1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
/*
* Copyright 2013-2014 Andrew Smith - BlackArrow Ltd
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 3 of the License, or (at your option)
* any later version. See COPYING for more details.
*/
#include "config.h"
#include "compat.h"
#include "miner.h"
#ifndef LINUX
static void minion_detect(__maybe_unused bool hotplug)
{
}
#else
#include <unistd.h>
#include <linux/spi/spidev.h>
#include <sys/ioctl.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <poll.h>
#define MINION_SPI_BUS 0
#define MINION_SPI_CHIP 0
#define MINION_SPI_SPEED 2000000
#define MINION_SPI_BUFSIZ 1024
#define MINION_CHIPS 32
#define MINION_CORES 99
/*
* TODO: These will need adjusting for final hardware
* Look them up and calculate them?
*/
#define MINION_QUE_HIGH 4
#define MINION_QUE_LOW 2
#define MINION_FFL " - from %s %s() line %d"
#define MINION_FFL_HERE __FILE__, __func__, __LINE__
#define MINION_FFL_PASS file, func, line
#define MINION_FFL_ARGS __maybe_unused const char *file, \
__maybe_unused const char *func, \
__maybe_unused const int line
#define minion_txrx(_task) _minion_txrx(minioncgpu, minioninfo, _task, MINION_FFL_HERE)
#define do_ioctl(_obuf, _osiz, _rbuf, _rsiz) _do_ioctl(minioninfo, _obuf, _osiz, _rbuf, _rsiz, MINION_FFL_HERE)
#define MINION_SYS_REGS 0x00
#define MINION_CORE_REGS 0x10
#define MINION_RES_BUF 0x20
#define MINION_CMD_QUE 0x30
#define MINION_NONCE_RANGES 0x70
#define DATA_SIZ (sizeof(uint32_t))
// All SYS data sizes are DATA_SIZ
#define MINION_SYS_CHIP_SIG 0x00
#define MINION_SYS_CHIP_STA 0x01
#define MINION_SYS_TEMP_CTL 0x03
#define MINION_SYS_FREQ_CTL 0x04
#define MINION_SYS_NONCE_LED 0x05
#define MINION_SYS_MISC_CTL 0x06
#define MINION_SYS_RSTN_CTL 0x07
#define MINION_SYS_INT_ENA 0x08
#define MINION_SYS_INT_CLR 0x09
#define MINION_SYS_INT_STA 0x0a
#define MINION_SYS_FIFO_STA 0x0b
#define MINION_SYS_QUE_TRIG 0x0c
#define MINION_SYS_BUF_TRIG 0x0d
// All SYS data sizes are DATA_SIZ
#define MINION_SYS_SIZ DATA_SIZ
// Header Pin 18 = GPIO5 = BCM 24
#define MINION_GPIO_RESULT_INT_PIN 24
#define MINION_GPIO_SYS "/sys/class/gpio"
#define MINION_GPIO_ENA "/export"
#define MINION_GPIO_ENA_VAL "%d"
#define MINION_GPIO_DIS "/unexport"
#define MINION_GPIO_PIN "/gpio%d"
#define MINION_GPIO_DIR "/direction"
#define MINION_GPIO_DIR_READ "in"
#define MINION_GPIO_DIR_WRITE "out"
#define MINION_GPIO_EDGE "/edge"
#define MINION_GPIO_EDGE_NONE "none"
#define MINION_GPIO_EDGE_RISING "rising"
#define MINION_GPIO_EDGE_FALLING "falling"
#define MINION_GPIO_EDGE_BOTH "both"
#define MINION_GPIO_ACT "/active_low"
#define MINION_GPIO_ACT_LO "1"
#define MINION_GPIO_ACT_HI "0"
#define MINION_GPIO_VALUE "/value"
#define MINION_RESULT_INT 0x01
#define MINION_RESULT_FULL_INT 0x02
#define MINION_CMD_INT 0x04
#define MINION_CMD_FULL_INT 0x08
#define MINION_TEMP_LOW_INT 0x10
#define MINION_TEMP_HI_INT 0x20
#define MINION_ALL_INT MINION_RESULT_INT | \
MINION_RESULT_FULL_INT | \
MINION_CMD_INT | \
MINION_CMD_FULL_INT | \
MINION_TEMP_LOW_INT | \
MINION_TEMP_HI_INT
#define RSTN_CTL_RESET_CORES 0x01
#define RSTN_CTL_FLUSH_RESULTS 0x02
#define RSTN_CTL_FLUSH_CMD_QUEUE 0x04
#define RSTN_CTL_SPI_SW_RSTN 0x08
#define RSTN_CTL_SHA_MGR_RESET 0x10
// Init
#define SYS_RSTN_CTL_INIT (RSTN_CTL_RESET_CORES | \
RSTN_CTL_FLUSH_RESULTS | \
RSTN_CTL_FLUSH_CMD_QUEUE | \
RSTN_CTL_SPI_SW_RSTN | \
RSTN_CTL_SHA_MGR_RESET)
// LP
#define SYS_RSTN_CTL_FLUSH (RSTN_CTL_RESET_CORES | \
RSTN_CTL_SPI_SW_RSTN | \
RSTN_CTL_FLUSH_CMD_QUEUE)
// enable 'no nonce' report
#define SYS_MISC_CTL_DEFAULT 0x04
// CORE data size is DATA_SIZ
#define MINION_CORE_ENA0_31 0x10
#define MINION_CORE_ENA32_63 0x11
#define MINION_CORE_ENA64_95 0x12
#define MINION_CORE_ENA96_98 0x13
#define MINION_CORE_ACT0_31 0x14
#define MINION_CORE_ACT32_63 0x15
#define MINION_CORE_ACT64_95 0x16
#define MINION_CORE_ACT96_98 0x17
// All CORE data sizes are DATA_SIZ
#define MINION_CORE_SIZ DATA_SIZ
// RES data size is minion_result
#define MINION_RES_DATA 0x20
#define MINION_RES_PEEK 0x21
// QUE data size is minion_que
#define MINION_QUE_0 0x30
#define MINION_QUE_R 0x31
// RANGE data sizes are DATA_SIZ
#define MINION_NONCE_START 0x70
#define MINION_NONCE_RANGE 0x71
// This must be >= max txsiz + max rxsiz
#define MINION_BUFSIZ 1024
#define u8tou32(_c, _off) (((uint8_t *)(_c))[(_off)+0] + \
((uint8_t *)(_c))[(_off)+1] * 0x100 + \
((uint8_t *)(_c))[(_off)+2] * 0x10000 + \
((uint8_t *)(_c))[(_off)+3] * 0x1000000 )
#define MINION_ADDR_WRITE 0x7f
#define MINION_ADDR_READ 0x80
#define READ_ADDR(_reg) ((_reg) | MINION_ADDR_READ)
#define WRITE_ADDR(_reg) ((_reg) & MINION_ADDR_WRITE)
#define IS_ADDR_READ(_reg) (((_reg) & MINION_ADDR_READ) == MINION_ADDR_READ)
#define IS_ADDR_WRITE(_reg) (((_reg) & MINION_ADDR_READ) == 0)
#define SET_HEAD_WRITE(_h, _reg) ((_h)->reg) = WRITE_ADDR(_reg)
#define SET_HEAD_READ(_h, _reg) ((_h)->reg) = READ_ADDR(_reg)
#define SET_HEAD_SIZ(_h, _siz) \
do { \
((_h)->siz)[0] = (uint8_t)((_siz) & 0xff); \
((_h)->siz)[1] = (uint8_t)(((_siz) & 0xff00) >> 8); \
} while (0)
struct minion_header {
uint8_t chip;
uint8_t reg;
uint8_t siz[2];
uint8_t data[4]; // placeholder
};
#define HSIZE() (sizeof(struct minion_header) - 4)
#define MINION_NOCHIP_SIG 0x00000000
#define MINION_CHIP_SIG 0xb1ac8a44
/*
* Number of times to try and get the SIG with each chip,
* if the chip returns neither of the above values
* TODO: maybe need some reset between tries, to handle a shift value?
*/
#define MINION_SIG_TRIES 3
/*
* TODO: Finding these means the chip is there - but how to fix it?
* The extra &'s are to ensure there is no sign bit issue since
* the sign bit carry in a C bit-shift is compiler dependent
*/
#define MINION_CHIP_SIG_SHIFT1 (((MINION_CHIP_SIG & 0x0000ffff) << 16) & 0xffff0000)
#define MINION_CHIP_SIG_SHIFT2 (((MINION_CHIP_SIG & 0x00ffffff) << 8) & 0xffffff00)
#define MINION_CHIP_SIG_SHIFT3 (((MINION_CHIP_SIG & 0xffffff00) >> 8) & 0x00ffffff)
#define MINION_CHIP_SIG_SHIFT4 (((MINION_CHIP_SIG & 0xffff0000) >> 16) & 0x0000ffff)
#define STA_TEMP(_sta) ((uint16_t)((_sta)[3] & 0x1f))
#define STA_CORES(_sta) ((uint16_t)((_sta)[2]))
#define STA_FREQ(_sta) ((uint32_t)((_sta)[1]) * 0x100 + (uint32_t)((_sta)[0]))
// Randomly between 1s and 2s per chip
#define MINION_STATS_UPDATE_TIME_mS 1000
#define MINION_STATS_UPDATE_RAND_mS 1000
struct minion_status {
uint16_t temp;
uint16_t cores;
uint32_t freq;
struct timeval last;
};
// TODO: untested/unused
#define ENABLE_CORE(_core, _n) ((_core)->core[_n >> 4] |= (1 << (_n % 8)))
#define CORE_IDLE(_core, _n) ((_core)->core[_n >> 4] & (1 << (_n % 8)))
#define FIFO_RES(_fifo, _off) ((_fifo)[(_off) + 0])
#define RES_GOLD(_res) ((((_res)->status[3]) & 0x80) == 0)
#define RES_CHIP(_res) (((_res)->status[3]) & 0x1f)
#define RES_CORE(_res) ((_res)->status[2])
#define RES_TASK(_res) ((int)((_res)->status[1]) * 0x100 + (int)((_res)->status[0]))
#define RES_NONCE(_res) u8tou32((_res)->nonce, 0)
/*
* This is only valid since we avoid using task_id 0 for work
* However, it isn't really necessary since we only request
* the number of results the result buffer says it has
* However, it is a simple failsafe
*/
#define IS_RESULT(_res) ((_res)->status[1] || (_res)->status[0])
struct minion_result {
uint8_t status[DATA_SIZ];
uint8_t nonce[DATA_SIZ];
};
#define MINION_RES_DATA_SIZ sizeof(struct minion_result)
#define MIDSTATE_BYTES 32
#define MERKLE7_OFFSET 64
#define MERKLE_BYTES 12
#define MINION_MAX_TASK_ID 0xffff
struct minion_que {
uint8_t task_id[2];
uint8_t reserved[2];
uint8_t midstate[MIDSTATE_BYTES];
uint8_t merkle7[DATA_SIZ];
uint8_t ntime[DATA_SIZ];
uint8_t bits[DATA_SIZ];
};
/*
* Max time to wait before checking the task list
* Required, since only urgent tasks trigger an immediate check
* TODO: ? for 2TH/s
*/
#define MINION_TASK_mS 8
/*
* Max time to wait before checking the result list for nonces
* This can be long since it's only a failsafe
* cgsem_post is always sent if there are nonces ready to check
*/
#define MINION_NONCE_mS 888
// Number of results to make a GPIO interrupt
//#define MINION_RESULT_INT_SIZE 1
#define MINION_RESULT_INT_SIZE 2
/*
* Max time to wait before checking for results
* The interrupt doesn't occur until MINION_RESULT_INT_SIZE results are found
