Hash :
dddffd51
Author :
Date :
2025-05-05T13:22:57
state: Fix virtual modifiers with non-real mod mapping
Currently there are 2 issues with the handling of virtual modifiers
in the keyboard state:
1. We assume that the input modifiers masks encode the indexes of all
the modifiers of the keymap, but this is true only for the *real*
modifiers (at least in xkbcommon and X11). Indeed, since the virtual
modifiers *indexes* are implementation-specific, the input modifier
masks merely *encode* the modifiers via their *mapping*.
Consider the following keymap:
```c
xkb_keymap {
xkb_compat { virtual_modifiers M1 = 0x100; };
xkb_types { virtual_modifiers M2 = 0x200; };
};
```
Now to illustrate, consider the following 2 implementation variants
of libxkbcommon (assuming indexes 0-7 are the usual real modifiers):
1. Process `xkb_compat` then `xkb_types`.
M1 and M2 have the respective indexes 8 and 9 and map to
themselves (with the current assumption about mask denotation).
2. Process `xkb_types` then `xkb_compat`.
M1 and M2 have the respective indexes 9 and 8 and map to each
other.
With the current `xkb_state_update_mask`, implementation 2 will swap
M1 and M2 (compared to impl. 1) at each update! Indeed, we can see that
`xkb_state_serialize_mods` doesn’t roundtrip via `xkb_state_update_mask`.
2. We assume that modifier masks use only bits denoting modifiers in
the keymap, but when parsing the keymap we accept explicit virtual
modifiers mapping of arbitrary values.
E.g. if `M1` is the only virtual modifier and it is defined by:
```c
virtual_modifiers M1 = 0x80000000; // 1 << (32 - 1)
```
then the 32th bit of a modifier mask input does *not* denote the
32th virtual modifier of the keymap, but merely the encoding of the
mapping of `M1`.
So when calling `xkb_state_update_mask`, we may discard some bits of
the modifiers masks and end up with an incorrect state.
These 2 issues may break interoperability with other implementations of
XKB (e.g. kbvm) and make pure virtual modifiers handling fragile.
We introduce the notion of *canonical state modifier mask*: the mask
with the smallest population count that denotes all bits used to encode
the modifiers in the keyboard state. It is equal to the bitwise OR of
real modifiers mask and all the virtual modifiers mappings.
This commit fixes the 2 issues by making *weaker* assumptions about the
input modifier masks:
1. Modifiers may map to arbitrary values, not only real modifiers.
2. Input modifier masks merely encode modifiers via their *mapping*:
- *real* modifiers map to themselves;
- *virtual* modifiers map to the bitwise OR of their *explicit*
mapping (via `virtual_modifiers`) and their *implicit* mapping (via
keys’ real and virtual modmaps).
- modifiers indexes are implementation-specific.
Since the implementation before this commit also resolved virtual
modifiers to their mappings, we continue doing so, but using only the
bits that are *not* set in the canonical state modifier mask, so that
we enable roundtrip of `xkb_state_serialize_mods` via
`xkb_state_update_mask`.
3. Input modifier masks do not denote modifiers indexes (apart from real
modifiers), so it is safe to discard only the bits that are not set
in the canonical state modifier mask.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
/*
* For HPND:
* Copyright (c) 1993 by Silicon Graphics Computer Systems, Inc.
*
* For MIT:
* Copyright © 2012 Intel Corporation
* Copyright © 2012 Ran Benita <ran234@gmail.com>
*
* SPDX-License-Identifier: HPND AND MIT
*
* Author: Daniel Stone <daniel@fooishbar.org>
*/
/*
* This is a bastardised version of xkbActions.c from the X server which
* does not support, for the moment:
* - AccessX sticky/debounce/etc (will come later)
* - pointer keys (may come later)
* - key redirects (unlikely)
* - messages (very unlikely)
*/
#include "config.h"
#include <assert.h>
#include <stdint.h>
#include "keymap.h"
#include "keysym.h"
#include "utf8.h"
struct xkb_filter {
union xkb_action action;
const struct xkb_key *key;
uint32_t priv;
bool (*func)(struct xkb_state *state,
struct xkb_filter *filter,
const struct xkb_key *key,
enum xkb_key_direction direction);
int refcnt;
};
struct state_components {
/* These may be negative, because of -1 group actions. */
int32_t base_group; /**< depressed */
int32_t latched_group;
int32_t locked_group;
xkb_layout_index_t group; /**< effective */
xkb_mod_mask_t base_mods; /**< depressed */
xkb_mod_mask_t latched_mods;
xkb_mod_mask_t locked_mods;
xkb_mod_mask_t mods; /**< effective */
xkb_led_mask_t leds;
};
struct xkb_state {
/*
* Before updating the state, we keep a copy of just this struct. This
* allows us to report which components of the state have changed.
*/
struct state_components components;
/*
* At each event, we accumulate all the needed modifications to the base
* modifiers, and apply them at the end. These keep track of this state.
*/
xkb_mod_mask_t set_mods;
xkb_mod_mask_t clear_mods;
/*
* We mustn't clear a base modifier if there's another depressed key
* which affects it, e.g. given this sequence
* < Left Shift down, Right Shift down, Left Shift Up >
* the modifier should still be set. This keeps the count.
*/
int16_t mod_key_count[XKB_MAX_MODS];
int refcnt;
darray(struct xkb_filter) filters;
struct xkb_keymap *keymap;
};
static const struct xkb_key_type_entry *
get_entry_for_mods(const struct xkb_key_type *type, xkb_mod_mask_t mods)
{
for (unsigned i = 0; i < type->num_entries; i++)
if (entry_is_active(&type->entries[i]) &&
type->entries[i].mods.mask == mods)
return &type->entries[i];
return NULL;
}
static const struct xkb_key_type_entry *
get_entry_for_key_state(struct xkb_state *state, const struct xkb_key *key,
xkb_layout_index_t group)
{
const struct xkb_key_type* const type = key->groups[group].type;
xkb_mod_mask_t active_mods = state->components.mods & type->mods.mask;
return get_entry_for_mods(type, active_mods);
}
/**
* Returns the level to use for the given key and state, or
* XKB_LEVEL_INVALID.
*/
xkb_level_index_t
xkb_state_key_get_level(struct xkb_state *state, xkb_keycode_t kc,
xkb_layout_index_t layout)
{
const struct xkb_key* const key = XkbKey(state->keymap, kc);
if (!key || layout >= key->num_groups)
return XKB_LEVEL_INVALID;
/* If we don't find an explicit match the default is 0. */
const struct xkb_key_type_entry* const entry =
get_entry_for_key_state(state, key, layout);
if (!entry)
return 0;
return entry->level;
}
/**
* Returns the layout to use for the given key and state, taking
* wrapping/clamping/etc into account, or XKB_LAYOUT_INVALID.
