Edit

kc3-lang/libxml2/trionan.c

Branch :

  • Show log

    Commit

  • Author : Daniel Veillard
    Date : 2012-09-11 13:26:36
    Hash : f8e3db04
    Message : Big space and tab cleanup Remove all space before tabs and space and tabs at end of lines.

  • trionan.c
  • /*************************************************************************
     *
     * $Id$
     *
     * Copyright (C) 2001 Bjorn Reese <breese@users.sourceforge.net>
     *
     * Permission to use, copy, modify, and distribute this software for any
     * purpose with or without fee is hereby granted, provided that the above
     * copyright notice and this permission notice appear in all copies.
     *
     * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
     * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
     * MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE AUTHORS AND
     * CONTRIBUTORS ACCEPT NO RESPONSIBILITY IN ANY CONCEIVABLE MANNER.
     *
     ************************************************************************
     *
     * Functions to handle special quantities in floating-point numbers
     * (that is, NaNs and infinity). They provide the capability to detect
     * and fabricate special quantities.
     *
     * Although written to be as portable as possible, it can never be
     * guaranteed to work on all platforms, as not all hardware supports
     * special quantities.
     *
     * The approach used here (approximately) is to:
     *
     *   1. Use C99 functionality when available.
     *   2. Use IEEE 754 bit-patterns if possible.
     *   3. Use platform-specific techniques.
     *
     ************************************************************************/
    
    /*
     * TODO:
     *  o Put all the magic into trio_fpclassify_and_signbit(), and use this from
     *    trio_isnan() etc.
     */
    
    /*************************************************************************
     * Include files
     */
    #include "triodef.h"
    #include "trionan.h"
    
    #include <math.h>
    #include <string.h>
    #include <limits.h>
    #include <float.h>
    #if defined(TRIO_PLATFORM_UNIX)
    # include <signal.h>
    #endif
    #if defined(TRIO_COMPILER_DECC)
    #  if defined(__linux__)
    #   include <cpml.h>
    #  else
    #   include <fp_class.h>
    #  endif
    #endif
    #include <assert.h>
    
    #if defined(TRIO_DOCUMENTATION)
    # include "doc/doc_nan.h"
    #endif
    /** @addtogroup SpecialQuantities
        @{
    */
    
    /*************************************************************************
     * Definitions
     */
    
    #define TRIO_TRUE (1 == 1)
    #define TRIO_FALSE (0 == 1)
    
    /*
     * We must enable IEEE floating-point on Alpha
     */
    #if defined(__alpha) && !defined(_IEEE_FP)
    # if defined(TRIO_COMPILER_DECC)
    #  if defined(TRIO_PLATFORM_VMS)
    #   error "Must be compiled with option /IEEE_MODE=UNDERFLOW_TO_ZERO/FLOAT=IEEE"
    #  else
    #   if !defined(_CFE)
    #    error "Must be compiled with option -ieee"
    #   endif
    #  endif
    # elif defined(TRIO_COMPILER_GCC) && (defined(__osf__) || defined(__linux__))
    #  error "Must be compiled with option -mieee"
    # endif
    #endif /* __alpha && ! _IEEE_FP */
    
    /*
     * In ANSI/IEEE 754-1985 64-bits double format numbers have the
     * following properties (amoungst others)
     *
     *   o FLT_RADIX == 2: binary encoding
     *   o DBL_MAX_EXP == 1024: 11 bits exponent, where one bit is used
     *     to indicate special numbers (e.g. NaN and Infinity), so the
     *     maximum exponent is 10 bits wide (2^10 == 1024).
     *   o DBL_MANT_DIG == 53: The mantissa is 52 bits wide, but because
     *     numbers are normalized the initial binary 1 is represented
     *     implicitly (the so-called "hidden bit"), which leaves us with
     *     the ability to represent 53 bits wide mantissa.
     */
    #if (FLT_RADIX == 2) && (DBL_MAX_EXP == 1024) && (DBL_MANT_DIG == 53)
    # define USE_IEEE_754
    #endif
    