* See comment in minion_spi_reply() at poll()
*/
#define MINION_REPLY_mS 88
/*
* Max time to wait before returning the amount of work done
* A result interrupt will send a trigger for this also
* See comment in minion_scanwork()
* This avoids the cgminer master work loop spinning doing nothing
*/
#define MINION_SCAN_mS 88
#define ALLOC_WITEMS 4096
typedef struct witem {
struct work *work;
uint32_t task_id;
struct timeval sent;
int nonces;
bool urgent;
bool stale; // if stale, don't decrement count_up when discarded
} WITEM;
#define ALLOC_TITEMS 256
typedef struct titem {
uint8_t chip;
bool write;
uint8_t address;
uint32_t task_id;
uint32_t wsiz;
uint32_t osiz;
uint32_t rsiz;
uint8_t wbuf[MINION_BUFSIZ];
uint8_t obuf[MINION_BUFSIZ];
uint8_t rbuf[MINION_BUFSIZ];
int reply;
bool urgent;
uint8_t work_state;
struct work *work;
} TITEM;
#define ALLOC_RITEMS 256
typedef struct ritem {
int chip;
int core;
uint32_t task_id;
uint32_t nonce;
/*
* Only once per task_id if no nonces were found
* Sent with core = 0
* However, currently it always sends it at the end of every task
* TODO: code assumes it doesn't - change later when we
* see what the final hardware does (minor code performance gain)
*/
bool no_nonce;
} RITEM;
typedef struct k_item {
const char *name;
struct k_item *prev;
struct k_item *next;
void *data;
} K_ITEM;
#define DATAW(_item) ((WITEM *)(_item->data))
#define DATAT(_item) ((TITEM *)(_item->data))
#define DATAR(_item) ((RITEM *)(_item->data))
typedef struct k_list {
const char *name;
bool is_store;
cglock_t *lock;
struct k_item *head;
struct k_item *tail;
size_t siz; // item data size
int total; // total allocated
int count; // in this list
int count_up; // incremented every time one is added
int allocate; // number to intially allocate and each time we run out
bool do_tail; // store tail
} K_LIST;
/*
* K_STORE is for a list of items taken from a K_LIST
* The restriction is, a K_STORE must not allocate new items,
* only the K_LIST should do that
* i.e. all K_STORE items came from a K_LIST
*/
#define K_STORE K_LIST
#define K_WLOCK(_list) cg_wlock(_list->lock)
#define K_WUNLOCK(_list) cg_wunlock(_list->lock)
#define K_RLOCK(_list) cg_rlock(_list->lock)
#define K_RUNLOCK(_list) cg_runlock(_list->lock)
// Set this to 0 to remove iostats processing
#define DO_IO_STATS 1
#if DO_IO_STATS
#define IO_STAT_NOW(_tv) cgtime(_tv)
#define IO_STAT_STORE(_sta, _fin, _lsta, _lfin, _tsd, _buf, _siz, _reply, _ioc) \
do { \
double _diff, _ldiff, _lwdiff, _1time; \
int _off; \
_diff = us_tdiff(_fin, _sta); \
_ldiff = us_tdiff(_lfin, _lsta); \
_lwdiff = us_tdiff(_sta, _lsta); \
_1time = us_tdiff(_tsd, _lfin); \
_off = (int)(_buf[1]) + (_reply >= 0 ? 0 : 0x100); \
minioninfo->summary.count++; \
minioninfo->summary.tsd += _1time; \
minioninfo->iostats[_off].count++; \
minioninfo->iostats[_off].tsd += _1time; \
if (_diff <= 0) { \
minioninfo->summary.zero_delay++; \
minioninfo->iostats[_off].zero_delay++; \
} else { \
minioninfo->summary.total_delay += _diff; \
if (minioninfo->summary.max_delay < _diff) \
minioninfo->summary.max_delay = _diff; \
if (minioninfo->summary.min_delay == 0 || \
minioninfo->summary.min_delay > _diff) \
minioninfo->summary.min_delay = _diff; \
minioninfo->iostats[_off].total_delay += _diff; \
if (minioninfo->iostats[_off].max_delay < _diff) \
minioninfo->iostats[_off].max_delay = _diff; \
if (minioninfo->iostats[_off].min_delay == 0 || \
minioninfo->iostats[_off].min_delay > _diff) \
minioninfo->iostats[_off].min_delay = _diff; \
} \
if (_ldiff <= 0) { \
minioninfo->summary.zero_dlock++; \
minioninfo->iostats[_off].zero_dlock++; \
} else { \
minioninfo->summary.total_dlock += _ldiff; \
if (minioninfo->summary.max_dlock < _ldiff) \
minioninfo->summary.max_dlock = _ldiff; \
if (minioninfo->summary.min_dlock == 0 || \
minioninfo->summary.min_dlock > _ldiff) \
minioninfo->summary.min_dlock = _ldiff; \
minioninfo->iostats[_off].total_dlock += _ldiff; \
if (minioninfo->iostats[_off].max_dlock < _ldiff) \
minioninfo->iostats[_off].max_dlock = _ldiff; \
if (minioninfo->iostats[_off].min_dlock == 0 || \
minioninfo->iostats[_off].min_dlock > _ldiff) \
minioninfo->iostats[_off].min_dlock = _ldiff; \
} \
minioninfo->summary.total_dlwait += _lwdiff; \
minioninfo->iostats[_off].total_dlwait += _lwdiff; \
if (_siz == 0) { \
minioninfo->summary.zero_bytes++; \
minioninfo->iostats[_off].zero_bytes++; \
} else { \
minioninfo->summary.total_bytes += _siz; \
if (minioninfo->summary.max_bytes < _siz) \
minioninfo->summary.max_bytes = _siz; \
if (minioninfo->summary.min_bytes == 0 || \
minioninfo->summary.min_bytes > _siz) \
minioninfo->summary.min_bytes = _siz; \
minioninfo->iostats[_off].total_bytes += _siz; \
if (minioninfo->iostats[_off].max_bytes < _siz) \
minioninfo->iostats[_off].max_bytes = _siz; \
if (minioninfo->iostats[_off].min_bytes == 0 || \
minioninfo->iostats[_off].min_bytes > _siz) \
minioninfo->iostats[_off].min_bytes = _siz; \
} \
} while (0);
typedef struct iostat {
uint64_t count; // total ioctl()
double total_delay; // total elapsed ioctl()
double min_delay;
double max_delay;
uint64_t zero_delay; // how many had <= 0 delay
// Above but including locking
double total_dlock;
double min_dlock;
double max_dlock;
uint64_t zero_dlock;
// Total time waiting to get lock
double total_dlwait;
// these 3 fields are ignored for now since all are '1'
uint64_t total_ioc; // SPI_IOC_MESSAGE(x)
uint64_t min_ioc;
uint64_t max_ioc;
uint64_t total_bytes; // ioctl() bytes
uint64_t min_bytes;
uint64_t max_bytes;
uint64_t zero_bytes; // how many had siz == 0
double tsd; // total doing one extra cgtime() each time
} IOSTAT;
#else
#define IO_STAT_NOW(_tv)
#define IO_STAT_STORE(_sta, _fin, _lsta, _lfin, _tsd, _buf, _siz, _reply, _ioc)
#endif
struct minion_info {
struct thr_info spiw_thr;
struct thr_info spir_thr;
struct thr_info res_thr;
pthread_mutex_t spi_lock;
pthread_mutex_t sta_lock;
cgsem_t task_ready;
cgsem_t nonce_ready;
cgsem_t scan_work;
int spifd;
char gpiointvalue[64];
int gpiointfd;
// TODO: need to track disabled chips - done?
int chips;
bool chip[MINION_CHIPS];
uint32_t next_task_id;
// Stats
uint64_t chip_nonces[MINION_CHIPS];
uint64_t chip_good[MINION_CHIPS];
uint64_t chip_bad[MINION_CHIPS];
uint64_t core_good[MINION_CHIPS][MINION_CORES];
uint64_t core_bad[MINION_CHIPS][MINION_CORES];
struct minion_status chip_status[MINION_CHIPS];
pthread_mutex_t nonce_lock;
uint64_t new_nonces;
uint64_t ok_nonces;
uint64_t untested_nonces;
uint64_t tested_nonces;
// Work items
K_LIST *wfree_list;
K_STORE *wwork_list;
K_STORE *wchip_list[MINION_CHIPS];
// Task list
K_LIST *tfree_list;
K_STORE *task_list;
K_STORE *treply_list;
// Nonce replies
K_LIST *rfree_list;
K_STORE *rnonce_list;
struct timeval last_did;
#if DO_IO_STATS
// Total
IOSTAT summary;
// Two for each command plus wasted extras i.e. direct/fast lookup
// No error uses 0x0 to 0xff, error uses 0x100 to 0x1ff
IOSTAT iostats[0x200];
#endif
bool initialised;
};
static void alloc_items(K_LIST *list, MINION_FFL_ARGS)
{
K_ITEM *item;
int i;
if (list->is_store) {
quithere(1, "List %s store can't %s" MINION_FFL,
list->name, __func__, MINION_FFL_PASS);
}
item = calloc(list->allocate, sizeof(*item));
if (!item) {
quithere(1, "List %s failed to calloc %d new items - total was %d",
list->name, list->allocate, list->total);
}
list->total += list->allocate;
list->count = list->allocate;
list->count_up = list->allocate;
item[0].name = list->name;
item[0].prev = NULL;
item[0].next = &(item[1]);
for (i = 1; i < list->allocate-1; i++) {
item[i].name = list->name;
item[i].prev = &item[i-1];
item[i].next = &item[i+1];
}
item[list->allocate-1].name = list->name;
item[list->allocate-1].prev = &(item[list->allocate-2]);
item[list->allocate-1].next = NULL;
list->head = item;
if (list->do_tail)
list->tail = &(item[list->allocate-1]);
item = list->head;
while (item) {
item->data = calloc(1, list->siz);
if (!(item->data))
quithere(1, "List %s failed to calloc item data", list->name);
item = item->next;
}
}
static K_STORE *new_store(K_LIST *list)
{
K_STORE *store;
store = calloc(1, sizeof(*store));
if (!store)
quithere(1, "Failed to calloc store for %s", list->name);
store->is_store = true;
store->lock = list->lock;
store->name = list->name;
store->do_tail = list->do_tail;