*/
xkb_layout_index_t
xkb_state_key_get_layout(struct xkb_state *state, xkb_keycode_t kc)
{
const struct xkb_key* const key = XkbKey(state->keymap, kc);
if (!key)
return XKB_LAYOUT_INVALID;
static_assert(XKB_MAX_GROUPS < INT32_MAX, "Max groups don't fit");
return XkbWrapGroupIntoRange((int32_t) state->components.group,
key->num_groups,
key->out_of_range_group_action,
key->out_of_range_group_number);
}
/* Empty action used for empty levels */
static const union xkb_action dummy_action = { .type = ACTION_TYPE_NONE };
static unsigned int
xkb_key_get_actions(struct xkb_state *state, const struct xkb_key *key,
const union xkb_action **actions)
{
const xkb_layout_index_t layout =
xkb_state_key_get_layout(state, key->keycode);
if (layout == XKB_LAYOUT_INVALID)
goto err;
const xkb_level_index_t level =
xkb_state_key_get_level(state, key->keycode, layout);
if (level == XKB_LEVEL_INVALID)
goto err;
const unsigned int count =
xkb_keymap_key_get_actions_by_level(state->keymap, key->keycode,
layout, level, actions);
if (!count)
goto err;
return count;
err:
/* Use a dummy action if no corresponding level was found or if it is empty.
* This is required e.g. to handle latches properly. */
*actions = &dummy_action;
return 1;
}
static struct xkb_filter *
xkb_filter_new(struct xkb_state *state)
{
struct xkb_filter *filter = NULL, *iter;
darray_foreach(iter, state->filters) {
if (iter->func)
continue;
/* Use available slot */
filter = iter;
break;
}
if (!filter) {
/* No available slot: resize the filters array */
darray_resize0(state->filters, darray_size(state->filters) + 1);
filter = &darray_item(state->filters, darray_size(state->filters) -1);
}
filter->refcnt = 1;
return filter;
}
/***====================================================================***/
enum xkb_filter_result {
/*
* The event is consumed by the filters.
*
* An event is always processed by all filters, but any filter can
* prevent it from being processed further by consuming it.
*/
XKB_FILTER_CONSUME,
/*
* The event may continue to be processed as far as this filter is
* concerned.
*/
XKB_FILTER_CONTINUE,
};
/* Modify a group component, depending on the ACTION_ABSOLUTE_SWITCH flag */
#define apply_group_delta(filter_, state_, component_) \
if ((filter_)->action.group.flags & ACTION_ABSOLUTE_SWITCH) \
(state_)->components.component_ = (filter_)->action.group.group; \
else \
(state_)->components.component_ += (filter_)->action.group.group
static void
xkb_filter_group_set_new(struct xkb_state *state, struct xkb_filter *filter)
{
static_assert(sizeof(state->components.base_group) == sizeof(filter->priv),
"Max groups don't fit");
filter->priv = state->components.base_group;
apply_group_delta(filter, state, base_group);
}
static bool
xkb_filter_group_set_func(struct xkb_state *state,
struct xkb_filter *filter,
const struct xkb_key *key,
enum xkb_key_direction direction)
{
if (key != filter->key) {
filter->action.group.flags &= ~ACTION_LOCK_CLEAR;
return XKB_FILTER_CONTINUE;
}
if (direction == XKB_KEY_DOWN) {
filter->refcnt++;
return XKB_FILTER_CONSUME;
}
else if (--filter->refcnt > 0) {
return XKB_FILTER_CONSUME;
}
static_assert(sizeof(state->components.base_group) == sizeof(filter->priv),
"Max groups don't fit");
state->components.base_group = (int32_t) filter->priv;
if (filter->action.group.flags & ACTION_LOCK_CLEAR)
state->components.locked_group = 0;
filter->func = NULL;
return XKB_FILTER_CONTINUE;
}
static void
xkb_filter_group_lock_new(struct xkb_state *state, struct xkb_filter *filter)
{
apply_group_delta(filter, state, locked_group);
}
static bool
xkb_filter_group_lock_func(struct xkb_state *state,
struct xkb_filter *filter,
const struct xkb_key *key,
enum xkb_key_direction direction)
{
if (key != filter->key)
return XKB_FILTER_CONTINUE;
if (direction == XKB_KEY_DOWN) {
filter->refcnt++;
return XKB_FILTER_CONSUME;
}
if (--filter->refcnt > 0)
return XKB_FILTER_CONSUME;
filter->func = NULL;
return XKB_FILTER_CONTINUE;
}
static bool
xkb_action_breaks_latch(const union xkb_action *action)
{
switch (action->type) {
case ACTION_TYPE_NONE:
case ACTION_TYPE_PTR_BUTTON:
case ACTION_TYPE_PTR_LOCK:
case ACTION_TYPE_CTRL_SET:
case ACTION_TYPE_CTRL_LOCK:
case ACTION_TYPE_SWITCH_VT:
case ACTION_TYPE_TERMINATE:
return true;
default:
return false;
}
}
enum xkb_key_latch_state {
NO_LATCH = 0,
LATCH_KEY_DOWN,
LATCH_PENDING,
_KEY_LATCH_STATE_NUM_ENTRIES
};
#define MAX_XKB_KEY_LATCH_STATE_LOG2 2
#if (_KEY_LATCH_STATE_NUM_ENTRIES > (1 << MAX_XKB_KEY_LATCH_STATE_LOG2)) || \
(-XKB_MAX_GROUPS) < (INT32_MIN >> MAX_XKB_KEY_LATCH_STATE_LOG2) || \
XKB_MAX_GROUPS > (INT32_MAX >> MAX_XKB_KEY_LATCH_STATE_LOG2)
#error "Cannot represent priv field of the group latch filter"
#endif
/* Hold the latch state *and* the group delta */
union group_latch_priv {
uint32_t priv;
struct {
/* The type is really: enum xkb_key_latch_state, but it is problematic
* on Windows, because it is interpreted as signed and leads to wrong
* negative values. */
unsigned int latch:MAX_XKB_KEY_LATCH_STATE_LOG2;
int32_t group_delta:(32 - MAX_XKB_KEY_LATCH_STATE_LOG2);
};
};
static void
xkb_filter_group_latch_new(struct xkb_state *state, struct xkb_filter *filter)
{
const union group_latch_priv priv = {
.latch = LATCH_KEY_DOWN,
.group_delta = (filter->action.group.flags & ACTION_ABSOLUTE_SWITCH)
? filter->action.group.group - state->components.base_group
: filter->action.group.group
};
filter->priv = priv.priv;
/* Like group set */
apply_group_delta(filter, state, base_group);
}
static bool
xkb_filter_group_latch_func(struct xkb_state *state,
struct xkb_filter *filter,
const struct xkb_key *key,
enum xkb_key_direction direction)
{
union group_latch_priv priv = {.priv = filter->priv};
enum xkb_key_latch_state latch = priv.latch;
if (direction == XKB_KEY_DOWN && latch == LATCH_PENDING) {
/* If this is a new keypress and we're awaiting our single latched
* keypress, then either break the latch if any random key is pressed,
* or promote it to a lock if it's the same group delta & flags and
* latchToLock option is enabled. */
const union xkb_action *actions = NULL;
const unsigned int count = xkb_key_get_actions(state, key, &actions);
for (unsigned int k = 0; k < count; k++) {
if (actions[k].type == ACTION_TYPE_GROUP_LATCH &&
actions[k].group.group == filter->action.group.group &&
actions[k].group.flags == filter->action.group.flags) {
filter->action = actions[k];
if (filter->action.group.flags & ACTION_LATCH_TO_LOCK &&
filter->action.group.group != 0) {
/* Promote to lock */
filter->action.type = ACTION_TYPE_GROUP_LOCK;
filter->func = xkb_filter_group_lock_func;
xkb_filter_group_lock_new(state, filter);
state->components.latched_group -= priv.group_delta;
filter->key = key;
/* XXX beep beep! */
return XKB_FILTER_CONSUME;
}
/* Do nothing if latchToLock option is not activated; if the
* latch is not broken by the following actions and the key is
* not consumed, then another latch filter will be created.