    
    /*************************************************************************
     * Constants
     */
    
    static TRIO_CONST char rcsid[] = "@(#)$Id$";
    
    #if defined(USE_IEEE_754)
    
    /*
     * Endian-agnostic indexing macro.
     *
     * The value of internalEndianMagic, when converted into a 64-bit
     * integer, becomes 0x0706050403020100 (we could have used a 64-bit
     * integer value instead of a double, but not all platforms supports
     * that type). The value is automatically encoded with the correct
     * endianess by the compiler, which means that we can support any
     * kind of endianess. The individual bytes are then used as an index
     * for the IEEE 754 bit-patterns and masks.
     */
    #define TRIO_DOUBLE_INDEX(x) (((unsigned char *)&internalEndianMagic)[7-(x)])
    
    #if (defined(__BORLANDC__) && __BORLANDC__ >= 0x0590)
    static TRIO_CONST double internalEndianMagic = 7.949928895127362e-275;
    #else
    static TRIO_CONST double internalEndianMagic = 7.949928895127363e-275;
    #endif
    
    /* Mask for the exponent */
    static TRIO_CONST unsigned char ieee_754_exponent_mask[] = {
      0x7F, 0xF0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
    };
    
    /* Mask for the mantissa */
    static TRIO_CONST unsigned char ieee_754_mantissa_mask[] = {
      0x00, 0x0F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF
    };
    
    /* Mask for the sign bit */
    static TRIO_CONST unsigned char ieee_754_sign_mask[] = {
      0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
    };
    
    /* Bit-pattern for negative zero */
    static TRIO_CONST unsigned char ieee_754_negzero_array[] = {
      0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
    };
    
    /* Bit-pattern for infinity */
    static TRIO_CONST unsigned char ieee_754_infinity_array[] = {
      0x7F, 0xF0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
    };
    
    /* Bit-pattern for quiet NaN */
    static TRIO_CONST unsigned char ieee_754_qnan_array[] = {
      0x7F, 0xF8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
    };
    
    
    /*************************************************************************
     * Functions
     */
    
    /*
     * trio_make_double
     */
    TRIO_PRIVATE double
    trio_make_double
    TRIO_ARGS1((values),
    	   TRIO_CONST unsigned char *values)
    {
      TRIO_VOLATILE double result;
      int i;
    
      for (i = 0; i < (int)sizeof(double); i++) {
        ((TRIO_VOLATILE unsigned char *)&result)[TRIO_DOUBLE_INDEX(i)] = values[i];
      }
      return result;
    }
    
    /*
     * trio_is_special_quantity
     */
    TRIO_PRIVATE int
    trio_is_special_quantity
    TRIO_ARGS2((number, has_mantissa),
    	   double number,
    	   int *has_mantissa)
    {
      unsigned int i;
      unsigned char current;
      int is_special_quantity = TRIO_TRUE;
    
      *has_mantissa = 0;
    
      for (i = 0; i < (unsigned int)sizeof(double); i++) {
        current = ((unsigned char *)&number)[TRIO_DOUBLE_INDEX(i)];
        is_special_quantity
          &= ((current & ieee_754_exponent_mask[i]) == ieee_754_exponent_mask[i]);
        *has_mantissa |= (current & ieee_754_mantissa_mask[i]);
      }
      return is_special_quantity;
    }
    
    /*
     * trio_is_negative
     */
    TRIO_PRIVATE int
    trio_is_negative
    TRIO_ARGS1((number),
    	   double number)
    {
      unsigned int i;
      int is_negative = TRIO_FALSE;
    
      for (i = 0; i < (unsigned int)sizeof(double); i++) {
        is_negative |= (((unsigned char *)&number)[TRIO_DOUBLE_INDEX(i)]
    		    & ieee_754_sign_mask[i]);
      }
      return is_negative;
    }
    
    #endif /* USE_IEEE_754 */
    
    
    /**
       Generate negative zero.
    
