Hash :
9ec4bb75
Author :
Date :
2013-12-23T17:54:12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
/*
* cgminer driver for KnCminer devices
*
* Copyright 2013 Con Kolivas <kernel@kolivas.org>
* Copyright 2013 KnCminer
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 3 of the License, or (at your option)
* any later version. See COPYING for more details.
*/
#include <stdlib.h>
#include <assert.h>
#include <fcntl.h>
#include <limits.h>
#include <unistd.h>
#include <sys/ioctl.h>
#include <linux/types.h>
#include <linux/spi/spidev.h>
#include "logging.h"
#include "miner.h"
#define MAX_SPIS 1
#define MAX_BYTES_IN_SPI_XSFER 4096
/* /dev/spidevB.C, where B = bus, C = chipselect */
#define SPI_DEVICE_TEMPLATE "/dev/spidev%d.%d"
#define SPI_MODE (SPI_CPHA | SPI_CPOL | SPI_CS_HIGH)
#define SPI_BITS_PER_WORD 32
#define SPI_MAX_SPEED 3000000
#define SPI_DELAY_USECS 0
/* Max number of ASICs permitted on one SPI device */
#define MAX_ASICS 6
#define CORES_PER_ASIC 192
/* How many hardware errors in a row before disabling the core */
#define HW_ERR_LIMIT 10
#define DISA_ERR_LIMIT 3
#define MAX_ACTIVE_WORKS (192 * 2 * 6 * 2)
#define WORK_MIDSTATE_WORDS 8
#define WORK_DATA_WORDS 3
#define WORK_STALE_US 60000000
#define SECONDS_IN_MINUTE 60
/* Keep core disabled for no longer than 15 minutes */
#define CORE_DISA_PERIOD_US (15 * SECONDS_IN_MINUTE * 1000000)
/* DP = Disable Policy */
bool opt_knc_DP_checkworkid = false;
bool opt_knc_DP_disable_permanently = false;
struct spidev_context {
int fd;
uint32_t speed;
uint16_t delay;
uint8_t mode;
uint8_t bits;
};
struct spi_request {
#define CMD_NOP 0
#define CMD_GET_VERSION 1
#define CMD_SUBMIT_WORK 2
#define CMD_FLUSH_QUEUE 3
#define WORK_ID_MASK 0x7FFF
#if (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
uint32_t cmd :4;
uint32_t rsvd :1; /* set to zero */
uint32_t queue_id :12;
uint32_t work_id :15;
#else
uint32_t work_id :15;
uint32_t queue_id :12;
uint32_t rsvd :1; /* set to zero */
uint32_t cmd :4;
#endif
uint32_t midstate[WORK_MIDSTATE_WORDS];
uint32_t data[WORK_DATA_WORDS];
};
struct spi_response {
#define RESPONSE_TYPE_NOP 0
#define RESPONSE_TYPE_NONCE_FOUND 1
#define RESPONSE_TYPE_WORK_DONE 2
#if (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
uint32_t type :2;
uint32_t asic :3;
uint32_t queue_id :12;
uint32_t work_id :15;
#else
uint32_t work_id :15;
uint32_t queue_id :12;
uint32_t asic :3;
uint32_t type :2;
#endif
uint32_t nonce;
uint32_t core;
};
#define MAX_REQUESTS_IN_BATCH ( MAX_BYTES_IN_SPI_XSFER / \
sizeof(struct spi_request) \
)
static struct spi_request spi_txbuf[MAX_REQUESTS_IN_BATCH];
#define MAX_RESPONSES_IN_BATCH ( (sizeof(spi_txbuf) - 12) / \
sizeof(struct spi_response) \
)
struct spi_rx_t {
#if (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
uint32_t rsvd_1 :31;
uint32_t response_queue_full :1;
#else
uint32_t response_queue_full :1;