*/
continue;
}
else if (xkb_action_breaks_latch(&(actions[k]))) {
/* Breaks the latch */
state->components.latched_group -= priv.group_delta;
filter->func = NULL;
return XKB_FILTER_CONTINUE;
}
}
}
else if (direction == XKB_KEY_UP && key == filter->key) {
/* Our key got released. If we've set it to clear locks, and we
* currently have a group locked, then release it and
* don't actually latch. Else we've actually hit the latching
* stage, so set PENDING and move our group from base to
* latched. */
if (latch == NO_LATCH ||
((filter->action.group.flags & ACTION_LOCK_CLEAR) &&
state->components.locked_group)) {
if (latch == LATCH_PENDING)
state->components.latched_group -= priv.group_delta;
else
state->components.base_group -= priv.group_delta;
if (filter->action.group.flags & ACTION_LOCK_CLEAR)
state->components.locked_group = 0;
filter->func = NULL;
}
/* We may already have reached the latch state if pressing the
* key multiple times without latch-to-lock enabled. */
else if (latch == LATCH_KEY_DOWN) {
latch = LATCH_PENDING;
/* Switch from set to latch */
state->components.base_group -= priv.group_delta;
state->components.latched_group += priv.group_delta;
/* XXX beep beep! */
}
}
else if (direction == XKB_KEY_DOWN && latch == LATCH_KEY_DOWN) {
/* Another key was pressed while we've still got the latching
* key held down, so keep the base group active (from
* xkb_filter_group_latch_new), but don't trip the latch, just clear
* it as soon as the group key gets released. */
latch = NO_LATCH;
}
priv.latch = latch;
filter->priv = priv.priv;
return XKB_FILTER_CONTINUE;
}
static void
xkb_filter_mod_set_new(struct xkb_state *state, struct xkb_filter *filter)
{
state->set_mods |= filter->action.mods.mods.mask;
}
static bool
xkb_filter_mod_set_func(struct xkb_state *state,
struct xkb_filter *filter,
const struct xkb_key *key,
enum xkb_key_direction direction)
{
if (key != filter->key) {
filter->action.mods.flags &= ~ACTION_LOCK_CLEAR;
return XKB_FILTER_CONTINUE;
}
if (direction == XKB_KEY_DOWN) {
filter->refcnt++;
return XKB_FILTER_CONSUME;
}
else if (--filter->refcnt > 0) {
return XKB_FILTER_CONSUME;
}
state->clear_mods |= filter->action.mods.mods.mask;
if (filter->action.mods.flags & ACTION_LOCK_CLEAR)
state->components.locked_mods &= ~filter->action.mods.mods.mask;
filter->func = NULL;
return XKB_FILTER_CONTINUE;
}
static void
xkb_filter_mod_lock_new(struct xkb_state *state, struct xkb_filter *filter)
{
filter->priv = (state->components.locked_mods &
filter->action.mods.mods.mask);
state->set_mods |= filter->action.mods.mods.mask;
if (!(filter->action.mods.flags & ACTION_LOCK_NO_LOCK))
state->components.locked_mods |= filter->action.mods.mods.mask;
}
static bool
xkb_filter_mod_lock_func(struct xkb_state *state,
struct xkb_filter *filter,
const struct xkb_key *key,
enum xkb_key_direction direction)
{
if (key != filter->key)
return XKB_FILTER_CONTINUE;
if (direction == XKB_KEY_DOWN) {
filter->refcnt++;
return XKB_FILTER_CONSUME;
}
if (--filter->refcnt > 0)
return XKB_FILTER_CONSUME;
state->clear_mods |= filter->action.mods.mods.mask;
if (!(filter->action.mods.flags & ACTION_LOCK_NO_UNLOCK))
state->components.locked_mods &= ~filter->priv;
filter->func = NULL;
return XKB_FILTER_CONTINUE;
}
static void
xkb_filter_mod_latch_new(struct xkb_state *state, struct xkb_filter *filter)
{
filter->priv = LATCH_KEY_DOWN;
state->set_mods |= filter->action.mods.mods.mask;
}
static bool
xkb_filter_mod_latch_func(struct xkb_state *state,
struct xkb_filter *filter,
const struct xkb_key *key,
enum xkb_key_direction direction)
{
enum xkb_key_latch_state latch = filter->priv;
if (direction == XKB_KEY_DOWN && latch == LATCH_PENDING) {
/* If this is a new keypress and we're awaiting our single latched
* keypress, then either break the latch if any random key is pressed,
* or promote it to a lock or plain base set if it's the same
* modifier. */
const union xkb_action *actions = NULL;
const unsigned int count = xkb_key_get_actions(state, key, &actions);
for (unsigned int k = 0; k < count; k++) {
if (actions[k].type == ACTION_TYPE_MOD_LATCH &&
actions[k].mods.flags == filter->action.mods.flags &&
actions[k].mods.mods.mask == filter->action.mods.mods.mask) {
filter->action = actions[k];
if (filter->action.mods.flags & ACTION_LATCH_TO_LOCK) {
filter->action.type = ACTION_TYPE_MOD_LOCK;
filter->func = xkb_filter_mod_lock_func;
state->components.locked_mods |= filter->action.mods.mods.mask;
}
else {
filter->action.type = ACTION_TYPE_MOD_SET;
filter->func = xkb_filter_mod_set_func;
state->set_mods |= filter->action.mods.mods.mask;
}
filter->key = key;
state->components.latched_mods &= ~filter->action.mods.mods.mask;
/* XXX beep beep! */
return XKB_FILTER_CONSUME;
}
else if (xkb_action_breaks_latch(&(actions[k]))) {
/* XXX: This may be totally broken, we might need to break the
* latch in the next run after this press? */
state->components.latched_mods &= ~filter->action.mods.mods.mask;
filter->func = NULL;
return XKB_FILTER_CONTINUE;
}
}
}
else if (direction == XKB_KEY_UP && key == filter->key) {
/* Our key got released. If we've set it to clear locks, and we
* currently have the same modifiers locked, then release them and
* don't actually latch. Else we've actually hit the latching
* stage, so set PENDING and move our modifier from base to
* latched. */
if (latch == NO_LATCH ||
((filter->action.mods.flags & ACTION_LOCK_CLEAR) &&
(state->components.locked_mods & filter->action.mods.mods.mask) ==
filter->action.mods.mods.mask)) {
/* XXX: We might be a bit overenthusiastic about clearing
* mods other filters have set here? */
if (latch == LATCH_PENDING)
state->components.latched_mods &=
~filter->action.mods.mods.mask;
else
state->clear_mods |= filter->action.mods.mods.mask;
state->components.locked_mods &= ~filter->action.mods.mods.mask;
filter->func = NULL;
}
else {
latch = LATCH_PENDING;