       @return Floating-point representation of negative zero.
    */
    TRIO_PUBLIC double
    trio_nzero(TRIO_NOARGS)
    {
    #if defined(USE_IEEE_754)
      return trio_make_double(ieee_754_negzero_array);
    #else
      TRIO_VOLATILE double zero = 0.0;
    
      return -zero;
    #endif
    }
    
    /**
       Generate positive infinity.
    
       @return Floating-point representation of positive infinity.
    */
    TRIO_PUBLIC double
    trio_pinf(TRIO_NOARGS)
    {
      /* Cache the result */
      static double result = 0.0;
    
      if (result == 0.0) {
    
    #if defined(INFINITY) && defined(__STDC_IEC_559__)
        result = (double)INFINITY;
    
    #elif defined(USE_IEEE_754)
        result = trio_make_double(ieee_754_infinity_array);
    
    #else
        /*
         * If HUGE_VAL is different from DBL_MAX, then HUGE_VAL is used
         * as infinity. Otherwise we have to resort to an overflow
         * operation to generate infinity.
         */
    # if defined(TRIO_PLATFORM_UNIX)
        void (*signal_handler)(int) = signal(SIGFPE, SIG_IGN);
    # endif
    
        result = HUGE_VAL;
        if (HUGE_VAL == DBL_MAX) {
          /* Force overflow */
          result += HUGE_VAL;
        }
    
    # if defined(TRIO_PLATFORM_UNIX)
        signal(SIGFPE, signal_handler);
    # endif
    
    #endif
      }
      return result;
    }
    
    /**
       Generate negative infinity.
    
       @return Floating-point value of negative infinity.
    */
    TRIO_PUBLIC double
    trio_ninf(TRIO_NOARGS)
    {
      static double result = 0.0;
    
      if (result == 0.0) {
        /*
         * Negative infinity is calculated by negating positive infinity,
         * which can be done because it is legal to do calculations on
         * infinity (for example,  1 / infinity == 0).
         */
        result = -trio_pinf();
      }
      return result;
    }
    
    /**
       Generate NaN.
    
       @return Floating-point representation of NaN.
    */
    TRIO_PUBLIC double
    trio_nan(TRIO_NOARGS)
    {
      /* Cache the result */
      static double result = 0.0;
    
      if (result == 0.0) {
    
    #if defined(TRIO_COMPILER_SUPPORTS_C99)
        result = nan("");
    
    #elif defined(NAN) && defined(__STDC_IEC_559__)
        result = (double)NAN;
    
    #elif defined(USE_IEEE_754)
        result = trio_make_double(ieee_754_qnan_array);
    
    #else
        /*
         * There are several ways to generate NaN. The one used here is
         * to divide infinity by infinity. I would have preferred to add
         * negative infinity to positive infinity, but that yields wrong
         * result (infinity) on FreeBSD.
         *
         * This may fail if the hardware does not support NaN, or if
         * the Invalid Operation floating-point exception is unmasked.
         */
    # if defined(TRIO_PLATFORM_UNIX)
        void (*signal_handler)(int) = signal(SIGFPE, SIG_IGN);
    # endif
    
        result = trio_pinf() / trio_pinf();
    
    # if defined(TRIO_PLATFORM_UNIX)
        signal(SIGFPE, signal_handler);
    # endif
    
    #endif
      }
      return result;
    }
    
    /**
       Check for NaN.
    