return store;
}
static K_LIST *new_list(const char *name, size_t siz, int allocate, bool do_tail, MINION_FFL_ARGS)
{
K_LIST *list;
if (allocate < 1)
quithere(1, "Invalid new list %s with allocate %d must be > 0", name, allocate);
list = calloc(1, sizeof(*list));
if (!list)
quithere(1, "Failed to calloc list %s", name);
list->is_store = false;
list->lock = calloc(1, sizeof(*(list->lock)));
if (!(list->lock))
quithere(1, "Failed to calloc lock for list %s", name);
cglock_init(list->lock);
list->name = name;
list->siz = siz;
list->allocate = allocate;
list->do_tail = do_tail;
alloc_items(list, MINION_FFL_PASS);
return list;
}
static K_ITEM *k_get_head(K_LIST *list, MINION_FFL_ARGS)
{
K_ITEM *item;
if (!(list->head))
alloc_items(list, MINION_FFL_PASS);
item = list->head;
list->head = item->next;
if (list->head)
list->head->prev = NULL;
else {
if (list->do_tail)
list->tail = NULL;
}
item->prev = item->next = NULL;
list->count--;
return item;
}
#define k_free_head k_add_head
static void k_add_head(K_LIST *list, K_ITEM *item, MINION_FFL_ARGS)
{
if (item->name != list->name) {
quithere(1, "List %s can't %s a %s item" MINION_FFL,
list->name, __func__, item->name, MINION_FFL_PASS);
}
item->prev = NULL;
item->next = list->head;
if (list->head)
list->head->prev = item;
list->head = item;
if (list->do_tail) {
if (!(list->tail))
list->tail = item;
}
list->count++;
list->count_up++;
}
/*
// TODO: remove later - it slows it down (of course) - only for debugging
static void k_free_head(K_LIST *list, K_ITEM *item, MINION_FFL_ARGS)
{
memset(item->data, 0xff, list->siz);
k_add_head(list, item, MINION_FFL_PASS);
}
*/
static void k_remove(K_LIST *list, K_ITEM *item)
{
if (item->prev)
item->prev->next = item->next;
if (item->next)
item->next->prev = item->prev;
if (list->head == item)
list->head = item->next;
if (list->do_tail) {
if (list->tail == item)
list->tail = item->prev;
}
item->prev = item->next = NULL;
list->count--;
}
static void ready_work(struct cgpu_info *minioncgpu, struct work *work)
{
struct minion_info *minioninfo = (struct minion_info *)(minioncgpu->device_data);
K_ITEM *item = NULL;
K_WLOCK(minioninfo->wfree_list);
item = k_get_head(minioninfo->wfree_list, MINION_FFL_HERE);
DATAW(item)->work = work;
DATAW(item)->task_id = 0;
memset(&(DATAW(item)->sent), 0, sizeof(DATAW(item)->sent));
DATAW(item)->nonces = 0;
DATAW(item)->urgent = false;
k_add_head(minioninfo->wwork_list, item, MINION_FFL_HERE);
K_WUNLOCK(minioninfo->wfree_list);
}
static bool oldest_nonce(struct cgpu_info *minioncgpu, int *chip, int *core, uint32_t *task_id, uint32_t *nonce, bool *no_nonce)
{
struct minion_info *minioninfo = (struct minion_info *)(minioncgpu->device_data);
K_ITEM *item = NULL;
bool found = false;
K_WLOCK(minioninfo->rnonce_list);
item = minioninfo->rnonce_list->tail;
if (item) {
// unlink from res
k_remove(minioninfo->rnonce_list, item);
found = true;
*chip = DATAR(item)->chip;
*core = DATAR(item)->core;
*task_id = DATAR(item)->task_id;
*nonce = DATAR(item)->nonce;
*no_nonce = DATAR(item)->no_nonce;
k_free_head(minioninfo->rfree_list, item, MINION_FFL_HERE);
}
K_WUNLOCK(minioninfo->rnonce_list);
return found;
}
static const char *addr2txt(uint8_t addr)
{
switch (addr) {
case READ_ADDR(MINION_SYS_CHIP_SIG):
return "RChipSig";
case READ_ADDR(MINION_SYS_CHIP_STA):
return "RChipSta";
case WRITE_ADDR(MINION_SYS_MISC_CTL):
return "WMiscCtrl";
case WRITE_ADDR(MINION_SYS_RSTN_CTL):
return "WResetCtrl";
case READ_ADDR(MINION_SYS_FIFO_STA):
return "RFifoSta";
case READ_ADDR(MINION_CORE_ENA0_31):
return "RCoreEna0-31";
case WRITE_ADDR(MINION_CORE_ENA0_31):
return "WCoreEna0-31";
case READ_ADDR(MINION_CORE_ENA32_63):
return "RCoreEna32-63";
case WRITE_ADDR(MINION_CORE_ENA32_63):
return "WCoreEna32-63";
case READ_ADDR(MINION_CORE_ENA64_95):
return "RCoreEna64-95";
case WRITE_ADDR(MINION_CORE_ENA64_95):
return "WCoreEna64-95";
case READ_ADDR(MINION_CORE_ENA96_98):
return "RCoreEna96-98";
case WRITE_ADDR(MINION_CORE_ENA96_98):
return "WCoreEna96-98";
case READ_ADDR(MINION_RES_DATA):
return "RResData";
case WRITE_ADDR(MINION_QUE_0):
return "WQueWork";
case READ_ADDR(MINION_NONCE_START):
return "RNonceStart";
case WRITE_ADDR(MINION_NONCE_START):
return "WNonceStart";
case READ_ADDR(MINION_NONCE_RANGE):
return "RNonceRange";
case WRITE_ADDR(MINION_NONCE_RANGE):
return "WNonceRange";
case READ_ADDR(MINION_SYS_INT_STA):
return "RIntSta";
case WRITE_ADDR(MINION_SYS_INT_ENA):
return "WIntEna";
case WRITE_ADDR(MINION_SYS_INT_CLR):
return "WIntClear";
case WRITE_ADDR(MINION_SYS_BUF_TRIG):
return "WResTrigger";
case WRITE_ADDR(MINION_SYS_QUE_TRIG):
return "WCmdTrigger";
}
// gcc warning if this is in default:
if (IS_ADDR_READ(addr))
return "RUnhandled";
else
return "WUnhandled";
}
// For display_ioctl()
#define IOCTRL_LOG LOG_DEBUG
// For all other debug so it can easily be switched always on
#define MINION_LOG LOG_DEBUG
/*
static void display_ioctl(int reply, uint32_t osiz, uint8_t *obuf, uint32_t rsiz, uint8_t *rbuf)
{
struct minion_result *res;
const char *name, *dir, *ex;
char buf[1024];
int i, rescount;
name = addr2txt(obuf[1]);
if (IS_ADDR_READ(obuf[1]))
dir = "from";
else
dir = "to";
buf[0] = '\0';
ex = "";
switch (obuf[1]) {
case READ_ADDR(MINION_SYS_CHIP_SIG):
case READ_ADDR(MINION_SYS_CHIP_STA):
break;
case WRITE_ADDR(MINION_SYS_MISC_CTL):
case WRITE_ADDR(MINION_SYS_RSTN_CTL):
if (osiz > HSIZE()) {
ex = " wrote ";
__bin2hex(buf, obuf + HSIZE(), osiz - HSIZE());
} else
ex = " wrote nothing";
break;
default:
if (IS_ADDR_WRITE(obuf[1])) {
if (osiz > HSIZE()) {
ex = " wrote ";
__bin2hex(buf, obuf + HSIZE(), osiz - HSIZE());
} else
ex = " wrote nothing";
}
break;
}
if (reply < 0) {
applog(IOCTRL_LOG, "%s %s chip %d osiz %d%s%s",
name, dir, (int)obuf[0], (int)osiz, ex, buf);
applog(IOCTRL_LOG, " reply was error %d", reply);
} else {
if (IS_ADDR_WRITE(obuf[1])) {
applog(IOCTRL_LOG, "%s %s chip %d osiz %d%s%s",
name, dir, (int)obuf[0], (int)osiz, ex, buf);
applog(IOCTRL_LOG, " write ret was %d", reply);
} else {
switch (obuf[1]) {
case READ_ADDR(MINION_RES_DATA):
rescount = (int)((float)rsiz / (float)MINION_RES_DATA_SIZ);
applog(IOCTRL_LOG, "%s %s chip %d osiz %d%s%s",
name, dir, (int)obuf[0], (int)osiz, ex, buf);
for (i = 0; i < rescount; i++) {
res = (struct minion_result *)(rbuf + osiz - rsiz + (i * MINION_RES_DATA_SIZ));
if (!IS_RESULT(res)) {
applog(IOCTRL_LOG, " %s reply %d of %d - none", name, i+1, rescount);
} else {
__bin2hex(buf, res->nonce, DATA_SIZ);
applog(IOCTRL_LOG, " %s reply %d of %d %d(%d) was task 0x%04x"
" chip %d core %d gold %s nonce 0x%s",
name, i+1, rescount, reply, rsiz,
RES_TASK(res),
(int)RES_CHIP(res),
(int)RES_CORE(res),
(int)RES_GOLD(res) ? "Y" : "N",
buf);
}
}
break;
case READ_ADDR(MINION_SYS_CHIP_SIG):
case READ_ADDR(MINION_SYS_CHIP_STA):
default:
applog(IOCTRL_LOG, "%s %s chip %d osiz %d%s%s",
name, dir, (int)obuf[0], (int)osiz, ex, buf);
__bin2hex(buf, rbuf + osiz - rsiz, rsiz);
applog(IOCTRL_LOG, " %s reply %d(%d) was %s", name, reply, rsiz, buf);
break;
}
}
}
}
*/
#define MINION_UNEXPECTED_TASK -999
#define MINION_OVERSIZE_TASK -998
// Set to 1 for debug
#define MINION_SHOW_IO 0
static int _do_ioctl(struct minion_info *minioninfo, uint8_t *obuf, uint32_t osiz, uint8_t *rbuf, uint32_t rsiz, MINION_FFL_ARGS)
{
/*
// TODO: remove these 2 later and rename the z[or]buf back to [or]buf
// this simply ensures the IO buffers displayed are not affected by a bug elsewhere - during dev/testing
uint8_t obuf[MINION_BUFSIZ], rbuf[MINION_BUFSIZ];
*/
struct spi_ioc_transfer tran;
int ret;
#if DO_IO_STATS
struct timeval sta, fin, lsta, lfin, tsd;
#endif
if ((int)osiz > MINION_BUFSIZ)
quitfrom(1, file, func, line, "%s() invalid osiz %u > %d", __func__, osiz, MINION_BUFSIZ);
if (rsiz >= osiz)
quitfrom(1, file, func, line, "%s() invalid rsiz %u >= osiz %u", __func__, rsiz, osiz);
// memcpy(obuf, zobuf, osiz);
memset(&obuf[0] + osiz - rsiz, 0xff, rsiz);
#if MINION_SHOW_IO
char *buf = bin2hex((char *)obuf, osiz);
applog(LOG_WARNING, "*** %s() sending %s", __func__, buf);
free(buf);
#endif
memset((char *)rbuf, 0x00, osiz);
// cgsleep_ms(5); // TODO: a delay ... based on the last command? But subtract elapsed
// i.e. do any commands need a delay after the I/O has completed before the next I/O?