state->clear_mods |= filter->action.mods.mods.mask;
state->components.latched_mods |= filter->action.mods.mods.mask;
/* XXX beep beep! */
}
}
else if (direction == XKB_KEY_DOWN && latch == LATCH_KEY_DOWN) {
/* Someone's pressed another key while we've still got the latching
* key held down, so keep the base modifier state active (from
* xkb_filter_mod_latch_new), but don't trip the latch, just clear
* it as soon as the modifier gets released. */
latch = NO_LATCH;
}
filter->priv = latch;
return XKB_FILTER_CONTINUE;
}
static const struct {
void (*new)(struct xkb_state *state, struct xkb_filter *filter);
bool (*func)(struct xkb_state *state, struct xkb_filter *filter,
const struct xkb_key *key, enum xkb_key_direction direction);
} filter_action_funcs[_ACTION_TYPE_NUM_ENTRIES] = {
[ACTION_TYPE_MOD_SET] = { xkb_filter_mod_set_new,
xkb_filter_mod_set_func },
[ACTION_TYPE_MOD_LATCH] = { xkb_filter_mod_latch_new,
xkb_filter_mod_latch_func },
[ACTION_TYPE_MOD_LOCK] = { xkb_filter_mod_lock_new,
xkb_filter_mod_lock_func },
[ACTION_TYPE_GROUP_SET] = { xkb_filter_group_set_new,
xkb_filter_group_set_func },
[ACTION_TYPE_GROUP_LATCH] = { xkb_filter_group_latch_new,
xkb_filter_group_latch_func },
[ACTION_TYPE_GROUP_LOCK] = { xkb_filter_group_lock_new,
xkb_filter_group_lock_func },
};
/**
* Applies any relevant filters to the key, first from the list of filters
* that are currently active, then if no filter has claimed the key, possibly
* apply a new filter from the key action.
*/
static void
xkb_filter_apply_all(struct xkb_state *state,
const struct xkb_key *key,
enum xkb_key_direction direction)
{
/* First run through all the currently active filters and see if any of
* them have consumed this event. */
bool consumed = false;
struct xkb_filter *filter;
darray_foreach(filter, state->filters) {
if (!filter->func)
continue;
if (filter->func(state, filter, key, direction) == XKB_FILTER_CONSUME)
consumed = true;
}
if (consumed || direction == XKB_KEY_UP)
return;
/* No filter consumed this event, so proceed with the key actions */
const union xkb_action *actions = NULL;
const unsigned int count = xkb_key_get_actions(state, key, &actions);
/*
* Process actions sequentially.
*
* NOTE: We rely on the parser to disallow multiple modifier or group
* actions (see `CheckMultipleActionsCategories`). Allowing multiple such
* actions requires a refactor of the state handling.
*/
for (unsigned int k = 0; k < count; k++) {
/*
* It's possible for the keymap to set action->type explicitly, like so:
* interpret XF86_Next_VMode {
* action = Private(type=0x86, data="+VMode");
* };
* We don't handle those.
*/
if (actions[k].type >= _ACTION_TYPE_NUM_ENTRIES)
continue;
/* Go to next action if no corresponding action handler */
if (!filter_action_funcs[actions[k].type].new)
continue;
/* Add a new filter and run the corresponding initial action */
filter = xkb_filter_new(state);
filter->key = key;
filter->func = filter_action_funcs[actions[k].type].func;
filter->action = actions[k];
filter_action_funcs[actions[k].type].new(state, filter);
}
}
struct xkb_state *
xkb_state_new(struct xkb_keymap *keymap)
{
struct xkb_state* restrict const state = calloc(1, sizeof(*state));
if (!state)
return NULL;
state->refcnt = 1;
state->keymap = xkb_keymap_ref(keymap);
return state;
}
struct xkb_state *
xkb_state_ref(struct xkb_state *state)
{
state->refcnt++;
return state;
}
void
xkb_state_unref(struct xkb_state *state)
{
if (!state || --state->refcnt > 0)
return;
xkb_keymap_unref(state->keymap);
darray_free(state->filters);
free(state);
}
struct xkb_keymap *
xkb_state_get_keymap(struct xkb_state *state)
{
return state->keymap;
}
/**
* Update the LED state to match the rest of the xkb_state.
*/
static void
xkb_state_led_update_all(struct xkb_state *state)
{
xkb_led_index_t idx;
const struct xkb_led *led;
state->components.leds = 0;
xkb_leds_enumerate(idx, led, state->keymap) {
if (led->which_mods != 0 && led->mods.mask != 0) {
xkb_mod_mask_t mod_mask = 0;
if (led->which_mods & XKB_STATE_MODS_EFFECTIVE)
mod_mask |= state->components.mods;
if (led->which_mods & XKB_STATE_MODS_DEPRESSED)
mod_mask |= state->components.base_mods;
if (led->which_mods & XKB_STATE_MODS_LATCHED)
mod_mask |= state->components.latched_mods;
if (led->which_mods & XKB_STATE_MODS_LOCKED)
mod_mask |= state->components.locked_mods;
if (led->mods.mask & mod_mask) {
state->components.leds |= (UINT32_C(1) << idx);
continue;
}
}
if (led->which_groups != 0) {
if (likely(led->groups) != 0) {
xkb_layout_mask_t group_mask = 0;
/* Effective and locked groups have been brought into range */
assert(state->components.group < XKB_MAX_GROUPS);
assert(state->components.locked_group >= 0 &&
state->components.locked_group < XKB_MAX_GROUPS);
/* Effective and locked groups are used as mask */
if (led->which_groups & XKB_STATE_LAYOUT_EFFECTIVE)
group_mask |= (UINT32_C(1) << state->components.group);
if (led->which_groups & XKB_STATE_LAYOUT_LOCKED)
group_mask |= (UINT32_C(1) << state->components.locked_group);
/* Base and latched groups only have to be non-zero */
if ((led->which_groups & XKB_STATE_LAYOUT_DEPRESSED) &&
state->components.base_group != 0)
group_mask |= led->groups;
if ((led->which_groups & XKB_STATE_LAYOUT_LATCHED) &&
state->components.latched_group != 0)
group_mask |= led->groups;
if (led->groups & group_mask) {
state->components.leds |= (UINT32_C(1) << idx);
continue;
}
} else {
/* Special case for Base and latched groups */
if (((led->which_groups & XKB_STATE_LAYOUT_DEPRESSED) &&
state->components.base_group == 0) ||
((led->which_groups & XKB_STATE_LAYOUT_LATCHED) &&
state->components.latched_group == 0)) {
state->components.leds |= (UINT32_C(1) << idx);
continue;
}
}
}
if (led->ctrls & state->keymap->enabled_ctrls) {
state->components.leds |= (UINT32_C(1) << idx);
continue;
}
}
}
/**
* Calculates the derived state (effective mods/group and LEDs) from an
* up-to-date xkb_state.