       @param number An arbitrary floating-point number.
       @return Boolean value indicating whether or not the number is a NaN.
    */
    TRIO_PUBLIC int
    trio_isnan
    TRIO_ARGS1((number),
    	   double number)
    {
    #if (defined(TRIO_COMPILER_SUPPORTS_C99) && defined(isnan)) \
     || defined(TRIO_COMPILER_SUPPORTS_UNIX95)
      /*
       * C99 defines isnan() as a macro. UNIX95 defines isnan() as a
       * function. This function was already present in XPG4, but this
       * is a bit tricky to detect with compiler defines, so we choose
       * the conservative approach and only use it for UNIX95.
       */
      return isnan(number);
    
    #elif defined(TRIO_COMPILER_MSVC) || defined(TRIO_COMPILER_BCB)
      /*
       * Microsoft Visual C++ and Borland C++ Builder have an _isnan()
       * function.
       */
      return _isnan(number) ? TRIO_TRUE : TRIO_FALSE;
    
    #elif defined(USE_IEEE_754)
      /*
       * Examine IEEE 754 bit-pattern. A NaN must have a special exponent
       * pattern, and a non-empty mantissa.
       */
      int has_mantissa;
      int is_special_quantity;
    
      is_special_quantity = trio_is_special_quantity(number, &has_mantissa);
    
      return (is_special_quantity && has_mantissa);
    
    #else
      /*
       * Fallback solution
       */
      int status;
      double integral, fraction;
    
    # if defined(TRIO_PLATFORM_UNIX)
      void (*signal_handler)(int) = signal(SIGFPE, SIG_IGN);
    # endif
    
      status = (/*
    	     * NaN is the only number which does not compare to itself
    	     */
    	    ((TRIO_VOLATILE double)number != (TRIO_VOLATILE double)number) ||
    	    /*
    	     * Fallback solution if NaN compares to NaN
    	     */
    	    ((number != 0.0) &&
    	     (fraction = modf(number, &integral),
    	      integral == fraction)));
    
    # if defined(TRIO_PLATFORM_UNIX)
      signal(SIGFPE, signal_handler);
    # endif
    
      return status;
    
    #endif
    }
    
    /**
       Check for infinity.
    
       @param number An arbitrary floating-point number.
       @return 1 if positive infinity, -1 if negative infinity, 0 otherwise.
    */
    TRIO_PUBLIC int
    trio_isinf
    TRIO_ARGS1((number),
    	   double number)
    {
    #if defined(TRIO_COMPILER_DECC) && !defined(__linux__)
      /*
       * DECC has an isinf() macro, but it works differently than that
       * of C99, so we use the fp_class() function instead.
       */
      return ((fp_class(number) == FP_POS_INF)
    	  ? 1
    	  : ((fp_class(number) == FP_NEG_INF) ? -1 : 0));
    
    #elif defined(isinf)
      /*
       * C99 defines isinf() as a macro.
       */
      return isinf(number)
        ? ((number > 0.0) ? 1 : -1)
        : 0;
    
    #elif defined(TRIO_COMPILER_MSVC) || defined(TRIO_COMPILER_BCB)
      /*
       * Microsoft Visual C++ and Borland C++ Builder have an _fpclass()
       * function that can be used to detect infinity.
       */
      return ((_fpclass(number) == _FPCLASS_PINF)
    	  ? 1
    	  : ((_fpclass(number) == _FPCLASS_NINF) ? -1 : 0));
    
    #elif defined(USE_IEEE_754)
      /*
       * Examine IEEE 754 bit-pattern. Infinity must have a special exponent
       * pattern, and an empty mantissa.
       */
      int has_mantissa;
      int is_special_quantity;
    
      is_special_quantity = trio_is_special_quantity(number, &has_mantissa);
    
      return (is_special_quantity && !has_mantissa)
        ? ((number < 0.0) ? -1 : 1)
        : 0;
    
    #else
      /*
       * Fallback solution.
       */
      int status;
    
    # if defined(TRIO_PLATFORM_UNIX)
      void (*signal_handler)(int) = signal(SIGFPE, SIG_IGN);
    # endif
    
      double infinity = trio_pinf();
    
      status = ((number == infinity)
    	    ? 1
    	    : ((number == -infinity) ? -1 : 0));
    
    # if defined(TRIO_PLATFORM_UNIX)
      signal(SIGFPE, signal_handler);
    # endif
    
      return status;
    
    #endif
    }
    
    #if 0
    	/* Temporary fix - this routine is not used anywhere */
    /**
       Check for finity.
    
