]: @ref latch-group-action
[LockGroup]: @ref lock-group-action
There are 3 group actions:
<dl>
<dt>`SetGroup` @anchor set-group-action</dt>
<dd>
Modifies the *base* group.
<table>
<caption>Parameters</caption>
<thead>
<tr>
<th>Name</th>
<th>Data type</th>
<th>Default value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<th>`group`</th>
<td>
Group index:
- 1-based numbering
- either absolute (no sign) or relative (`+`/`-` sign)
</td>
<td>0</td>
<td>Target group or group delta</td>
<tr>
<th>`clearLocks`</th>
<td>boolean</td>
<td>`false`</td>
<td>See its use [hereinafter](@ref set-group-action-effects)</td>
</tr>
</tbody>
</table>
</dd>
<dt>`LatchGroup` @anchor latch-group-action</dt>
<dd>
Modifies the *latched* group.
<table>
<caption>Parameters</caption>
<thead>
<tr>
<th>Name</th>
<th>Data type</th>
<th>Default value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<th>`group`</th>
<td>Group index (see [`SetGroup`][SetGroup])</td>
<td>0</td>
<td>Target group or group delta</td>
<tr>
<th>`clearLocks`</th>
<td>boolean</td>
<td>`false`</td>
<td>See its use [hereinafter](@ref latch-group-action-effects)</td>
</tr>
<tr>
<th>`latchToLock`</th>
<td>boolean</td>
<td>`false`</td>
<td>See its use [hereinafter](@ref latch-group-action-effects)</td>
</tr>
</tbody>
</table>
</dd>
<dt>`LockGroup` @anchor lock-group-action</dt>
<dd>
Modifies the *locked* group.
<table>
<caption>Parameters</caption>
<thead>
<tr>
<th>Name</th>
<th>Data type</th>
<th>Default value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<th>`group`</th>
<td>Group index (see [`SetGroup`][SetGroup])</td>
<td>0</td>
<td>Target group or group delta</td>
</tr>
<tr>
<th>`lockOnRelease`</th>
<td>boolean</td>
<td>false</td>
<td>
Control whether to trigger the group change on key press (default) or release.
See further details [hereinafter](@ref lock-group-action-effects)
@note Available since 1.11, only with `::XKB_KEYMAP_FORMAT_TEXT_V2`.
</td>
</tr>
</tbody>
</table>
</dd>
</dl>
<table>
<caption>Effects of group actions</caption>
<thead>
<tr>
<th>Action</th>
<th>On key press</th>
<th>On key release</th>
</tr>
</thead>
<tbody>
<tr>
<th>`SetGroup` @anchor set-group-action-effects</th>
<td>
- If the `group` parameter is *absolute*, key press events sets the *base*
keyboard group to `group`.
- Otherwise, it adds `group` to the *base* keyboard group.
In either case, the resulting *effective* keyboard group is brought back into
range depending on the value of the `GroupsWrap` control for the keyboard.
</td>
<td>
If *no* keys were operated simultaneously with this key and the `clearLocks`
parameter is set, key release also sets the *locked* keyboard group to `Group1`.
</td>
</tr>
<tr>
<th>`LatchGroup` @anchor latch-group-action-effects</th>
<td>
Same as `SetGroup`.
</td>
<td>
Same as `SetGroup`.
If no keys were operated simultaneously with the latching group key and the
`clearLocks` parameter was not set or had no effect, key release has the following
additional effects:
- If `latchToLock` parameter is set and the *latched* keyboard group is not the
first group, the key release adds the *delta* applied by the corresponding key
press to the locked keyboard group and subtracts it from the latched keyboard
group. The *locked* and *effective* keyboard group are brought back into range
according to the value of the global `GroupsWrap` control for the keyboard.
- Otherwise, key release adds the key press *delta* to the latched keyboard
group.
</td>
</tr>
<tr>
<th>`LockGroup` @anchor lock-group-action-effects</th>
<td>
- If `lockOnRelease` is set, then key press has no effect.
- Otherwise:
- if the `group` is absolute, key press sets the *locked* keyboard group to
`group`;
- otherwise, key press adds `group` to the *locked* keyboard group.