memset(&tran, 0, sizeof(tran));
if (osiz < MINION_SPI_BUFSIZ)
tran.len = osiz;
else
return MINION_OVERSIZE_TASK;
tran.delay_usecs = 0;
tran.speed_hz = MINION_SPI_SPEED;
tran.tx_buf = (uintptr_t)obuf;
tran.rx_buf = (uintptr_t)rbuf;
IO_STAT_NOW(&lsta);
mutex_lock(&(minioninfo->spi_lock));
IO_STAT_NOW(&sta);
ret = ioctl(minioninfo->spifd, SPI_IOC_MESSAGE(1), (void *)&tran);
IO_STAT_NOW(&fin);
mutex_unlock(&(minioninfo->spi_lock));
IO_STAT_NOW(&lfin);
IO_STAT_NOW(&tsd);
IO_STAT_STORE(&sta, &fin, &lsta, &lfin, &tsd, obuf, osiz, ret, 1);
#if MINION_SHOW_IO
if (ret > 0) {
buf = bin2hex((char *)rbuf, ret);
applog(LOG_WARNING, "*** %s() reply %d = %s", __func__, ret, buf);
free(buf);
} else
applog(LOG_WARNING, "*** %s() reply = %d", __func__, ret);
#endif
// display_ioctl(ret, osiz, obuf, rsiz, rbuf);
// memcpy(zrbuf, &rbuf[0], osiz);
return ret;
}
static bool _minion_txrx(struct cgpu_info *minioncgpu, struct minion_info *minioninfo, TITEM *task, MINION_FFL_ARGS)
{
struct minion_header *head;
head = (struct minion_header *)(task->obuf);
head->chip = task->chip;
if (task->write)
SET_HEAD_WRITE(head, task->address);
else
SET_HEAD_READ(head, task->address);
SET_HEAD_SIZ(head, task->wsiz + task->rsiz);
if (task->wsiz)
memcpy(&(head->data[0]), task->wbuf, task->wsiz);
task->osiz = HSIZE() + task->wsiz + task->rsiz;
task->reply = do_ioctl(task->obuf, task->osiz, task->rbuf, task->rsiz);
if (task->reply < 0) {
applog(LOG_ERR, "%s%d: ioctl failed reply=%d err=%d" MINION_FFL,
minioncgpu->drv->name, minioncgpu->device_id,
task->reply, errno, MINION_FFL_PASS);
} else if (task->reply < (int)(task->osiz)) {
applog(LOG_ERR, "%s%d: ioctl failed to write %d only wrote %d (err=%d)" MINION_FFL,
minioncgpu->drv->name, minioncgpu->device_id,
(int)(task->osiz), task->reply, errno, MINION_FFL_PASS);
}
return (task->reply >= (int)(task->osiz));
}
// Only for DATA_SIZ commands
static int build_cmd(struct cgpu_info *minioncgpu, struct minion_info *minioninfo, int chip, uint8_t reg, uint8_t *rbuf, uint32_t rsiz, uint8_t *data)
{
struct minion_header *head;
uint8_t wbuf[MINION_BUFSIZ];
uint32_t wsiz;
int reply;
head = (struct minion_header *)wbuf;
head->chip = chip;
head->reg = reg;
SET_HEAD_SIZ(head, DATA_SIZ);
head->data[0] = data[0];
head->data[1] = data[1];
head->data[2] = data[2];
head->data[3] = data[3];
wsiz = HSIZE() + DATA_SIZ;
reply = do_ioctl(wbuf, wsiz, rbuf, rsiz);
if (reply != (int)wsiz) {
applog(LOG_ERR, "%s: chip %d %s returned %d (should be %d)",
minioncgpu->drv->dname, chip,
addr2txt(head->reg),
reply, (int)wsiz);
}
return reply;
}
// TODO: hard coded for now
static void init_chip(struct cgpu_info *minioncgpu, struct minion_info *minioninfo, int chip)
{
uint8_t rbuf[MINION_BUFSIZ];
uint8_t data[4];
__maybe_unused int reply;
// Complete chip reset
data[0] = 0x00;
data[1] = 0x00;
data[2] = 0xa5;
data[3] = 0xf5;
reply = build_cmd(minioncgpu, minioninfo,
chip, WRITE_ADDR(MINION_SYS_RSTN_CTL),
rbuf, 0, data);
// Default reset
data[0] = SYS_RSTN_CTL_INIT;
data[1] = 0x00;
data[2] = 0x00;
data[3] = 0x00;
reply = build_cmd(minioncgpu, minioninfo,
chip, WRITE_ADDR(MINION_SYS_RSTN_CTL),
rbuf, 0, data);
// Default initialisation
data[0] = SYS_MISC_CTL_DEFAULT;
data[1] = 0x00;
data[2] = 0x00;
data[3] = 0x00;
reply = build_cmd(minioncgpu, minioninfo,
chip, WRITE_ADDR(MINION_SYS_MISC_CTL),
rbuf, 0, data);
}
// TODO: hard coded for now
static void enable_chip_cores(struct cgpu_info *minioncgpu, struct minion_info *minioninfo, int chip)
{
uint8_t rbuf[MINION_BUFSIZ];
uint8_t data[4];
__maybe_unused int reply;
data[0] = data[1] = data[2] = data[3] = 0x00;
// First see what it reports as - results ignored for now
reply = build_cmd(minioncgpu, minioninfo,
chip, READ_ADDR(MINION_CORE_ENA0_31),
rbuf, MINION_CORE_SIZ, data);
reply = build_cmd(minioncgpu, minioninfo,
chip, READ_ADDR(MINION_CORE_ENA32_63),
rbuf, MINION_CORE_SIZ, data);
reply = build_cmd(minioncgpu, minioninfo,
chip, READ_ADDR(MINION_CORE_ENA64_95),
rbuf, MINION_CORE_SIZ, data);
reply = build_cmd(minioncgpu, minioninfo,
chip, READ_ADDR(MINION_CORE_ENA96_98),
rbuf, MINION_CORE_SIZ, data);
/*
* This will say it has completed the test 99 times faster than
* a single core speed since all work will be divided up across all
* 99 cores (even if they aren't there)
* Of course it will only have checked N/99 of the nonce range
* where N = the number of working cores
*/
data[0] = 0xff;
data[1] = 0xff;
data[2] = 0xff;
data[3] = 0xff;
/*
* there really is no reason to do this except in testing
* since when mining with real data it will still mine at
* full speed if using stratum (but not on getwork),
* however if we are testing for specific results, not mining speed,
* then it's necessary to force the nonce ranges on incomplete hardware
*
* TODO: consider handling getwork and calculating these if the number
* of working cores isn't all of them? (and redoing if the number changes)
* See the idle_cnt register ...
*/
// data[0] = 0x02; // core 1
// data[1] = 0x00;
// data[2] = 0x00;
// data[3] = 0x00;
reply = build_cmd(minioncgpu, minioninfo,
chip, WRITE_ADDR(MINION_CORE_ENA0_31),
rbuf, 0, data);
// data[0] = 0x00;
// data[1] = 0x00;
// data[2] = 0x01; // core 48
// data[2] = 0x00;
// data[3] = 0x00;
reply = build_cmd(minioncgpu, minioninfo,
chip, WRITE_ADDR(MINION_CORE_ENA32_63),
rbuf, 0, data);
// data[0] = 0x00;
// data[1] = 0x00;
// data[2] = 0x00;
// data[3] = 0x00;
reply = build_cmd(minioncgpu, minioninfo,
chip, WRITE_ADDR(MINION_CORE_ENA64_95),
rbuf, 0, data);
data[0] = 0x07; // core 96,97,98
// data[0] = 0x04; // core 98
data[1] = 0x00;
data[2] = 0x00;
data[3] = 0x00;
reply = build_cmd(minioncgpu, minioninfo,
chip, WRITE_ADDR(MINION_CORE_ENA96_98),
rbuf, 0, data);
/* Use default
// 1/3 range for each of the 3 cores
// data[0] = 0x55;
// data[1] = 0x55;
// data[2] = 0x55;
// data[3] = 0x55;
// quicker replies
// data[0] = 0x05;
// data[1] = 0x05;
// data[2] = 0x05;
// data[3] = 0x05;
// 0x00000100 at 20MH/s per core = 336TH/s if 1 nonce per work item
// 0x00001000 = 21.0TH/s - so well above 2TH/s
// 0x00002000 = 10.5TH/s - above 2TH/s
// speed test
data[0] = 0x00;
data[1] = 0x01;
data[2] = 0x00;
data[3] = 0x00;
// data[3] = 0x20; // slow it down for other testing
// 2 cores
// data[0] = 0xff;
// data[1] = 0xff;
// data[2] = 0xff;
// data[3] = 0x7f;
reply = build_cmd(minioncgpu, minioninfo,
chip, WRITE_ADDR(MINION_NONCE_RANGE),
rbuf, 0, data);
// find lots more nonces in a short time on my test data
// i.e. emulate a MUCH higher hash rate on SPI and work
// generation/testing
// Current test data (same repeated 10 times) has nonce 0x05e0ed6d
data[0] = 0x00;
data[1] = 0xed;
data[2] = 0xe0;
data[3] = 0x05;
reply = build_cmd(minioncgpu, minioninfo,
chip, WRITE_ADDR(MINION_NONCE_START),
rbuf, 0, data);
*/
}
// TODO: hard coded for now
static void enable_interrupt(struct cgpu_info *minioncgpu, struct minion_info *minioninfo, int chip)
{
uint8_t rbuf[MINION_BUFSIZ];
uint8_t data[4];
__maybe_unused int reply;
data[0] = MINION_RESULT_INT_SIZE;
data[1] = 0x00;
data[2] = 0x00;
data[3] = 0x00;
reply = build_cmd(minioncgpu, minioninfo,
chip, WRITE_ADDR(MINION_SYS_BUF_TRIG),
rbuf, 0, data);
data[0] = MINION_QUE_HIGH; // spaces available ... i.e. empty
data[1] = 0x00;
data[2] = 0x00;
data[3] = 0x00;
reply = build_cmd(minioncgpu, minioninfo,
chip, WRITE_ADDR(MINION_SYS_QUE_TRIG),
rbuf, 0, data);
// data[0] = MINION_RESULT_INT;
data[0] = MINION_RESULT_INT | MINION_CMD_INT;
data[1] = 0x00;
data[2] = 0x00;
data[3] = 0x00;
reply = build_cmd(minioncgpu, minioninfo,
chip, WRITE_ADDR(MINION_SYS_INT_ENA),
rbuf, 0, data);
}
// Simple detect - just check each chip for the signature
static void minion_detect_chips(struct cgpu_info *minioncgpu, struct minion_info *minioninfo)
{
struct minion_header *head;
uint8_t wbuf[MINION_BUFSIZ];
uint8_t rbuf[MINION_BUFSIZ];
uint32_t wsiz, rsiz;
int chip, reply, tries;
bool ok;
head = (struct minion_header *)wbuf;
rsiz = MINION_SYS_SIZ;
SET_HEAD_READ(head, MINION_SYS_CHIP_SIG);
SET_HEAD_SIZ(head, rsiz);
wsiz = HSIZE() + rsiz;
for (chip = 0; chip < MINION_CHIPS; chip++) {
head->chip = (uint8_t)chip;
tries = 0;
ok = false;
do {
reply = do_ioctl(wbuf, wsiz, rbuf, rsiz);
if (reply == (int)(wsiz)) {
uint32_t sig = u8tou32(rbuf, wsiz - rsiz);
if (sig == MINION_CHIP_SIG) {
minioninfo->chip[chip] = true;
minioninfo->chips++;
ok = true;
} else {
if (sig == MINION_CHIP_SIG_SHIFT1 ||
sig == MINION_CHIP_SIG_SHIFT2 ||
sig == MINION_CHIP_SIG_SHIFT3 ||
sig == MINION_CHIP_SIG_SHIFT4) {
applog(LOG_WARNING, "%s: chip %d detect offset got"
" 0x%08x wanted 0x%08x",
minioncgpu->drv->dname, chip, sig,
MINION_CHIP_SIG);
} else {
if (sig == MINION_NOCHIP_SIG) // Assume no chip
ok = true;
else {
applog(LOG_ERR, "%s: chip %d detect failed got"
" 0x%08x wanted 0x%08x",
minioncgpu->drv->dname, chip, sig,
MINION_CHIP_SIG);
}
}
}
} else {
applog(LOG_ERR, "%s: chip %d reply %d ignored should be %d",
minioncgpu->drv->dname, chip, reply, (int)(wsiz));
}
} while (!ok && ++tries <= MINION_SIG_TRIES);
if (!ok) {