       @param number An arbitrary floating-point number.
       @return Boolean value indicating whether or not the number is a finite.
    */
    TRIO_PUBLIC int
    trio_isfinite
    TRIO_ARGS1((number),
    	   double number)
    {
    #if defined(TRIO_COMPILER_SUPPORTS_C99) && defined(isfinite)
      /*
       * C99 defines isfinite() as a macro.
       */
      return isfinite(number);
    
    #elif defined(TRIO_COMPILER_MSVC) || defined(TRIO_COMPILER_BCB)
      /*
       * Microsoft Visual C++ and Borland C++ Builder use _finite().
       */
      return _finite(number);
    
    #elif defined(USE_IEEE_754)
      /*
       * Examine IEEE 754 bit-pattern. For finity we do not care about the
       * mantissa.
       */
      int dummy;
    
      return (! trio_is_special_quantity(number, &dummy));
    
    #else
      /*
       * Fallback solution.
       */
      return ((trio_isinf(number) == 0) && (trio_isnan(number) == 0));
    
    #endif
    }
    
    #endif
    
    /*
     * The sign of NaN is always false
     */
    TRIO_PUBLIC int
    trio_fpclassify_and_signbit
    TRIO_ARGS2((number, is_negative),
    	   double number,
    	   int *is_negative)
    {
    #if defined(fpclassify) && defined(signbit)
      /*
       * C99 defines fpclassify() and signbit() as a macros
       */
      *is_negative = signbit(number);
      switch (fpclassify(number)) {
      case FP_NAN:
        return TRIO_FP_NAN;
      case FP_INFINITE:
        return TRIO_FP_INFINITE;
      case FP_SUBNORMAL:
        return TRIO_FP_SUBNORMAL;
      case FP_ZERO:
        return TRIO_FP_ZERO;
      default:
        return TRIO_FP_NORMAL;
      }
    
    #else
    # if defined(TRIO_COMPILER_DECC)
      /*
       * DECC has an fp_class() function.
       */
    #  define TRIO_FPCLASSIFY(n) fp_class(n)
    #  define TRIO_QUIET_NAN FP_QNAN
    #  define TRIO_SIGNALLING_NAN FP_SNAN
    #  define TRIO_POSITIVE_INFINITY FP_POS_INF
    #  define TRIO_NEGATIVE_INFINITY FP_NEG_INF
    #  define TRIO_POSITIVE_SUBNORMAL FP_POS_DENORM
    #  define TRIO_NEGATIVE_SUBNORMAL FP_NEG_DENORM
    #  define TRIO_POSITIVE_ZERO FP_POS_ZERO
    #  define TRIO_NEGATIVE_ZERO FP_NEG_ZERO
    #  define TRIO_POSITIVE_NORMAL FP_POS_NORM
    #  define TRIO_NEGATIVE_NORMAL FP_NEG_NORM
    
    # elif defined(TRIO_COMPILER_MSVC) || defined(TRIO_COMPILER_BCB)
      /*
       * Microsoft Visual C++ and Borland C++ Builder have an _fpclass()
       * function.
       */
    #  define TRIO_FPCLASSIFY(n) _fpclass(n)
    #  define TRIO_QUIET_NAN _FPCLASS_QNAN
    #  define TRIO_SIGNALLING_NAN _FPCLASS_SNAN
    #  define TRIO_POSITIVE_INFINITY _FPCLASS_PINF
    #  define TRIO_NEGATIVE_INFINITY _FPCLASS_NINF
    #  define TRIO_POSITIVE_SUBNORMAL _FPCLASS_PD
    #  define TRIO_NEGATIVE_SUBNORMAL _FPCLASS_ND
    #  define TRIO_POSITIVE_ZERO _FPCLASS_PZ
    #  define TRIO_NEGATIVE_ZERO _FPCLASS_NZ
    #  define TRIO_POSITIVE_NORMAL _FPCLASS_PN
    #  define TRIO_NEGATIVE_NORMAL _FPCLASS_NN
    