*/
static void
xkb_state_update_derived(struct xkb_state *state)
{
xkb_layout_index_t wrapped;
state->components.mods = (state->components.base_mods |
state->components.latched_mods |
state->components.locked_mods);
/* TODO: Use groups_wrap control instead of always RANGE_WRAP. */
/* Lock group must be adjusted, but not base nor latched groups */
wrapped = XkbWrapGroupIntoRange(state->components.locked_group,
state->keymap->num_groups,
RANGE_WRAP, 0);
static_assert(XKB_MAX_GROUPS < INT32_MAX, "Max groups don't fit");
state->components.locked_group =
(int32_t) (wrapped == XKB_LAYOUT_INVALID ? 0 : wrapped);
/* Effective group must be adjusted */
wrapped = XkbWrapGroupIntoRange(state->components.base_group +
state->components.latched_group +
state->components.locked_group,
state->keymap->num_groups,
RANGE_WRAP, 0);
state->components.group =
(wrapped == XKB_LAYOUT_INVALID ? 0 : wrapped);
xkb_state_led_update_all(state);
}
static enum xkb_state_component
get_state_component_changes(const struct state_components *a,
const struct state_components *b)
{
xkb_mod_mask_t mask = 0;
if (a->group != b->group)
mask |= XKB_STATE_LAYOUT_EFFECTIVE;
if (a->base_group != b->base_group)
mask |= XKB_STATE_LAYOUT_DEPRESSED;
if (a->latched_group != b->latched_group)
mask |= XKB_STATE_LAYOUT_LATCHED;
if (a->locked_group != b->locked_group)
mask |= XKB_STATE_LAYOUT_LOCKED;
if (a->mods != b->mods)
mask |= XKB_STATE_MODS_EFFECTIVE;
if (a->base_mods != b->base_mods)
mask |= XKB_STATE_MODS_DEPRESSED;
if (a->latched_mods != b->latched_mods)
mask |= XKB_STATE_MODS_LATCHED;
if (a->locked_mods != b->locked_mods)
mask |= XKB_STATE_MODS_LOCKED;
if (a->leds != b->leds)
mask |= XKB_STATE_LEDS;
return mask;
}
/**
* Given a particular key event, updates the state structure to reflect the
* new modifiers.
*/
enum xkb_state_component
xkb_state_update_key(struct xkb_state *state, xkb_keycode_t kc,
enum xkb_key_direction direction)
{
const struct xkb_key* const key = XkbKey(state->keymap, kc);
if (!key)
return 0;
const struct state_components prev_components = state->components;
state->set_mods = 0;
state->clear_mods = 0;
xkb_filter_apply_all(state, key, direction);
xkb_mod_index_t i;
xkb_mod_mask_t bit;
for (i = 0, bit = 1; state->set_mods; i++, bit <<= 1) {
if (state->set_mods & bit) {
state->mod_key_count[i]++;
state->components.base_mods |= bit;
state->set_mods &= ~bit;
}
}
for (i = 0, bit = 1; state->clear_mods; i++, bit <<= 1) {
if (state->clear_mods & bit) {
state->mod_key_count[i]--;
if (state->mod_key_count[i] <= 0) {
state->components.base_mods &= ~bit;
state->mod_key_count[i] = 0;
}
state->clear_mods &= ~bit;
}
}
xkb_state_update_derived(state);
return get_state_component_changes(&prev_components, &state->components);
}
/**
* Compute the resolved effective mask of an arbitrary input.
*
* Contrary to `mod_mask_get_effective`, it resolves only modifiers not present
* in the canonical mask, so that it enables `xkb_state_serialize_mods` to
* round trip via `xkb_state_update_mask`.
*/
static inline xkb_mod_mask_t
resolve_to_canonical_mods(struct xkb_keymap *keymap, xkb_mod_mask_t mods)
{
return
/*
* Keep canonical modifier mask.
* It contains either real modifiers or canonical virtual modifiers.
*/
(mods & keymap->canonical_state_mask) |
/* Resolve other modifiers */
mod_mask_get_effective(keymap,
mods & ~keymap->canonical_state_mask);
}
/**
* Updates the state from a set of explicit masks as gained from
* xkb_state_serialize_mods and xkb_state_serialize_groups. As noted in the
* documentation for these functions in xkbcommon.h, this round-trip is
* lossy, and should only be used to update a slave state mirroring the
* master, e.g. in a client/server window system.
*/
enum xkb_state_component
xkb_state_update_mask(struct xkb_state *state,
xkb_mod_mask_t base_mods,
xkb_mod_mask_t latched_mods,
xkb_mod_mask_t locked_mods,
xkb_layout_index_t base_group,
xkb_layout_index_t latched_group,
xkb_layout_index_t locked_group)
{
const struct state_components prev_components = state->components;
/*
* Make sure the mods are fully resolved - since we get arbitrary
* input, they might not be.
*
* It might seem more reasonable to do this only for components.mods
* in xkb_state_update_derived(), rather than for each component
* separately. That would allow to distinguish between "really"
* depressed mods (would be in MODS_DEPRESSED) and indirectly
* depressed to to a mapping (would only be in MODS_EFFECTIVE).
* However, the traditional behavior of xkb_state_update_key() is that
* if a vmod is depressed, its mappings are depressed with it; so we're
* expected to do the same here. Also, LEDs (usually) look if a real
* mod is locked, not just effective; otherwise it won't be lit.