applog(LOG_ERR, "%s: chip %d - detect failure status",
minioncgpu->drv->dname, chip);
}
}
if (minioninfo->chips) {
for (chip = 0; chip < MINION_CHIPS; chip++) {
if (minioninfo->chip[chip]) {
init_chip(minioncgpu, minioninfo, chip);
enable_chip_cores(minioncgpu, minioninfo, chip);
}
}
// After everything is ready
for (chip = 0; chip < MINION_CHIPS; chip++)
if (minioninfo->chip[chip])
enable_interrupt(minioncgpu, minioninfo, chip);
}
}
static const char *minion_modules[] = {
"i2c-dev",
"i2c-bcm2708",
"spidev",
"spi-bcm2708",
NULL
};
static struct {
int request;
int value;
} minion_ioc[] = {
{ SPI_IOC_RD_MODE, 0 },
{ SPI_IOC_WR_MODE, 0 },
{ SPI_IOC_RD_BITS_PER_WORD, 8 },
{ SPI_IOC_WR_BITS_PER_WORD, 8 },
{ SPI_IOC_RD_MAX_SPEED_HZ, MINION_SPI_SPEED },
{ SPI_IOC_WR_MAX_SPEED_HZ, MINION_SPI_SPEED },
{ -1, -1 }
};
static bool minion_init_spi(struct cgpu_info *minioncgpu, struct minion_info *minioninfo, int bus, int chip)
{
int i, err, data;
char buf[64];
for (i = 0; minion_modules[i]; i++) {
snprintf(buf, sizeof(buf), "modprobe %s", minion_modules[i]);
err = system(buf);
if (err) {
applog(LOG_ERR, "%s: failed to modprobe %s (%d) - you need to be root?",
minioncgpu->drv->dname,
minion_modules[i], err);
goto bad_out;
}
}
snprintf(buf, sizeof(buf), "/dev/spidev%d.%d", bus, chip);
minioninfo->spifd = open(buf, O_RDWR);
if (minioninfo->spifd < 0) {
applog(LOG_ERR, "%s: failed to open spidev (%d)",
minioncgpu->drv->dname,
errno);
goto bad_out;
}
minioncgpu->device_path = strdup(buf);
for (i = 0; minion_ioc[i].value != -1; i++) {
data = minion_ioc[i].value;
err = ioctl(minioninfo->spifd, minion_ioc[i].request, (void *)&data);
if (err < 0) {
applog(LOG_ERR, "%s: failed ioctl configuration (%d) (%d)",
minioncgpu->drv->dname,
i, errno);
goto close_out;
}
}
return true;
close_out:
close(minioninfo->spifd);
minioninfo->spifd = 0;
free(minioncgpu->device_path);
minioncgpu->device_path = NULL;
bad_out:
return false;
}
static bool minion_init_gpio_interrupt(struct cgpu_info *minioncgpu, struct minion_info *minioninfo)
{
char pindir[64], ena[64], pin[8], dir[64], edge[64], act[64];
struct stat st;
int file, err;
ssize_t ret;
snprintf(pindir, sizeof(pindir), MINION_GPIO_SYS MINION_GPIO_PIN,
MINION_GPIO_RESULT_INT_PIN);
memset(&st, 0, sizeof(st));
if (stat(pindir, &st) == 0) { // already exists
if (!S_ISDIR(st.st_mode)) {
applog(LOG_ERR, "%s: failed1 to enable GPIO pin %d interrupt"
" - not a directory",
minioncgpu->drv->dname,
MINION_GPIO_RESULT_INT_PIN);
return false;
}
} else {
snprintf(ena, sizeof(ena), MINION_GPIO_SYS MINION_GPIO_ENA);
file = open(ena, O_WRONLY | O_SYNC);
if (file == -1) {
applog(LOG_ERR, "%s: failed2 to enable GPIO pin %d interrupt (%d)"
" - you need to be root?",
minioncgpu->drv->dname,
MINION_GPIO_RESULT_INT_PIN,
errno);
return false;
}
snprintf(pin, sizeof(pin), MINION_GPIO_ENA_VAL, MINION_GPIO_RESULT_INT_PIN);
ret = write(file, pin, (size_t)strlen(pin));
if (ret != (ssize_t)strlen(pin)) {
if (ret < 0)
err = errno;
else
err = (int)ret;
close(file);
applog(LOG_ERR, "%s: failed3 to enable GPIO pin %d interrupt (%d:%d)",
minioncgpu->drv->dname,
MINION_GPIO_RESULT_INT_PIN,
err, (int)strlen(pin));
return false;
}
close(file);
// Check again if it exists
memset(&st, 0, sizeof(st));
if (stat(pindir, &st) != 0) {
applog(LOG_ERR, "%s: failed4 to enable GPIO pin %d interrupt (%d)",
minioncgpu->drv->dname,
MINION_GPIO_RESULT_INT_PIN,
errno);
return false;
}
}
// Set the pin attributes
// Direction
snprintf(dir, sizeof(dir), MINION_GPIO_SYS MINION_GPIO_PIN MINION_GPIO_DIR,
MINION_GPIO_RESULT_INT_PIN);
file = open(dir, O_WRONLY | O_SYNC);
if (file == -1) {
applog(LOG_ERR, "%s: failed5 to enable GPIO pin %d interrupt (%d)"
" - you need to be root?",
minioncgpu->drv->dname,
MINION_GPIO_RESULT_INT_PIN,
errno);
return false;
}
ret = write(file, MINION_GPIO_DIR_READ, (size_t)strlen(MINION_GPIO_DIR_READ));
if (ret != (ssize_t)strlen(MINION_GPIO_DIR_READ)) {
if (ret < 0)
err = errno;
else
err = (int)ret;
close(file);
applog(LOG_ERR, "%s: failed6 to enable GPIO pin %d interrupt (%d:%d)",
minioncgpu->drv->dname,
MINION_GPIO_RESULT_INT_PIN,
err, (int)strlen(MINION_GPIO_DIR_READ));
return false;
}
close(file);
// Edge
snprintf(edge, sizeof(edge), MINION_GPIO_SYS MINION_GPIO_PIN MINION_GPIO_EDGE,
MINION_GPIO_RESULT_INT_PIN);
file = open(edge, O_WRONLY | O_SYNC);
if (file == -1) {
applog(LOG_ERR, "%s: failed7 to enable GPIO pin %d interrupt (%d)",
minioncgpu->drv->dname,
MINION_GPIO_RESULT_INT_PIN,
errno);
return false;
}
ret = write(file, MINION_GPIO_EDGE_RISING, (size_t)strlen(MINION_GPIO_EDGE_RISING));
if (ret != (ssize_t)strlen(MINION_GPIO_EDGE_RISING)) {
if (ret < 0)
err = errno;
else
err = (int)ret;
close(file);
applog(LOG_ERR, "%s: failed8 to enable GPIO pin %d interrupt (%d:%d)",
minioncgpu->drv->dname,
MINION_GPIO_RESULT_INT_PIN,
err, (int)strlen(MINION_GPIO_EDGE_RISING));
return false;
}
close(file);
// Active
snprintf(act, sizeof(act), MINION_GPIO_SYS MINION_GPIO_PIN MINION_GPIO_ACT,
MINION_GPIO_RESULT_INT_PIN);
file = open(act, O_WRONLY | O_SYNC);
if (file == -1) {
applog(LOG_ERR, "%s: failed9 to enable GPIO pin %d interrupt (%d)",
minioncgpu->drv->dname,
MINION_GPIO_RESULT_INT_PIN,
errno);
return false;
}
ret = write(file, MINION_GPIO_ACT_HI, (size_t)strlen(MINION_GPIO_ACT_HI));
if (ret != (ssize_t)strlen(MINION_GPIO_ACT_HI)) {
if (ret < 0)
err = errno;
else
err = (int)ret;
close(file);
applog(LOG_ERR, "%s: failed10 to enable GPIO pin %d interrupt (%d:%d)",
minioncgpu->drv->dname,
MINION_GPIO_RESULT_INT_PIN,
err, (int)strlen(MINION_GPIO_ACT_HI));
return false;
}
close(file);
// Setup fd access to Value
snprintf(minioninfo->gpiointvalue, sizeof(minioninfo->gpiointvalue),
MINION_GPIO_SYS MINION_GPIO_PIN MINION_GPIO_VALUE,
MINION_GPIO_RESULT_INT_PIN);
minioninfo->gpiointfd = open(minioninfo->gpiointvalue, O_RDONLY);
if (minioninfo->gpiointfd == -1) {
applog(LOG_ERR, "%s: failed11 to enable GPIO pin %d interrupt (%d)",
minioncgpu->drv->dname,
MINION_GPIO_RESULT_INT_PIN,
errno);
return false;
}
return true;
}
static void minion_detect(bool hotplug)
{
struct cgpu_info *minioncgpu = NULL;
struct minion_info *minioninfo = NULL;
int i;
if (hotplug)
return;
minioncgpu = calloc(1, sizeof(*minioncgpu));
if (unlikely(!minioncgpu))
quithere(1, "Failed to calloc minioncgpu");
minioncgpu->drv = &minion_drv;
minioncgpu->deven = DEV_ENABLED;
minioncgpu->threads = 1;
minioninfo = calloc(1, sizeof(*minioninfo)); // everything '0'
if (unlikely(!minioninfo))
quithere(1, "Failed to calloc minioninfo");
minioncgpu->device_data = (void *)minioninfo;
if (!minion_init_spi(minioncgpu, minioninfo, MINION_SPI_BUS, MINION_SPI_CHIP))
goto unalloc;
if (!minion_init_gpio_interrupt(minioncgpu, minioninfo))
goto unalloc;
mutex_init(&(minioninfo->spi_lock));
mutex_init(&(minioninfo->sta_lock));
applog(LOG_WARNING, "%s: checking for chips ...", minioncgpu->drv->dname);
minion_detect_chips(minioncgpu, minioninfo);
applog(LOG_WARNING, "%s: found %d chip%s",
minioncgpu->drv->dname, minioninfo->chips,
(minioninfo->chips == 1) ? "" : "s");
if (minioninfo->chips == 0)
goto cleanup;
if (!add_cgpu(minioncgpu))
goto cleanup;
mutex_init(&(minioninfo->nonce_lock));
minioninfo->wfree_list = new_list("Work", sizeof(WITEM), ALLOC_WITEMS, true, MINION_FFL_HERE);
minioninfo->wwork_list = new_store(minioninfo->wfree_list);
// Initialise them all in case we later decide to enable chips
for (i = 0; i < MINION_CHIPS; i++)
minioninfo->wchip_list[i] = new_store(minioninfo->wfree_list);
minioninfo->tfree_list = new_list("Task", sizeof(TITEM), ALLOC_TITEMS, true, MINION_FFL_HERE);
minioninfo->task_list = new_store(minioninfo->tfree_list);
minioninfo->treply_list = new_store(minioninfo->tfree_list);
minioninfo->rfree_list = new_list("Reply", sizeof(RITEM), ALLOC_RITEMS, true, MINION_FFL_HERE);
minioninfo->rnonce_list = new_store(minioninfo->rfree_list);
cgsem_init(&(minioninfo->task_ready));
cgsem_init(&(minioninfo->nonce_ready));
cgsem_init(&(minioninfo->scan_work));
minioninfo->initialised = true;
return;
cleanup:
close(minioninfo->gpiointfd);
close(minioninfo->spifd);
mutex_destroy(&(minioninfo->sta_lock));
mutex_destroy(&(minioninfo->spi_lock));
unalloc:
free(minioninfo);
free(minioncgpu);
}
static void minion_identify(__maybe_unused struct cgpu_info *minioncgpu)
{
// flash a led
}
/*
* SPI/ioctl write thread
* Non urgent work is to keep the queue full
* Urgent work is when an LP occurs (or the queue is empty/low)
*/
static void *minion_spi_write(void *userdata)
{
struct cgpu_info *minioncgpu = (struct cgpu_info *)userdata;
struct minion_info *minioninfo = (struct minion_info *)(minioncgpu->device_data);
K_ITEM *item, *tail;
TITEM *titem;
applog(MINION_LOG, "%s%i: SPI writing...",
minioncgpu->drv->name, minioncgpu->device_id);
// Wait until we're ready
while (minioncgpu->shutdown == false) {
if (minioninfo->initialised) {
break;
}
cgsleep_ms(1); // asap to start mining
}
// TODO: combine all urgent into a single I/O?
// Then combine all state 1 for the same chip into a single I/O ?
// (then again for state 2?)