    # elif defined(FP_PLUS_NORM)
      /*
       * HP-UX 9.x and 10.x have an fpclassify() function, that is different
       * from the C99 fpclassify() macro supported on HP-UX 11.x.
       *
       * AIX has class() for C, and _class() for C++, which returns the
       * same values as the HP-UX fpclassify() function.
       */
    #  if defined(TRIO_PLATFORM_AIX)
    #   if defined(__cplusplus)
    #    define TRIO_FPCLASSIFY(n) _class(n)
    #   else
    #    define TRIO_FPCLASSIFY(n) class(n)
    #   endif
    #  else
    #   define TRIO_FPCLASSIFY(n) fpclassify(n)
    #  endif
    #  define TRIO_QUIET_NAN FP_QNAN
    #  define TRIO_SIGNALLING_NAN FP_SNAN
    #  define TRIO_POSITIVE_INFINITY FP_PLUS_INF
    #  define TRIO_NEGATIVE_INFINITY FP_MINUS_INF
    #  define TRIO_POSITIVE_SUBNORMAL FP_PLUS_DENORM
    #  define TRIO_NEGATIVE_SUBNORMAL FP_MINUS_DENORM
    #  define TRIO_POSITIVE_ZERO FP_PLUS_ZERO
    #  define TRIO_NEGATIVE_ZERO FP_MINUS_ZERO
    #  define TRIO_POSITIVE_NORMAL FP_PLUS_NORM
    #  define TRIO_NEGATIVE_NORMAL FP_MINUS_NORM
    # endif
    
    # if defined(TRIO_FPCLASSIFY)
      switch (TRIO_FPCLASSIFY(number)) {
      case TRIO_QUIET_NAN:
      case TRIO_SIGNALLING_NAN:
        *is_negative = TRIO_FALSE; /* NaN has no sign */
        return TRIO_FP_NAN;
      case TRIO_POSITIVE_INFINITY:
        *is_negative = TRIO_FALSE;
        return TRIO_FP_INFINITE;
      case TRIO_NEGATIVE_INFINITY:
        *is_negative = TRIO_TRUE;
        return TRIO_FP_INFINITE;
      case TRIO_POSITIVE_SUBNORMAL:
        *is_negative = TRIO_FALSE;
        return TRIO_FP_SUBNORMAL;
      case TRIO_NEGATIVE_SUBNORMAL:
        *is_negative = TRIO_TRUE;
        return TRIO_FP_SUBNORMAL;
      case TRIO_POSITIVE_ZERO:
        *is_negative = TRIO_FALSE;
        return TRIO_FP_ZERO;
      case TRIO_NEGATIVE_ZERO:
        *is_negative = TRIO_TRUE;
        return TRIO_FP_ZERO;
      case TRIO_POSITIVE_NORMAL:
        *is_negative = TRIO_FALSE;
        return TRIO_FP_NORMAL;
      case TRIO_NEGATIVE_NORMAL:
        *is_negative = TRIO_TRUE;
        return TRIO_FP_NORMAL;
      default:
        /* Just in case... */
        *is_negative = (number < 0.0);
        return TRIO_FP_NORMAL;
      }
    