In either case, the resulting *locked* and *effective* group is brought back
into range depending on the value of the `GroupsWrap` control for the keyboard.
</td>
<td>
- If `lockOnRelease` is not set, then key release has no effect.
- Otherwise, if any other key was *pressed* after the locking key, then
key release has no effect.
<details>
<summary>This enables e.g. using `Alt+Shift` combination in any order.</summary>
- `Shift` down, `Alt` down, `Alt` up, `Shift` up
- `Shift` down, `Alt` down, `Shift` up, `Alt` up
- `Alt` down, `Shift` down, `Shift` up, `Alt` up
- `Alt` down, `Shift` down, `Alt` up, `Shift` up
This would not be possible if locking was cancelled by key *release* too.
</details>
- Otherwise, it has the same effect than a key press *without* `lockOnRelease`
set.
</td>
</tr>
</tbody>
</table>
### Legacy X11 actions {#legacy-x11-actions}
[legacy action]: @ref legacy-x11-actions
@attention The following legacy actions are kept for compatibility only: they are parsed
and validated but have no effect. This allows to use keymaps defined in
<code>[xkeyboard-config]</code> for both X11 and Wayland.
#### Pointer actions
<dl>
<dt>`MovePointer`<dt>
<dt>`MovePtr`</dt>
<dd>
Move the mouse pointer
@todo MovePointer parameters
<!-- blank required by Doxgen -->
</dd>
<dt>`PointerButton`</dt>
<dt>`PtrBtn`</dt>
<dd>
Simulate a mouse button press
@todo PointerButton parameters
<!-- blank required by Doxgen -->
</dd>
<dt>`LockPointerButton`</dt>
<dt>`LockPointerBtn`</dt>
<dt>`LockPtrButton`</dt>
<dt>`LockPtrBtn`</dt>
<dd>
Simulate a mouse button press, locked until this actiion’s key is pressed again
@todo LockPointerButton parameters
<!-- blank required by Doxgen -->
</dd>
<dt>`SetPointerDefault`</dt>
<dt>`SetPtrDflt`</dt>
<dd>
Set the default select button (???)
@todo SetPointerDefault parameters
<!-- blank required by Doxgen -->
<dd>
</dl>
#### Control flags actions
[SetControls]: @ref set-controls-action
[LockControls]: @ref lock-controls-action
<dl>
<dt>`SetControls` @anchor set-controls-action</dt>
<dd>
Set the standard XKB controls
<table>
<caption>Parameters</caption>
<thead>
<tr>
<th>Name</th>
<th>Alias</th>
<th>Data type</th>
<th>Default value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<th>`controls`</th>
<td>`ctrls`</td>
<td>
Mask of the following enumeration:
- `RepeatKeys`
- `Repeat`
- `AutoRepeat`
- `SlowKeys`
- `BounceKeys`
- `StickyKeys`
- `MouseKeys`
- `MouseKeysAccel`
- `AccessXKeys`
- `AccessXTimeout`
- `AccessXFeedback`
- `AudibleBell`
- `IgnoreGroupLock`
- `Overlay1`
- `Overlay2`
Plus 2 special values:
- `all`
- `none`
</td>
<td>0</td>
<td>Standard XKB controls</td>
</tbody>
</table>
</dd>
<dt>`LockControls` @anchor lock-controls-action</dt>
<dd>
Lock the standard XKB controls
<table>
<caption>Parameters</caption>
<thead>
<tr>
<th>Name</th>
<th>Alias</th>
<th>Data type</th>
<th>Default value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<th>`controls`</th>
<td>`ctrls`</td>
<td>Mask (see [`SetControls`][SetControls])</td>
<td>0</td>
<td>Standard XKB controls</td>
<tr>
<th>`affect`</th>
<td></td>
<td>
enumeration:
- `lock`
- `unlock`
- `both`
- `neither`
</td>
<td>`both`</td>
<td><span class="todo">TODO</span></td>
</tr>
</tbody>
</table>
</dd>
</dl>
#### Server actions
[TerminateServer]: @ref terminate-server-action
<dl>
<dt>`TerminateServer` @anchor terminate-server-action</dt>
<dd>
Shut down the X server
No parameters.