while (minioncgpu->shutdown == false) {
item = NULL;
K_WLOCK(minioninfo->task_list);
tail = minioninfo->task_list->tail;
if (tail) {
// Find first urgent item
item = tail;
while (item && !(DATAT(item)->urgent))
item = item->prev;
// No urgent items, just do the tail
if (!item)
item = tail;
k_remove(minioninfo->task_list, item);
}
K_WUNLOCK(minioninfo->task_list);
if (item) {
bool do_txrx = true;
bool store_reply = true;
titem = DATAT(item);
switch (titem->address) {
// TODO: case MINION_CORE_ENA0_31:
// TODO: case MINION_CORE_ENA32_63:
// TODO: case MINION_CORE_ENA64_95:
// TODO: case MINION_CORE_ENA96_98:
// TODO: case MINION_SYS_TEMP_CTL:
// TODO: case MINION_SYS_FREQ_CTL:
case READ_ADDR(MINION_SYS_CHIP_STA):
store_reply = false;
break;
case WRITE_ADDR(MINION_QUE_0):
store_reply = false;
break;
case WRITE_ADDR(MINION_SYS_RSTN_CTL):
store_reply = false;
break;
default:
do_txrx = false;
titem->reply = MINION_UNEXPECTED_TASK;
applog(LOG_ERR, "%s%i: Unexpected task address 0x%02x (%s)",
minioncgpu->drv->name, minioncgpu->device_id,
(unsigned int)(titem->address),
addr2txt(titem->address));
break;
}
if (do_txrx) {
minion_txrx(titem);
switch (titem->address) {
case READ_ADDR(MINION_SYS_CHIP_STA):
if (titem->reply >= (int)(titem->osiz)) {
uint8_t *rep = &(titem->rbuf[titem->osiz - titem->rsiz]);
int chip = titem->chip;
mutex_lock(&(minioninfo->sta_lock));
minioninfo->chip_status[chip].temp = STA_TEMP(rep);
minioninfo->chip_status[chip].cores = STA_CORES(rep);
minioninfo->chip_status[chip].freq = STA_FREQ(rep);
mutex_unlock(&(minioninfo->sta_lock));
}
break;
case WRITE_ADDR(MINION_QUE_0):
case WRITE_ADDR(MINION_SYS_RSTN_CTL):
default:
break;
}
}
K_WLOCK(minioninfo->treply_list);
if (store_reply)
k_add_head(minioninfo->treply_list, item, MINION_FFL_HERE);
else
k_free_head(minioninfo->tfree_list, item, MINION_FFL_HERE);
K_WUNLOCK(minioninfo->treply_list);
/*
* Always check for the next task immediately if we just did one
* i.e. empty the task queue
*/
continue;
}
cgsem_mswait(&(minioninfo->task_ready), MINION_TASK_mS);
}
return NULL;
}
/*
* SPI/ioctl reply thread
* ioctl done every interrupt or MINION_REPLY_mS checking for results
*/
static void *minion_spi_reply(void *userdata)
{
struct cgpu_info *minioncgpu = (struct cgpu_info *)userdata;
struct minion_info *minioninfo = (struct minion_info *)(minioncgpu->device_data);
struct minion_result *result;
K_ITEM *item;
TITEM fifo_task, res_task;
int chip, resoff, ret;
struct pollfd pfd;
struct minion_header *head;
uint8_t rbuf[MINION_BUFSIZ];
uint8_t wbuf[MINION_BUFSIZ];
uint32_t wsiz, rsiz;
int reply;
applog(MINION_LOG, "%s%i: SPI replying...",
minioncgpu->drv->name, minioncgpu->device_id);
// Wait until we're ready
while (minioncgpu->shutdown == false) {
if (minioninfo->initialised) {
break;
}
cgsleep_ms(2);
}
fifo_task.chip = 0;
fifo_task.write = false;
fifo_task.address = MINION_SYS_FIFO_STA;
fifo_task.wsiz = 0;
fifo_task.rsiz = MINION_SYS_SIZ;
fifo_task.urgent = false;
fifo_task.work = NULL;
res_task.chip = 0;
res_task.write = false;
res_task.address = MINION_RES_DATA;
res_task.wsiz = 0;
res_task.rsiz = MINION_RES_DATA_SIZ;
res_task.urgent = false;
res_task.work = NULL;
memset(&pfd, 0, sizeof(pfd));
pfd.fd = minioninfo->gpiointfd;
pfd.events = POLLPRI;
head = (struct minion_header *)wbuf;
SET_HEAD_SIZ(head, MINION_SYS_SIZ);
wsiz = HSIZE() + MINION_SYS_SIZ;
rsiz = MINION_SYS_SIZ; // for READ, use 0 for WRITE
while (minioncgpu->shutdown == false) {
for (chip = 0; chip < MINION_CHIPS; chip++) {
if (minioninfo->chip[chip]) {
uint8_t res = 0;
fifo_task.chip = chip;
fifo_task.reply = 0;
minion_txrx(&fifo_task);
if (fifo_task.reply > 0) {
if (fifo_task.reply < (int)(fifo_task.osiz)) {
char *buf = bin2hex((unsigned char *)(&(fifo_task.rbuf[fifo_task.osiz - fifo_task.rsiz])), (int)(fifo_task.rsiz));
applog(LOG_ERR, "%s%i: Bad fifo reply (%s) size %d, should be %d",
minioncgpu->drv->name, minioncgpu->device_id, buf,
fifo_task.reply, (int)(fifo_task.osiz));
free(buf);
} else {
if (fifo_task.reply > (int)(fifo_task.osiz)) {
applog(LOG_ERR, "%s%i: Unexpected fifo reply size %d, expected only %d",
minioncgpu->drv->name, minioncgpu->device_id,
fifo_task.reply, (int)(fifo_task.osiz));
}
res = FIFO_RES(fifo_task.rbuf, fifo_task.osiz - fifo_task.rsiz);
}
}
/*
* Chip has results?
* You can't request results unless it says it has some.
* We don't ever directly flush the output queue while processing
* (except at startup) so the answer is always valid
* i.e. there could be more, but never less
*/
if (res > 0) {
res_task.chip = chip;
res_task.reply = 0;
res_task.rsiz = res * MINION_RES_DATA_SIZ;
minion_txrx(&res_task);
if (res_task.reply > 0) {
if (res_task.reply < (int)MINION_RES_DATA_SIZ) {
char *buf = bin2hex((unsigned char *)(&(res_task.rbuf[res_task.osiz - res_task.rsiz])), (int)(res_task.rsiz));
applog(LOG_ERR, "%s%i: Bad work reply (%s) size %d, should be at least %d",
minioncgpu->drv->name, minioncgpu->device_id, buf,
res_task.reply, (int)MINION_RES_DATA_SIZ);
free(buf);
} else {
if (res_task.reply != (int)(res_task.osiz)) {
applog(LOG_ERR, "%s%i: Unexpected work reply size %d, expected %d",
minioncgpu->drv->name, minioncgpu->device_id,
res_task.reply, (int)(res_task.osiz));
}
for (resoff = res_task.osiz - res_task.rsiz; resoff < (int)res_task.osiz; resoff += MINION_RES_DATA_SIZ) {
result = (struct minion_result *)&(res_task.rbuf[resoff]);
if (IS_RESULT(result)) {
K_WLOCK(minioninfo->rfree_list);
item = k_get_head(minioninfo->rfree_list, MINION_FFL_HERE);
K_WUNLOCK(minioninfo->rfree_list);
DATAR(item)->chip = RES_CHIP(result);
DATAR(item)->core = RES_CORE(result);
DATAR(item)->task_id = RES_TASK(result);
DATAR(item)->nonce = RES_NONCE(result);
DATAR(item)->no_nonce = !RES_GOLD(result);
//if (RES_GOLD(result))
//applog(LOG_ERR, "%s%i: found a result chip %d core %d task 0x%04x nonce 0x%08x", minioncgpu->drv->name, minioncgpu->device_id, DATAR(item)->chip, DATAR(item)->core, DATAR(item)->task_id, DATAR(item)->nonce);
K_WLOCK(minioninfo->rnonce_list);
k_add_head(minioninfo->rnonce_list, item, MINION_FFL_HERE);
K_WUNLOCK(minioninfo->rnonce_list);
cgsem_post(&(minioninfo->nonce_ready));
} else {
applog(LOG_ERR, "%s%i: Invalid task_id - chip %d core %d task 0x%04x nonce 0x%08x",
minioncgpu->drv->name, minioncgpu->device_id,
DATAR(item)->chip,
DATAR(item)->core,
DATAR(item)->task_id,
DATAR(item)->nonce);
}
}
}
}
}
}
}
// TODO: this is going to require a bit of tuning with 2TH/s mining:
// The interrupt size MINION_RESULT_INT_SIZE should be high enough to expect
// most chips to have some results but low enough to cause negligible latency
// If all chips don't have some results when an interrupt occurs, then it is a waste
// since we have to check all chips for results anyway since we don't know which one
// caused the interrupt
// MINION_REPLY_mS needs to be low enough in the case of bad luck where no chip
// finds MINION_RESULT_INT_SIZE results in a short amount of time, so we go check
// them all anyway - to avoid high latency when there are only a few results due to low luck
ret = poll(&pfd, 1, MINION_REPLY_mS);
if (ret > 0) {
bool gotres;
int c;
read(minioninfo->gpiointfd, &c, 1);
/*
applog(LOG_ERR, "%s%i: Interrupt",
minioncgpu->drv->name,
minioncgpu->device_id);
*/
gotres = false;
for (chip = 0; chip < MINION_CHIPS; chip++) {
if (minioninfo->chip[chip]) {
SET_HEAD_READ(head, MINION_SYS_INT_STA);
head->chip = chip;
reply = do_ioctl(wbuf, wsiz, rbuf, rsiz);
if (reply != (int)wsiz) {
applog(LOG_ERR, "%s: chip %d int status returned %d"
" (should be %d)",
minioncgpu->drv->dname,
chip, reply, (int)wsiz);
}
if (rbuf[wsiz - rsiz] & MINION_RESULT_INT) {
gotres = true;
/*
applog(LOG_ERR, "%s%i: chip %d got RES interrupt",
minioncgpu->drv->name,
minioncgpu->device_id,
chip);
*/
}
if (rbuf[wsiz - rsiz] & MINION_CMD_INT) {
// Work queue is empty
/*
applog(LOG_ERR, "%s%i: chip %d got CMD interrupt",
minioncgpu->drv->name,
minioncgpu->device_id,
chip);
*/
}
/*
{
char *tmp;
tmp = bin2hex(rbuf, wsiz);
applog(LOG_ERR, "%s%i: chip %d interrupt: %s",
minioncgpu->drv->name,
minioncgpu->device_id,
chip, tmp);
free(tmp);
}
*/
// TODO: try combining MINION_SYS_INT_STA and
// MINION_SYS_INT_CLR in one ioctl()
// Clear all the interrupt bits we got
SET_HEAD_WRITE(head, MINION_SYS_INT_CLR);
head->data[0] = rbuf[wsiz - rsiz];
head->data[1] = 0x00;
head->data[2] = 0x00;
head->data[3] = 0x00;
reply = do_ioctl(wbuf, wsiz, rbuf, 0);
if (reply != (int)wsiz) {
applog(LOG_ERR, "%s: chip %d int clear returned %d"
" (should be %d)",
minioncgpu->drv->dname,
chip, reply, (int)wsiz);
}
}
}
// Doing this last means we can't miss an interrupt
if (gotres)
cgsem_post(&(minioninfo->scan_work));
}
}
return NULL;
}
/*
* Find the matching work item for this chip
* Discard any older work items for this chip
*/
enum nonce_state {
NONCE_GOOD_NONCE,
NONCE_NO_NONCE,
NONCE_BAD_NONCE,
NONCE_BAD_WORK,
NONCE_NO_WORK
};
static void cleanup_older(struct cgpu_info *minioncgpu, int chip, K_ITEM *item, bool no_nonce)
{
struct minion_info *minioninfo = (struct minion_info *)(minioncgpu->device_data);
K_ITEM *tail;
// remove older work items (no_nonce means this 'item' has finished also)
if (item->next || no_nonce) {
K_WLOCK(minioninfo->wchip_list[chip]);
tail = minioninfo->wchip_list[chip]->tail;
while (tail && tail != item) {
k_remove(minioninfo->wchip_list[chip], tail);
if (!(DATAW(tail)->stale))
minioninfo->wchip_list[chip]->count_up--;
K_WUNLOCK(minioninfo->wchip_list[chip]);
applog(MINION_LOG, "%s%i: marking complete - old task 0x%04x chip %d",
minioncgpu->drv->name, minioncgpu->device_id,
DATAW(tail)->task_id, chip);
work_completed(minioncgpu, DATAW(tail)->work);
K_WLOCK(minioninfo->wchip_list[chip]);
k_free_head(minioninfo->wfree_list, tail, MINION_FFL_HERE);
tail = minioninfo->wchip_list[chip]->tail;
}
if (no_nonce) {
k_remove(minioninfo->wchip_list[chip], item);
if (!(DATAW(item)->stale))
minioninfo->wchip_list[chip]->count_up--;
K_WUNLOCK(minioninfo->wchip_list[chip]);
applog(MINION_LOG, "%s%i: marking complete - old task 0x%04x chip %d",
minioncgpu->drv->name, minioncgpu->device_id,
DATAW(item)->task_id, chip);
work_completed(minioncgpu, DATAW(item)->work);
K_WLOCK(minioninfo->wchip_list[chip]);
k_free_head(minioninfo->wfree_list, item, MINION_FFL_HERE);
}
K_WUNLOCK(minioninfo->wchip_list[chip]);
}
}
static enum nonce_state oknonce(struct thr_info *thr, struct cgpu_info *minioncgpu, int chip, int core, uint32_t task_id, uint32_t nonce, bool no_nonce)
{
struct minion_info *minioninfo = (struct minion_info *)(minioncgpu->device_data);
K_ITEM *item;
minioninfo->chip_nonces[chip]++;
K_RLOCK(minioninfo->wchip_list[chip]);
item = minioninfo->wchip_list[chip]->tail;
if (!item) {
K_RUNLOCK(minioninfo->wchip_list[chip]);
applog(LOG_ERR, "%s%i: no work (chip %d core %d task 0x%04x)",
minioncgpu->drv->name, minioncgpu->device_id,
chip, core, (int)task_id);
minioninfo->untested_nonces++;
return NONCE_NO_WORK;
}
while (item) {
if (DATAW(item)->task_id == task_id)
break;
item = item->prev;
}
K_RUNLOCK(minioninfo->wchip_list[chip]);
if (!item) {
applog(LOG_ERR, "%s%i: chip %d core %d unknown work task 0x%04x",
minioncgpu->drv->name, minioncgpu->device_id,
chip, core, (int)task_id);
minioninfo->untested_nonces++;
return NONCE_BAD_WORK;
}
if (no_nonce) {
cleanup_older(minioncgpu, chip, item, no_nonce);
return NONCE_NO_NONCE;
}
minioninfo->tested_nonces++;
if (test_nonce(DATAW(item)->work, nonce)) {
//applog(LOG_ERR, "%s%i: Valid Nonce chip %d core %d task 0x%04x nonce 0x%08x", minioncgpu->drv->name, minioncgpu->device_id, chip, core, task_id, nonce);
submit_tested_work(thr, DATAW(item)->work);
minioninfo->chip_good[chip]++;
minioninfo->core_good[chip][core]++;
DATAW(item)->nonces++;
mutex_lock(&(minioninfo->nonce_lock));
minioninfo->new_nonces++;
mutex_unlock(&(minioninfo->nonce_lock));
minioninfo->ok_nonces++;
cleanup_older(minioncgpu, chip, item, no_nonce);
return NONCE_GOOD_NONCE;
}
minioninfo->chip_bad[chip]++;
minioninfo->core_bad[chip][core]++;
inc_hw_errors(thr);
applog(LOG_ERR, "%s%i: HW ERROR chip %d core %d task 0x%04x nonce 0x%08x", minioncgpu->drv->name, minioncgpu->device_id, chip, core, task_id, nonce);
return NONCE_BAD_NONCE;
}
// Results checking thread
static void *minion_results(void *userdata)
{
struct cgpu_info *minioncgpu = (struct cgpu_info *)userdata;
struct minion_info *minioninfo = (struct minion_info *)(minioncgpu->device_data);
struct thr_info *thr = minioncgpu->thr[0];
int chip, core;
uint32_t task_id;
uint32_t nonce;
bool no_nonce;
applog(MINION_LOG, "%s%i: Results...",
minioncgpu->drv->name, minioncgpu->device_id);
// Wait until we're ready
while (minioncgpu->shutdown == false) {
if (minioninfo->initialised) {
break;
}
cgsleep_ms(3);
}
while (minioncgpu->shutdown == false) {
if (!oldest_nonce(minioncgpu, &chip, &core, &task_id, &nonce, &no_nonce)) {
cgsem_mswait(&(minioninfo->nonce_ready), MINION_NONCE_mS);
continue;
}
oknonce(thr, minioncgpu, chip, core, task_id, nonce, no_nonce);
}
return NULL;
}
static void minion_flush_work(struct cgpu_info *minioncgpu)
{
struct minion_info *minioninfo = (struct minion_info *)(minioncgpu->device_data);
K_ITEM *stale_unused_work, *prev_unused, *task, *prev_task, *work;
int i;
applog(MINION_LOG, "%s%i: flushing work",
minioncgpu->drv->name, minioncgpu->device_id);
// set stale all wchip_list contents
// TODO: N.B. scanwork also gets work locks - which master thread calls flush?