    # else
      /*
       * Fallback solution.
       */
      int rc;
    
      if (number == 0.0) {
        /*
         * In IEEE 754 the sign of zero is ignored in comparisons, so we
         * have to handle this as a special case by examining the sign bit
         * directly.
         */
    #  if defined(USE_IEEE_754)
        *is_negative = trio_is_negative(number);
    #  else
        *is_negative = TRIO_FALSE; /* FIXME */
    #  endif
        return TRIO_FP_ZERO;
      }
      if (trio_isnan(number)) {
        *is_negative = TRIO_FALSE;
        return TRIO_FP_NAN;
      }
      if ((rc = trio_isinf(number))) {
        *is_negative = (rc == -1);
        return TRIO_FP_INFINITE;
      }
      if ((number > 0.0) && (number < DBL_MIN)) {
        *is_negative = TRIO_FALSE;
        return TRIO_FP_SUBNORMAL;
      }
      if ((number < 0.0) && (number > -DBL_MIN)) {
        *is_negative = TRIO_TRUE;
        return TRIO_FP_SUBNORMAL;
      }
      *is_negative = (number < 0.0);
      return TRIO_FP_NORMAL;
    
    # endif
    #endif
    }
    
    /**
       Examine the sign of a number.
    
       @param number An arbitrary floating-point number.
       @return Boolean value indicating whether or not the number has the
       sign bit set (i.e. is negative).
    */
    TRIO_PUBLIC int
    trio_signbit
    TRIO_ARGS1((number),
    	   double number)
    {
      int is_negative;
    
      (void)trio_fpclassify_and_signbit(number, &is_negative);
      return is_negative;
    }
    
    #if 0
    	/* Temporary fix - this routine is not used in libxml */
    /**
       Examine the class of a number.
    
       @param number An arbitrary floating-point number.
       @return Enumerable value indicating the class of @p number
    */
    TRIO_PUBLIC int
    trio_fpclassify
    TRIO_ARGS1((number),
    	   double number)
    {
      int dummy;
    
      return trio_fpclassify_and_signbit(number, &dummy);
    }
    
    #endif
    
    /** @} SpecialQuantities */
    
    /*************************************************************************
     * For test purposes.
     *
     * Add the following compiler option to include this test code.
     *
     *  Unix : -DSTANDALONE
     *  VMS  : /DEFINE=(STANDALONE)
     */
    #if defined(STANDALONE)
    # include <stdio.h>
    
    static TRIO_CONST char *
    getClassification
    TRIO_ARGS1((type),
    	   int type)
    {
      switch (type) {
      case TRIO_FP_INFINITE:
        return "FP_INFINITE";
      case TRIO_FP_NAN:
        return "FP_NAN";
      case TRIO_FP_NORMAL:
        return "FP_NORMAL";
      case TRIO_FP_SUBNORMAL:
        return "FP_SUBNORMAL";
      case TRIO_FP_ZERO:
        return "FP_ZERO";
      default:
        return "FP_UNKNOWN";
      }
    }
    
    static void
    print_class
    TRIO_ARGS2((prefix, number),
    	   TRIO_CONST char *prefix,
    	   double number)
    {
      printf("%-6s: %s %-15s %g\n",
    	 prefix,
    	 trio_signbit(number) ? "-" : "+",
    	 getClassification(TRIO_FPCLASSIFY(number)),
    	 number);
    }
    
    int main(TRIO_NOARGS)
    {
      double my_nan;
      double my_pinf;
      double my_ninf;
    # if defined(TRIO_PLATFORM_UNIX)
      void (*signal_handler) TRIO_PROTO((int));
    # endif
    
      my_nan = trio_nan();
      my_pinf = trio_pinf();
      my_ninf = trio_ninf();
    
      print_class("Nan", my_nan);
      print_class("PInf", my_pinf);
      print_class("NInf", my_ninf);
      print_class("PZero", 0.0);
      print_class("NZero", -0.0);
      print_class("PNorm", 1.0);
      print_class("NNorm", -1.0);
      print_class("PSub", 1.01e-307 - 1.00e-307);
      print_class("NSub", 1.00e-307 - 1.01e-307);
    