</dd>
<dt>`SwitchScreen`</dt>
<dd>
@todo SwitchScreen
<!-- blank for Doxygen -->
</dd>
</dl>
#### Private action {#private-action}
[Private]: @ref private-action
Raw encoding of an action. Aimed to support arbitrary action unknown to the XKB
compiler.
@warning This assumes that the corresponding action’s C `struct` is laid out in
memory exactly as described in the XKB specification and libraries. However,
libxkbcommon have changed these `struct`s in various ways, so this assumption is
no longer true and the actions defined in the XKB protocol are unsupported.
<table>
<caption>Parameters</caption>
<thead>
<tr>
<th>Name</th>
<th>Data type</th>
<th>Default value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<th>`type`</th>
<td>integer</td>
<td>0</td>
<td>
Action type, as encoded in the XKB protocol
</td>
<tr>
<th>`data`</th>
<td>byte array or a string of *exactly 7 bytes*</td>
<td>"0000000"</td>
<td>Raw byte encoding of the action following the XKB protocol</td>
</tr>
</tbody>
</table>
Examples:
- `Private(type=123, data="abcdefg");`
- `Private(type=123, data[1]=0, data[2]=100, data[3]=12);`
### Unsupported legacy X11 actions {#unsupported-legacy-x11-actions}
[unsupported legacy action]: @ref unsupported-legacy-x11-actions
@attention The following legacy actions are **unsupported**: they are parsed
and but *not validated* and are then completely *ignored*.
#### Redirect key {#redirect-key-action}
[redirectkey]: @ref redirect-key-action
`RedirectKey` emulates pressing a key with a different key code.
`RedirectKey` normally redirects to another key on the *same device* as the key
or button which caused the event, else on the *core* keyboard device.
<table>
<caption>Parameters</caption>
<thead>
<tr>
<th>Name</th>
<th>Aliases</th>
<th>Data type</th>
<th>Default value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<th>`key`</th>
<td>`keycode`, `kc`</td>
<td>keycode</td>
<td>0</td>
<td>Target keycode to emulate</td>
<tr>
<th>`clearmodifiers`</th>
<td>`clearmods`</td>
<td>modifier mask</td>
<td>`none` (0)</td>
<td>Modifiers to clear</td>
</tr>
<tr>
<th>`modifiers`</th>
<td>`mods`</td>
<td>modifier mask</td>
<td>`none` (0)</td>
<td>Modifiers to add</td>
</tr>
</tbody>
</table>
<table>
<caption>Effects</caption>
<thead>
<tr>
<th>On key *press*</th>
<th>On key *release*</th>
</tr>
<tr>
<td>
Key press causes a key press event for the key specified by the `key` parameter
instead of for the actual key. The state reported in this event reports of the
current *effective* modifiers changed as follow:
- Modifiers in the `clearmodifiers` parameter are cleared.
- Modifiers in the `modifiers` parameter are set.
</td>
<td>
Key release causes a key release event for the key specified by the `key`
parameter; the state field for this event consists of the *effective*
modifiers at the time of the release, changed as described on the key press.
</td>
</thead>
#### ISO lock
@todo `ISOLock`
#### Device actions
<dl>
<dt>`DeviceButton`</dt>
<dd>
@todo DeviceButton
<!-- blank for Doxygen -->
</dd>
<dt>`LockDeviceButton`</dt>
<dd>
@todo LockDeviceButton
<!-- blank for Doxygen -->
</dd>
<dt>`DeviceValuator`</dt>
<dd>
@todo DeviceValuator
<!-- blank for Doxygen -->
</dd>
</dl>
#### Message
@todo `ActionMessage`
## The “xkb_geometry” section {#the-xkb_geometry-section}
This section aims to describe the *physical* layout of a keyboard and its main
use case is to produce a picture of the keyboard via e.g. the `xkbprint` program.
@warning libxkbcommon does not support this section: while it can parse the
syntax, it does not interpret it; the section is simply dropped so there is no
API to query it and the keymap serialization does not contain it.
@sa @ref geometry-support "Compatibility with X11".