*/
state->components.base_mods =
resolve_to_canonical_mods(state->keymap, base_mods);
state->components.latched_mods =
resolve_to_canonical_mods(state->keymap, latched_mods);
state->components.locked_mods =
resolve_to_canonical_mods(state->keymap, locked_mods);
static_assert(XKB_MAX_GROUPS < INT32_MAX, "Max groups don't fit");
state->components.base_group = (int32_t) base_group;
state->components.latched_group = (int32_t) latched_group;
state->components.locked_group = (int32_t) locked_group;
xkb_state_update_derived(state);
return get_state_component_changes(&prev_components, &state->components);
}
/*
* https://www.x.org/releases/current/doc/kbproto/xkbproto.html#Interpreting_the_Lock_Modifier
*/
static bool
should_do_caps_transformation(struct xkb_state *state, xkb_keycode_t kc)
{
return
xkb_state_mod_index_is_active(state, XKB_MOD_INDEX_CAPS,
XKB_STATE_MODS_EFFECTIVE) > 0 &&
xkb_state_mod_index_is_consumed(state, kc, XKB_MOD_INDEX_CAPS) == 0;
}
/*
* https://www.x.org/releases/current/doc/kbproto/xkbproto.html#Interpreting_the_Control_Modifier
*/
static bool
should_do_ctrl_transformation(struct xkb_state *state, xkb_keycode_t kc)
{
return
xkb_state_mod_index_is_active(state, XKB_MOD_INDEX_CTRL,
XKB_STATE_MODS_EFFECTIVE) > 0 &&
xkb_state_mod_index_is_consumed(state, kc, XKB_MOD_INDEX_CTRL) == 0;
}
/**
* Provides the symbols to use for the given key and state. Returns the
* number of symbols pointed to in syms_out.
*/
int
xkb_state_key_get_syms(struct xkb_state *state, xkb_keycode_t kc,
const xkb_keysym_t **syms_out)
{
const xkb_layout_index_t layout = xkb_state_key_get_layout(state, kc);
if (layout == XKB_LAYOUT_INVALID)
goto err;
const xkb_level_index_t level = xkb_state_key_get_level(state, kc, layout);
if (level == XKB_LEVEL_INVALID)
goto err;
const struct xkb_key* const key = XkbKey(state->keymap, kc);
if (!key)
goto err;
const struct xkb_level* const leveli =
xkb_keymap_key_get_level(state->keymap, key, layout, level);
if (!leveli)
goto err;
const xkb_keysym_count_t num_syms = leveli->num_syms;
if (num_syms == 0)
goto err;
if (should_do_caps_transformation(state, kc)) {
/* Only simple capitalization rules: keysyms count is unchanged. */
if (num_syms > 1) {
*syms_out = (leveli->has_upper)
? leveli->s.syms + num_syms
: leveli->s.syms;
} else {
*syms_out = &leveli->upper;
}
} else {
*syms_out = (num_syms > 1)
? leveli->s.syms
: &leveli->s.sym;
}
return (int) num_syms;
err:
*syms_out = NULL;
return 0;
}
/*
* Verbatim from `libX11:src/xkb/XKBBind.c`.
*
* The basic transformations are defined in “[Interpreting the Control Modifier]”.
* They correspond to the [caret notation], which maps the characters
* `@ABC...XYZ[\]^_` by masking them with `0x1f`. Note that there is no
* transformation for `?`, although `^?` is defined in the [caret notation].
*
* For convenience, the range ```abc...xyz{|}~`` and the space character ` `
* are processed the same way. This allow to produce control characters without
* requiring the use of the `Shift` modifier for letters.
*
* The transformation of the digits seems to originate from the [VT220 terminal],
* as a compatibility for non-US keyboards. Indeed, these keyboards may not have
* the punctuation characters available or in a convenient position. Some mnemonics:
*
* - ^2 maps to ^@ because @ is on the key 2 in the US layout.
* - ^6 maps to ^^ because ^ is on the key 6 in the US layout.
* - characters 3, 4, 5, 6, and 7 seems to align with the sequence `[\]^_`.
* - 8 closes the sequence and so maps to the last control character.
*
* The `/` transformation seems to be defined for compatibility or convenience.
*
* [Interpreting the Control Modifier]: https://www.x.org/releases/current/doc/kbproto/xkbproto.html#Interpreting_the_Control_Modifier
* [caret notation]: https://en.wikipedia.org/wiki/Caret_notation
* [VT220 terminal]: https://vt100.net/docs/vt220-rm/chapter3.html#T3-5
*/
static char
XkbToControl(char ch)
{
char c = ch;
if ((c >= '@' && c < '\177') || c == ' ')
c &= 0x1F;
else if (c == '2')
c = '\000';
else if (c >= '3' && c <= '7')
c -= ('3' - '\033');
else if (c == '8')
c = '\177';
else if (c == '/')
c = '_' & 0x1F;
return c;
}
/**
* Provides either exactly one symbol, or XKB_KEY_NoSymbol.
*/
xkb_keysym_t
xkb_state_key_get_one_sym(struct xkb_state *state, xkb_keycode_t kc)
{
const xkb_keysym_t *syms = NULL;
const int num_syms = xkb_state_key_get_syms(state, kc, &syms);
if (num_syms != 1)
return XKB_KEY_NoSymbol;
else
return syms[0];
}
/*
* The caps and ctrl transformations require some special handling,
* so we cannot simply use xkb_state_get_one_sym() for them.
* In particular, if Control is set, we must try very hard to find
* some layout in which the keysym is ASCII and thus can be (maybe)
* converted to a control character. libX11 allows to disable this
* behavior with the XkbLC_ControlFallback (see XkbSetXlibControls(3)),
* but it is enabled by default, yippee.