K_WLOCK(minioninfo->wwork_list);
for (i = 0; i < MINION_CHIPS; i++)
if (minioninfo->chip[i]) {
work = minioninfo->wchip_list[i]->head;
while (work) {
DATAW(work)->stale = true;
work = work->next;
}
minioninfo->wchip_list[i]->count_up = 0;
}
// Simply remove the whole unused wwork_list
stale_unused_work = minioninfo->wwork_list->tail;
if (stale_unused_work) {
minioninfo->wwork_list->head = NULL;
minioninfo->wwork_list->tail = NULL;
minioninfo->wwork_list->count = 0;
}
// TODO: flush/work tasks should have a block sequence number so this task removal code
// might be better implemented in minion_spi_write where each work task would
// update the block sequence number and any work tasks with an old block sequence
// number would be discarded rather than sent - minion_spi_write will also need to
// prioritise flush urgent tasks above work urgent tasks - have 3 urgent states?
// They should however be 2 seperate variables in minioninfo to reduce locking
// - flush will increment one and put it in the flush task, (and work will use that)
// minion_spi_write will check/update the other and thus not need a lock
// No deadlock since this is the only code to get 2 locks
K_WLOCK(minioninfo->tfree_list);
task = minioninfo->task_list->tail;
while (task) {
prev_task = task->prev;
if (DATAT(task)->address == WRITE_ADDR(MINION_QUE_0)) {
k_remove(minioninfo->task_list, task);
/*
* Discard it - the work is already in the wchip_list and
* will be cleaned up by the next task on the chip
*/
k_free_head(minioninfo->tfree_list, task, MINION_FFL_HERE);
}
task = prev_task;
}
for (i = 0; i < MINION_CHIPS; i++) {
if (minioninfo->chip[i]) {
task = k_get_head(minioninfo->tfree_list, MINION_FFL_HERE);
DATAT(task)->chip = i;
DATAT(task)->write = true;
DATAT(task)->address = MINION_SYS_RSTN_CTL;
DATAT(task)->task_id = 0; // ignored
DATAT(task)->wsiz = MINION_SYS_SIZ;
DATAT(task)->rsiz = 0;
DATAT(task)->wbuf[0] = SYS_RSTN_CTL_FLUSH;
DATAT(task)->wbuf[1] = 0;
DATAT(task)->wbuf[2] = 0;
DATAT(task)->wbuf[3] = 0;
DATAT(task)->urgent = true;
k_add_head(minioninfo->task_list, task, MINION_FFL_HERE);
}
}
K_WUNLOCK(minioninfo->tfree_list);
K_WUNLOCK(minioninfo->wwork_list);
// TODO: send a signal to force getting and sending new work - needs cgsem_wait in the sending thread
// TODO: should we use this thread to do the following work?
if (stale_unused_work) {
// mark complete all stale unused work (oldest first)
prev_unused = stale_unused_work;
while (prev_unused) {
work_completed(minioncgpu, DATAW(prev_unused)->work);
prev_unused = prev_unused->prev;
}
// put the items back in the wfree_list (oldest first)
K_WLOCK(minioninfo->wfree_list);
while (stale_unused_work) {
prev_unused = stale_unused_work->prev;
k_free_head(minioninfo->wfree_list, stale_unused_work, MINION_FFL_HERE);
stale_unused_work = prev_unused;
}
K_WUNLOCK(minioninfo->wfree_list);
}
}
static void new_work_task(struct cgpu_info *minioncgpu, K_ITEM *witem, int chip, bool urgent, uint8_t state)
{
struct minion_info *minioninfo = (struct minion_info *)(minioncgpu->device_data);
struct minion_que *que;
K_ITEM *item;
K_WLOCK(minioninfo->tfree_list);
item = k_get_head(minioninfo->tfree_list, MINION_FFL_HERE);
K_WUNLOCK(minioninfo->tfree_list);
DATAT(item)->chip = chip;
DATAT(item)->write = true;
DATAT(item)->address = MINION_QUE_0;
// if threaded access to new_work_task() is added, this will need locking
// Don't use task_id 0 so that we can ignore all '0' work replies
// ... and report them as errors
if (minioninfo->next_task_id == 0)
minioninfo->next_task_id = 1;
DATAT(item)->task_id = minioninfo->next_task_id;
DATAW(witem)->task_id = minioninfo->next_task_id;
minioninfo->next_task_id = (minioninfo->next_task_id + 1) & MINION_MAX_TASK_ID;
DATAT(item)->urgent = urgent;
DATAT(item)->work_state = state;
DATAT(item)->work = DATAW(witem)->work;
que = (struct minion_que *)&(DATAT(item)->wbuf[0]);
que->task_id[0] = DATAT(item)->task_id & 0xff;
que->task_id[1] = (DATAT(item)->task_id & 0xff00) >> 8;
memcpy(&(que->midstate[0]), &(DATAW(witem)->work->midstate[0]), MIDSTATE_BYTES);
memcpy(&(que->merkle7[0]), &(DATAW(witem)->work->data[MERKLE7_OFFSET]), MERKLE_BYTES);
DATAT(item)->wsiz = (int)sizeof(*que);
DATAT(item)->rsiz = 0;
K_WLOCK(minioninfo->task_list);
k_add_head(minioninfo->task_list, item, MINION_FFL_HERE);
K_WUNLOCK(minioninfo->task_list);
if (urgent)
cgsem_post(&(minioninfo->task_ready));
// N.B. this will only update often enough if a chip is > ~2GH/s
if (!urgent) {
struct timeval now;
int limit;
cgtime(&now);
// No lock required since 'last' is only accessed here
if (minioninfo->chip_status[chip].last.tv_sec == 0) {
memcpy(&(minioninfo->chip_status[chip].last), &now, sizeof(now));
} else {
limit = MINION_STATS_UPDATE_TIME_mS +
(int)(random() % MINION_STATS_UPDATE_RAND_mS);
if (ms_tdiff(&now, &(minioninfo->chip_status[chip].last)) > limit) {
memcpy(&(minioninfo->chip_status[chip].last), &now, sizeof(now));
K_WLOCK(minioninfo->tfree_list);
item = k_get_head(minioninfo->tfree_list, MINION_FFL_HERE);
K_WUNLOCK(minioninfo->tfree_list);
DATAT(item)->chip = chip;
DATAT(item)->write = false;
DATAT(item)->address = READ_ADDR(MINION_SYS_CHIP_STA);
DATAT(item)->task_id = 0;
DATAT(item)->wsiz = 0;
DATAT(item)->rsiz = MINION_SYS_SIZ;
DATAT(item)->urgent = false;
K_WLOCK(minioninfo->task_list);
k_add_head(minioninfo->task_list, item, MINION_FFL_HERE);
K_WUNLOCK(minioninfo->task_list);
cgtime(&(minioninfo->chip_status[chip].last));
}
}
}
}
// TODO: stale work ...