      printf("NaN : %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n",
    	 my_nan,
    	 ((unsigned char *)&my_nan)[0],
    	 ((unsigned char *)&my_nan)[1],
    	 ((unsigned char *)&my_nan)[2],
    	 ((unsigned char *)&my_nan)[3],
    	 ((unsigned char *)&my_nan)[4],
    	 ((unsigned char *)&my_nan)[5],
    	 ((unsigned char *)&my_nan)[6],
    	 ((unsigned char *)&my_nan)[7],
    	 trio_isnan(my_nan), trio_isinf(my_nan));
      printf("PInf: %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n",
    	 my_pinf,
    	 ((unsigned char *)&my_pinf)[0],
    	 ((unsigned char *)&my_pinf)[1],
    	 ((unsigned char *)&my_pinf)[2],
    	 ((unsigned char *)&my_pinf)[3],
    	 ((unsigned char *)&my_pinf)[4],
    	 ((unsigned char *)&my_pinf)[5],
    	 ((unsigned char *)&my_pinf)[6],
    	 ((unsigned char *)&my_pinf)[7],
    	 trio_isnan(my_pinf), trio_isinf(my_pinf));
      printf("NInf: %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n",
    	 my_ninf,
    	 ((unsigned char *)&my_ninf)[0],
    	 ((unsigned char *)&my_ninf)[1],
    	 ((unsigned char *)&my_ninf)[2],
    	 ((unsigned char *)&my_ninf)[3],
    	 ((unsigned char *)&my_ninf)[4],
    	 ((unsigned char *)&my_ninf)[5],
    	 ((unsigned char *)&my_ninf)[6],
    	 ((unsigned char *)&my_ninf)[7],
    	 trio_isnan(my_ninf), trio_isinf(my_ninf));
    
    # if defined(TRIO_PLATFORM_UNIX)
      signal_handler = signal(SIGFPE, SIG_IGN);
    # endif
    
      my_pinf = DBL_MAX + DBL_MAX;
      my_ninf = -my_pinf;
      my_nan = my_pinf / my_pinf;
    
    # if defined(TRIO_PLATFORM_UNIX)
      signal(SIGFPE, signal_handler);
    # endif
    
      printf("NaN : %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n",
    	 my_nan,
    	 ((unsigned char *)&my_nan)[0],
    	 ((unsigned char *)&my_nan)[1],
    	 ((unsigned char *)&my_nan)[2],
    	 ((unsigned char *)&my_nan)[3],
    	 ((unsigned char *)&my_nan)[4],
    	 ((unsigned char *)&my_nan)[5],
    	 ((unsigned char *)&my_nan)[6],
    	 ((unsigned char *)&my_nan)[7],
    	 trio_isnan(my_nan), trio_isinf(my_nan));
      printf("PInf: %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n",
    	 my_pinf,
    	 ((unsigned char *)&my_pinf)[0],
    	 ((unsigned char *)&my_pinf)[1],
    	 ((unsigned char *)&my_pinf)[2],
    	 ((unsigned char *)&my_pinf)[3],
    	 ((unsigned char *)&my_pinf)[4],
    	 ((unsigned char *)&my_pinf)[5],
    	 ((unsigned char *)&my_pinf)[6],
    	 ((unsigned char *)&my_pinf)[7],
    	 trio_isnan(my_pinf), trio_isinf(my_pinf));
      printf("NInf: %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n",
    	 my_ninf,
    	 ((unsigned char *)&my_ninf)[0],
    	 ((unsigned char *)&my_ninf)[1],
    	 ((unsigned char *)&my_ninf)[2],
    	 ((unsigned char *)&my_ninf)[3],
    	 ((unsigned char *)&my_ninf)[4],
    	 ((unsigned char *)&my_ninf)[5],
    	 ((unsigned char *)&my_ninf)[6],
    	 ((unsigned char *)&my_ninf)[7],
    	 trio_isnan(my_ninf), trio_isinf(my_ninf));
    
      return 0;
    }
    #endif