*/
static xkb_keysym_t
get_one_sym_for_string(struct xkb_state *state, xkb_keycode_t kc)
{
const xkb_layout_index_t layout = xkb_state_key_get_layout(state, kc);
const xkb_layout_index_t num_layouts =
xkb_keymap_num_layouts_for_key(state->keymap, kc);
xkb_level_index_t level = xkb_state_key_get_level(state, kc, layout);
if (layout == XKB_LAYOUT_INVALID || num_layouts == 0 ||
level == XKB_LEVEL_INVALID)
return XKB_KEY_NoSymbol;
const xkb_keysym_t *syms = NULL;
int nsyms = xkb_keymap_key_get_syms_by_level(state->keymap, kc,
layout, level, &syms);
if (nsyms != 1)
return XKB_KEY_NoSymbol;
xkb_keysym_t sym = syms[0];
if (should_do_ctrl_transformation(state, kc) && sym > 127u) {
for (xkb_layout_index_t i = 0; i < num_layouts; i++) {
level = xkb_state_key_get_level(state, kc, i);
if (level == XKB_LEVEL_INVALID)
continue;
nsyms = xkb_keymap_key_get_syms_by_level(state->keymap, kc,
i, level, &syms);
if (nsyms == 1 && syms[0] <= 127u) {
sym = syms[0];
break;
}
}
}
if (should_do_caps_transformation(state, kc)) {
sym = xkb_keysym_to_upper(sym);
}
return sym;
}
int
xkb_state_key_get_utf8(struct xkb_state *state, xkb_keycode_t kc,
char *buffer, size_t size)
{
int nsyms;
const xkb_keysym_t *syms = NULL;
const xkb_keysym_t sym = get_one_sym_for_string(state, kc);
if (sym != XKB_KEY_NoSymbol) {
nsyms = 1; syms = &sym;
}
else {
nsyms = xkb_state_key_get_syms(state, kc, &syms);
}
/* Make sure not to truncate in the middle of a UTF-8 sequence. */
int offset = 0;
char tmp[XKB_KEYSYM_UTF8_MAX_SIZE];
for (int i = 0; i < nsyms; i++) {
int ret = xkb_keysym_to_utf8(syms[i], tmp, sizeof(tmp));
if (ret <= 0)
goto err_bad;
ret--;
if ((size_t) offset + ret <= size)
memcpy(buffer + offset, tmp, ret);
offset += ret;
}
if ((size_t) offset >= size)
goto err_trunc;
buffer[offset] = '\0';
if (!is_valid_utf8(buffer, offset))
goto err_bad;
if (offset == 1 && (unsigned int) buffer[0] <= 127u &&
should_do_ctrl_transformation(state, kc))
buffer[0] = XkbToControl(buffer[0]);
return offset;
err_trunc:
if (size > 0)
buffer[size - 1] = '\0';
return offset;
err_bad:
if (size > 0)
buffer[0] = '\0';
return 0;
}
uint32_t
xkb_state_key_get_utf32(struct xkb_state *state, xkb_keycode_t kc)
{
const xkb_keysym_t sym = get_one_sym_for_string(state, kc);
uint32_t cp = xkb_keysym_to_utf32(sym);
if (cp <= 127u && should_do_ctrl_transformation(state, kc))
cp = (uint32_t) XkbToControl((char) cp);
return cp;
}
/**
* Serialises the requested modifier state into an xkb_mod_mask_t, with all
* the same disclaimers as in xkb_state_update_mask.
*/
xkb_mod_mask_t
xkb_state_serialize_mods(struct xkb_state *state,
enum xkb_state_component type)
{
xkb_mod_mask_t ret = 0;
if (type & XKB_STATE_MODS_EFFECTIVE)
return state->components.mods;
if (type & XKB_STATE_MODS_DEPRESSED)
ret |= state->components.base_mods;
if (type & XKB_STATE_MODS_LATCHED)
ret |= state->components.latched_mods;
if (type & XKB_STATE_MODS_LOCKED)
ret |= state->components.locked_mods;
return ret;
}
/**
* Serialises the requested group state, with all the same disclaimers as
* in xkb_state_update_mask.
*/
xkb_layout_index_t
xkb_state_serialize_layout(struct xkb_state *state,
enum xkb_state_component type)
{
xkb_layout_index_t ret = 0;
if (type & XKB_STATE_LAYOUT_EFFECTIVE)
return state->components.group;
if (type & XKB_STATE_LAYOUT_DEPRESSED)
ret += state->components.base_group;
if (type & XKB_STATE_LAYOUT_LATCHED)
ret += state->components.latched_group;
if (type & XKB_STATE_LAYOUT_LOCKED)
ret += state->components.locked_group;
return ret;
}
/**
* Gets a modifier mask and returns the resolved effective mask; this
* is needed because some modifiers can also map to other modifiers, e.g.
* the "NumLock" modifier usually also sets the "Mod2" modifier.
*/
xkb_mod_mask_t
mod_mask_get_effective(struct xkb_keymap *keymap, xkb_mod_mask_t mods)
{
/* Initialize the effective mask with its corresponding real mods. */
xkb_mod_mask_t mask = mods & MOD_REAL_MASK_ALL;
/* Resolve the virtual modifiers */
const struct xkb_mod *mod;
xkb_mod_index_t i;
xkb_vmods_enumerate(i, mod, &keymap->mods)
if (mods & (UINT32_C(1) << i))
mask |= mod->mapping;
return mask;
}
/**
* Returns 1 if the given modifier is active with the specified type(s), 0 if
* not, or -1 if the modifier is invalid.
*/
int
xkb_state_mod_index_is_active(struct xkb_state *state,
xkb_mod_index_t idx,
enum xkb_state_component type)
{
if (unlikely(idx >= xkb_keymap_num_mods(state->keymap)))
return -1;
const xkb_mod_mask_t mapping = state->keymap->mods.mods[idx].mapping;
if (!mapping) {
/* Modifier not mapped */
return 0;
}
/* WARNING: this may overmatch for virtual modifiers */
return (xkb_state_serialize_mods(state, type) & mapping) == mapping;
}
/**
* Helper function for xkb_state_mod_indices_are_active and
* xkb_state_mod_names_are_active.
*/
static bool
match_mod_masks(struct xkb_state *state,
enum xkb_state_component type,
enum xkb_state_match match,
xkb_mod_mask_t wanted)
{
const xkb_mod_mask_t active = xkb_state_serialize_mods(state, type);
if (!(match & XKB_STATE_MATCH_NON_EXCLUSIVE) && (active & ~wanted))
return false;
if (match & XKB_STATE_MATCH_ANY)
return active & wanted;
return (active & wanted) == wanted;
}
/**
* Returns 1 if the modifiers are active with the specified type(s), 0 if
* not, or -1 if any of the modifiers are invalid.
*/
int
xkb_state_mod_indices_are_active(struct xkb_state *state,
enum xkb_state_component type,
enum xkb_state_match match,
...)
{
va_list ap;
xkb_mod_mask_t wanted = 0;
int ret = 0;
const xkb_mod_index_t num_mods = xkb_keymap_num_mods(state->keymap);
va_start(ap, match);
while (1) {
xkb_mod_index_t idx = va_arg(ap, xkb_mod_index_t);
if (idx == XKB_MOD_INVALID)
break;
if (unlikely(idx >= num_mods)) {
ret = -1;
break;
}
wanted |= state->keymap->mods.mods[idx].mapping;
}
va_end(ap);
if (ret == -1)
return ret;
if (!wanted) {
/* Modifiers not mapped */
return 0;
}
return match_mod_masks(state, type, match, wanted);
}
/**
* Returns 1 if the given modifier is active with the specified type(s), 0 if
* not, or -1 if the modifier is invalid.
*/
int
xkb_state_mod_name_is_active(struct xkb_state *state, const char *name,
enum xkb_state_component type)
{
const xkb_mod_index_t idx = xkb_keymap_mod_get_index(state->keymap, name);
if (idx == XKB_MOD_INVALID)
return -1;
return xkb_state_mod_index_is_active(state, idx, type);
}
/**
* Returns 1 if the modifiers are active with the specified type(s), 0 if
* not, or -1 if any of the modifiers are invalid.