static K_ITEM *next_work(struct minion_info *minioninfo)
{
K_ITEM *item;
K_WLOCK(minioninfo->wwork_list);
item = minioninfo->wwork_list->tail;
if (item)
k_remove(minioninfo->wwork_list, item);
K_WUNLOCK(minioninfo->wwork_list);
return item;
}
static void minion_do_work(struct cgpu_info *minioncgpu)
{
struct minion_info *minioninfo = (struct minion_info *)(minioncgpu->device_data);
int count, chip, j;
uint8_t state;
K_ITEM *item;
// TODO: (remove this) Fake starved of work to test CMD Interrupt
// if (total_secs > 120) {
// cgsleep_ms(888);
// return;
// }
/*
* Fill the queues as follows:
* 1) put at least 1 in each queue
* 2) push each queue up to LOW
* 3) push each LOW queue up to HIGH
*/
for (state = 0; state < 3; state++) {
for (chip = 0; chip < MINION_CHIPS; chip++) {
if (minioninfo->chip[chip]) {
K_RLOCK(minioninfo->wchip_list[chip]);
count = minioninfo->wchip_list[chip]->count_up;
K_RUNLOCK(minioninfo->wchip_list[chip]);
switch (state) {
case 0:
if (count == 0) {
item = next_work(minioninfo);
if (item) {
new_work_task(minioncgpu, item, chip, true, state);
K_WLOCK(minioninfo->wchip_list[chip]);
k_add_head(minioninfo->wchip_list[chip], item, MINION_FFL_HERE);
K_WUNLOCK(minioninfo->wchip_list[chip]);
applog(MINION_LOG, "%s%i: 0 task 0x%04x in chip %d list",
minioncgpu->drv->name,
minioncgpu->device_id,
DATAW(item)->task_id, chip);
} else {
applog(LOG_ERR, "%s%i: chip %d urgent empty work list",
minioncgpu->drv->name,
minioncgpu->device_id,
chip);
}
}
break;
case 1:
if (count < MINION_QUE_LOW) {
for (j = count; j < MINION_QUE_LOW; j++) {
item = next_work(minioninfo);
if (item) {
new_work_task(minioncgpu, item, chip, false, state);
K_WLOCK(minioninfo->wchip_list[chip]);
k_add_head(minioninfo->wchip_list[chip], item, MINION_FFL_HERE);
K_WUNLOCK(minioninfo->wchip_list[chip]);
applog(MINION_LOG, "%s%i: 1 task 0x%04x in chip %d list",
minioncgpu->drv->name,
minioncgpu->device_id,
DATAW(item)->task_id, chip);
} else {
applog(LOG_ERR, "%s%i: chip %d non-urgent lo "
"empty work list (count=%d)",
minioncgpu->drv->name,
minioncgpu->device_id,
chip, j);
}
}
}
break;
case 2:
if (count <= MINION_QUE_LOW) {
for (j = count; j < MINION_QUE_HIGH; j++) {
item = next_work(minioninfo);
if (item) {
new_work_task(minioncgpu, item, chip, false, state);
K_WLOCK(minioninfo->wchip_list[chip]);
k_add_head(minioninfo->wchip_list[chip], item, MINION_FFL_HERE);
K_WUNLOCK(minioninfo->wchip_list[chip]);
applog(MINION_LOG, "%s%i: 2 task 0x%04x in chip %d list",
minioncgpu->drv->name,
minioncgpu->device_id,
DATAW(item)->task_id, chip);
} else {
applog(LOG_ERR, "%s%i: chip %d non-urgent hi "
"empty work list (count=%d)",
minioncgpu->drv->name,
minioncgpu->device_id,
chip, j);
}
}
}
break;
}
}
}
}
}
static bool minion_thread_prepare(struct thr_info *thr)
{
struct cgpu_info *minioncgpu = thr->cgpu;
struct minion_info *minioninfo = (struct minion_info *)(minioncgpu->device_data);
/*
* SPI/ioctl write thread
*/
if (thr_info_create(&(minioninfo->spiw_thr), NULL, minion_spi_write, (void *)minioncgpu)) {
applog(LOG_ERR, "%s%i: SPI write thread create failed",
minioncgpu->drv->name, minioncgpu->device_id);
return false;
}
pthread_detach(minioninfo->spiw_thr.pth);
/*
* SPI/ioctl results thread
*/
if (thr_info_create(&(minioninfo->spir_thr), NULL, minion_spi_reply, (void *)minioncgpu)) {
applog(LOG_ERR, "%s%i: SPI reply thread create failed",
minioncgpu->drv->name, minioncgpu->device_id);
return false;
}
pthread_detach(minioninfo->spir_thr.pth);
/*
* Seperate results checking thread so ioctl timing can ignore the results checking
*/
if (thr_info_create(&(minioninfo->res_thr), NULL, minion_results, (void *)minioncgpu)) {
applog(LOG_ERR, "%s%i: Results thread create failed",
minioncgpu->drv->name, minioncgpu->device_id);
return false;
}
pthread_detach(minioninfo->res_thr.pth);
return true;
}
static void minion_shutdown(struct thr_info *thr)
{
struct cgpu_info *minioncgpu = thr->cgpu;
struct minion_info *minioninfo = (struct minion_info *)(minioncgpu->device_data);
int i;
applog(MINION_LOG, "%s%i: shutting down",
minioncgpu->drv->name, minioncgpu->device_id);
for (i = 0; i < MINION_CHIPS; i++)
if (minioninfo->chip[i])
// TODO: minion_shutdown(minioncgpu, minioninfo, i);
i = i;
minioncgpu->shutdown = true;
}
static bool minion_queue_full(struct cgpu_info *minioncgpu)
{
struct minion_info *minioninfo = (struct minion_info *)(minioncgpu->device_data);
struct work *work;
int count;
bool ret;
K_RLOCK(minioninfo->wwork_list);
count = minioninfo->wwork_list->count;
K_RUNLOCK(minioninfo->wwork_list);
if (count >= (MINION_QUE_HIGH * minioninfo->chips))
ret = true;
else {
work = get_queued(minioncgpu);
if (work)
ready_work(minioncgpu, work);
else
// Avoid a hard loop when we can't get work fast enough
cgsleep_us(42);
ret = false;
}
return ret;
}
static int64_t minion_scanwork(__maybe_unused struct thr_info *thr)
{
struct cgpu_info *minioncgpu = thr->cgpu;
struct minion_info *minioninfo = (struct minion_info *)(minioncgpu->device_data);
int64_t hashcount = 0;
minion_do_work(minioncgpu);
mutex_lock(&(minioninfo->nonce_lock));
if (minioninfo->new_nonces) {
hashcount += 0xffffffffull * minioninfo->new_nonces;
minioninfo->new_nonces = 0;
}
mutex_unlock(&(minioninfo->nonce_lock));
/*
* To avoid wasting CPU, wait until we get an interrupt
* before returning back to the main cgminer work loop
* i.e. we then know we'll need more work
*/
cgsem_mswait(&(minioninfo->scan_work), MINION_SCAN_mS);
return hashcount;
}
static void minion_get_statline_before(char *buf, size_t bufsiz, struct cgpu_info *minioncgpu)
{
struct minion_info *minioninfo = (struct minion_info *)(minioncgpu->device_data);
uint16_t max_temp, cores;
int chip;
max_temp = 0;
cores = 0;
mutex_lock(&(minioninfo->sta_lock));
for (chip = 0; chip < MINION_CHIPS; chip++) {
if (minioninfo->chip[chip]) {
cores += minioninfo->chip_status[chip].cores;
if (max_temp < minioninfo->chip_status[chip].temp)
max_temp = minioninfo->chip_status[chip].temp;
}
}
mutex_unlock(&(minioninfo->sta_lock));
tailsprintf(buf, bufsiz, "max%3dC Ch:%2d Co:%d",
(int)max_temp, minioninfo->chips, (int)cores);
}
#define CHIPS_PER_STAT 8
static struct api_data *minion_api_stats(struct cgpu_info *minioncgpu)
{
struct minion_info *minioninfo = (struct minion_info *)(minioncgpu->device_data);
struct api_data *root = NULL;
char data[2048];
char buf[32];
int i, to, j;
int chip, max_chip, chip_work;
if (minioninfo->initialised == false)
return NULL;
root = api_add_uint64(root, "OK Nonces", &(minioninfo->ok_nonces), true);
root = api_add_uint64(root, "New Nonces", &(minioninfo->new_nonces), true);
root = api_add_uint64(root, "Tested Nonces", &(minioninfo->tested_nonces), true);
root = api_add_uint64(root, "Untested Nonces", &(minioninfo->untested_nonces), true);
root = api_add_int(root, "Chips", &(minioninfo->chips), true);
max_chip = 0;
for (chip = 0; chip < MINION_CHIPS; chip++)
if (minioninfo->chip[chip])
max_chip = chip;
for (i = 0; i <= max_chip; i += CHIPS_PER_STAT) {
to = i + CHIPS_PER_STAT - 1;
if (to > max_chip)
to = max_chip;
data[0] = '\0';
for (j = i; j <= to; j++) {
snprintf(buf, sizeof(buf),
"%s%d",
j == i ? "" : " ",
minioninfo->chip[j] ? 1 : 0);
strcat(data, buf);
}
snprintf(buf, sizeof(buf), "Detected %02d - %02d", i, to);
root = api_add_string(root, buf, data, true);
data[0] = '\0';
for (j = i; j <= to; j++) {
snprintf(buf, sizeof(buf),
"%s%8"PRIu64,
j == i ? "" : " ",
minioninfo->chip_nonces[j]);
strcat(data, buf);
}
snprintf(buf, sizeof(buf), "Nonces %02d - %02d", i, to);
root = api_add_string(root, buf, data, true);
data[0] = '\0';
for (j = i; j <= to; j++) {
snprintf(buf, sizeof(buf),
"%s%8"PRIu64,
j == i ? "" : " ",
minioninfo->chip_good[j]);
strcat(data, buf);
}
snprintf(buf, sizeof(buf), "Good %02d - %02d", i, to);
root = api_add_string(root, buf, data, true);
data[0] = '\0';
for (j = i; j <= to; j++) {
snprintf(buf, sizeof(buf),
"%s%8"PRIu64,
j == i ? "" : " ",
minioninfo->chip_bad[j]);
strcat(data, buf);
}
snprintf(buf, sizeof(buf), "Bad %02d - %02d", i, to);
root = api_add_string(root, buf, data, true);
}
chip_work = 0;
for (chip = 0; chip <= max_chip; chip++)
if (minioninfo->chip[chip])
chip_work += minioninfo->wchip_list[chip]->count;
root = api_add_int(root, "WFree Total", &(minioninfo->wfree_list->total), true);
root = api_add_int(root, "WFree Count", &(minioninfo->wfree_list->count), true);
root = api_add_int(root, "WWork Count", &(minioninfo->wwork_list->count), true);
root = api_add_int(root, "WChip Count", &chip_work, true);
root = api_add_int(root, "TFree Total", &(minioninfo->tfree_list->total), true);
root = api_add_int(root, "TFree Count", &(minioninfo->tfree_list->count), true);
root = api_add_int(root, "Task Count", &(minioninfo->task_list->count), true);
root = api_add_int(root, "Reply Count", &(minioninfo->treply_list->count), true);
root = api_add_int(root, "RFree Total", &(minioninfo->rfree_list->total), true);
root = api_add_int(root, "RFree Count", &(minioninfo->rfree_list->count), true);
root = api_add_int(root, "RNonce Count", &(minioninfo->rnonce_list->count), true);
#define sta_api(_name, _iostat) \
do { \
if ((_iostat).count) { \
float _davg = (float)((_iostat).total_delay) / (float)((_iostat).count); \
float _dlavg = (float)((_iostat).total_dlock) / (float)((_iostat).count); \
float _dlwavg = (float)((_iostat).total_dlwait) / (float)((_iostat).count); \
float _bavg = (float)((_iostat).total_bytes) / (float)((_iostat).count); \
float _tavg = (float)((_iostat).tsd) / (float)((_iostat).count); \
snprintf(data, sizeof(data), "%s Count=%"PRIu64 \
" Delay=%.0fus DAvg=%.3f" \
" DMin=%.0f DMax=%.0f DZ=%"PRIu64 \
" DLock=%.0fus DLAvg=%.3f" \
" DLMin=%.0f DLMax=%.0f DZ=%"PRIu64 \
" DLWait=%.0fus DLWAvg=%.3f" \
" Bytes=%"PRIu64" BAvg=%.3f" \
" BMin=%"PRIu64" BMax=%"PRIu64" BZ=%"PRIu64 \
" TSD=%.0fus TAvg=%.03f", \
_name, (_iostat).count, \
(_iostat).total_delay, _davg, (_iostat).min_delay, \
(_iostat).max_delay, (_iostat).zero_delay, \
(_iostat).total_dlock, _dlavg, (_iostat).min_dlock, \
(_iostat).max_dlock, (_iostat).zero_dlock, \
(_iostat).total_dlwait, _dlwavg, \
(_iostat).total_bytes, _bavg, (_iostat).min_bytes, \
(_iostat).max_bytes, (_iostat).zero_bytes, \
(_iostat).tsd, _tavg); \
root = api_add_string(root, buf, data, true); \
} \
} while(0);
for (i = 0; i < 0x200; i++) {
snprintf(buf, sizeof(buf), "Stat-0x%02x", i);
sta_api(addr2txt((uint8_t)(i & 0xff)), minioninfo->iostats[i]);
}
// Test to avoid showing applog
if (minioninfo->summary.count) {
snprintf(buf, sizeof(buf), "Stat-S");
sta_api("Summary", minioninfo->summary);
applog(LOG_WARNING, "%s %d: (%.0f) %s - %s",
minioncgpu->drv->name, minioncgpu->device_id,
total_secs, buf, data);
}
root = api_add_elapsed(root, "Elapsed", &(total_secs), true);
return root;
}
#endif
struct device_drv minion_drv = {
.drv_id = DRIVER_minion,
.dname = "Minion BlackArrow",
.name = "MBA",
.drv_detect = minion_detect,
#ifdef LINUX
.get_api_stats = minion_api_stats,
.get_statline_before = minion_get_statline_before,
.identify_device = minion_identify,
.thread_prepare = minion_thread_prepare,
.hash_work = hash_queued_work,
.scanwork = minion_scanwork,
.queue_full = minion_queue_full,
.flush_work = minion_flush_work,
.thread_shutdown = minion_shutdown
#endif
};