*/
ATTR_NULL_SENTINEL int
xkb_state_mod_names_are_active(struct xkb_state *state,
enum xkb_state_component type,
enum xkb_state_match match,
...)
{
va_list ap;
xkb_mod_mask_t wanted = 0;
int ret = 0;
va_start(ap, match);
while (1) {
const char *str = va_arg(ap, const char *);
if (str == NULL)
break;
const xkb_mod_index_t idx = xkb_keymap_mod_get_index(state->keymap, str);
if (idx == XKB_MOD_INVALID) {
ret = -1;
break;
}
wanted |= state->keymap->mods.mods[idx].mapping;
}
va_end(ap);
if (ret == -1)
return ret;
if (!wanted) {
/* Modifiers not mapped */
return 0;
}
return match_mod_masks(state, type, match, wanted);
}
/**
* Returns 1 if the given group is active with the specified type(s), 0 if
* not, or -1 if the group is invalid.
*/
int
xkb_state_layout_index_is_active(struct xkb_state *state,
xkb_layout_index_t idx,
enum xkb_state_component type)
{
if (idx >= state->keymap->num_groups)
return -1;
int ret = 0;
if (type & XKB_STATE_LAYOUT_EFFECTIVE)
ret |= (state->components.group == idx);
if (type & XKB_STATE_LAYOUT_DEPRESSED)
ret |= (state->components.base_group == (int32_t) idx);
if (type & XKB_STATE_LAYOUT_LATCHED)
ret |= (state->components.latched_group == (int32_t) idx);
if (type & XKB_STATE_LAYOUT_LOCKED)
ret |= (state->components.locked_group == (int32_t) idx);
return ret;
}
/**
* Returns 1 if the given modifier is active with the specified type(s), 0 if
* not, or -1 if the modifier is invalid.
*/
int
xkb_state_layout_name_is_active(struct xkb_state *state, const char *name,
enum xkb_state_component type)
{
const xkb_layout_index_t idx =
xkb_keymap_layout_get_index(state->keymap, name);
if (idx == XKB_LAYOUT_INVALID)
return -1;
return xkb_state_layout_index_is_active(state, idx, type);
}
/**
* Returns 1 if the given LED is active, 0 if not, or -1 if the LED is invalid.
*/
int
xkb_state_led_index_is_active(struct xkb_state *state, xkb_led_index_t idx)
{
if (idx >= state->keymap->num_leds ||
state->keymap->leds[idx].name == XKB_ATOM_NONE)
return -1;
return !!(state->components.leds & (UINT32_C(1) << idx));
}
/**
* Returns 1 if the given LED is active, 0 if not, or -1 if the LED is invalid.
*/
int
xkb_state_led_name_is_active(struct xkb_state *state, const char *name)
{
const xkb_led_index_t idx = xkb_keymap_led_get_index(state->keymap, name);
if (idx == XKB_LED_INVALID)
return -1;
return xkb_state_led_index_is_active(state, idx);
}
/**
* See:
* - XkbTranslateKeyCode(3), mod_rtrn return value, from libX11.
* - MyEnhancedXkbTranslateKeyCode(), a modification of the above, from GTK+.
*/
static xkb_mod_mask_t
key_get_consumed(struct xkb_state *state, const struct xkb_key *key,
enum xkb_consumed_mode mode)
{
const xkb_layout_index_t group =
xkb_state_key_get_layout(state, key->keycode);
if (group == XKB_LAYOUT_INVALID)
return 0;
xkb_mod_mask_t preserve = 0;
xkb_mod_mask_t consumed = 0;
const struct xkb_key_type_entry* const matching_entry =
get_entry_for_key_state(state, key, group);
if (matching_entry)
preserve = matching_entry->preserve.mask;
const struct xkb_key_type* const type = key->groups[group].type;
switch (mode) {
case XKB_CONSUMED_MODE_XKB:
consumed = type->mods.mask;
break;
case XKB_CONSUMED_MODE_GTK: {
const struct xkb_key_type_entry* const no_mods_entry =
get_entry_for_mods(type, 0);
const xkb_level_index_t no_mods_leveli = no_mods_entry
? no_mods_entry->level
: 0;
const struct xkb_level* const no_mods_level =
&key->groups[group].levels[no_mods_leveli];
for (unsigned i = 0; i < type->num_entries; i++) {
const struct xkb_key_type_entry* const entry = &type->entries[i];
if (!entry_is_active(entry))
continue;
const struct xkb_level* const level =
&key->groups[group].levels[entry->level];
if (XkbLevelsSameSyms(level, no_mods_level))
continue;
if (entry == matching_entry || one_bit_set(entry->mods.mask))
consumed |= entry->mods.mask & ~entry->preserve.mask;
}
break;
}
}
return consumed & ~preserve;
}
int
xkb_state_mod_index_is_consumed2(struct xkb_state *state, xkb_keycode_t kc,
xkb_mod_index_t idx,
enum xkb_consumed_mode mode)
{
const struct xkb_key* const key = XkbKey(state->keymap, kc);
if (unlikely(!key || idx >= xkb_keymap_num_mods(state->keymap)))
return -1;
const xkb_mod_mask_t mapping = state->keymap->mods.mods[idx].mapping;
if (!mapping) {
/* Modifier not mapped */
return 0;
}
return (mapping & key_get_consumed(state, key, mode)) == mapping;
}
int
xkb_state_mod_index_is_consumed(struct xkb_state *state, xkb_keycode_t kc,
xkb_mod_index_t idx)
{
return xkb_state_mod_index_is_consumed2(state, kc, idx,
XKB_CONSUMED_MODE_XKB);
}
xkb_mod_mask_t
xkb_state_mod_mask_remove_consumed(struct xkb_state *state, xkb_keycode_t kc,
xkb_mod_mask_t mask)
{
const struct xkb_key* const key = XkbKey(state->keymap, kc);
if (!key)
return 0;
return resolve_to_canonical_mods(state->keymap, mask) &
~key_get_consumed(state, key, XKB_CONSUMED_MODE_XKB);
}
xkb_mod_mask_t
xkb_state_key_get_consumed_mods2(struct xkb_state *state, xkb_keycode_t kc,
enum xkb_consumed_mode mode)
{
switch (mode) {
case XKB_CONSUMED_MODE_XKB:
case XKB_CONSUMED_MODE_GTK:
break;
default:
log_err_func(state->keymap->ctx, XKB_LOG_MESSAGE_NO_ID,
"unrecognized consumed modifiers mode: %d\n", mode);
return 0;
}
const struct xkb_key* const key = XkbKey(state->keymap, kc);
if (!key)
return 0;
return key_get_consumed(state, key, mode);
}
xkb_mod_mask_t
xkb_state_key_get_consumed_mods(struct xkb_state *state, xkb_keycode_t kc)
{
return xkb_state_key_get_consumed_mods2(state, kc, XKB_CONSUMED_MODE_XKB);
}