uint32_t rsvd_1 :31;
#endif
#if (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
uint32_t rsvd_2 :16;
uint32_t works_accepted :16;
#else
uint32_t works_accepted :16;
uint32_t rsvd_2 :16;
#endif
uint32_t rsvd_3;
struct spi_response responses[MAX_RESPONSES_IN_BATCH];
};
static struct spi_rx_t spi_rxbuf;
struct active_work {
struct work *work;
uint32_t work_id;
struct timeval begin;
};
struct core_disa_data {
struct timeval disa_begin;
uint8_t asic;
uint8_t core;
};
struct knc_state {
struct spidev_context *ctx;
int devices;
uint32_t salt;
uint32_t next_work_id;
/* read - last read item, next is at (read + 1) mod BUFSIZE
* write - next write item, last written at (write - 1) mod BUFSIZE
* When buffer is empty, read + 1 == write
* Buffer full condition: read == write
*/
int read_q, write_q;
#define KNC_QUEUED_BUFFER_SIZE (MAX_REQUESTS_IN_BATCH + 1)
struct active_work queued_fifo[KNC_QUEUED_BUFFER_SIZE];
int read_a, write_a;
#define KNC_ACTIVE_BUFFER_SIZE (MAX_ACTIVE_WORKS + 1)
struct active_work active_fifo[KNC_ACTIVE_BUFFER_SIZE];
uint8_t hwerrs[MAX_ASICS * 256];
uint8_t disa_cnt[MAX_ASICS * 256];
uint32_t hwerr_work_id[MAX_ASICS * 256];
int read_d, write_d;
#define KNC_DISA_CORES_SIZE (MAX_ASICS * 256)
struct core_disa_data disa_cores_fifo[KNC_DISA_CORES_SIZE];
/* Local stats */
#define KNC_MINUTES_IN_STATS_BUFFER 60
unsigned int last_hour_shares[MAX_ASICS][256][KNC_MINUTES_IN_STATS_BUFFER + 1];
unsigned int last_hour_hwerrs[MAX_ASICS][256][KNC_MINUTES_IN_STATS_BUFFER + 1];
unsigned int last_hour_shares_index[MAX_ASICS][256];
unsigned int last_hour_hwerrs_index[MAX_ASICS][256];
pthread_mutex_t lock;
};
static inline bool knc_queued_fifo_full(struct knc_state *knc)
{
return (knc->read_q == knc->write_q);
}
static inline bool knc_active_fifo_full(struct knc_state *knc)
{
return (knc->read_a == knc->write_a);
}
static inline void knc_queued_fifo_inc_idx(int *idx)
{
if (unlikely(*idx >= ((int)KNC_QUEUED_BUFFER_SIZE - 1)))
*idx = 0;
else
++(*idx);
}
static inline void knc_active_fifo_inc_idx(int *idx)
{
if (unlikely(*idx >= (KNC_ACTIVE_BUFFER_SIZE - 1)))
*idx = 0;
else
++(*idx);
}
static inline void knc_disa_cores_fifo_inc_idx(int *idx)
{
if (unlikely(*idx >= (KNC_DISA_CORES_SIZE - 1)))
*idx = 0;
else
++(*idx);
}
/* Find SPI device with index idx, init it */
static struct spidev_context *spi_new(int idx)
{
struct spidev_context *ctx;
char dev_fname[PATH_MAX];
if (NULL == (ctx = malloc(sizeof(struct spidev_context)))) {
applog(LOG_ERR, "KnC spi: Out of memory");
goto l_exit_error;
}
ctx->mode = SPI_MODE;
ctx->bits = SPI_BITS_PER_WORD;
ctx->speed = SPI_MAX_SPEED;
ctx->delay = SPI_DELAY_USECS;
ctx->fd = -1;
sprintf(dev_fname, SPI_DEVICE_TEMPLATE,
idx, /* bus */
0 /* chipselect */
);
if (0 > (ctx->fd = open(dev_fname, O_RDWR))) {
applog(LOG_ERR, "KnC spi: Can not open SPI device %s: %m",
dev_fname);
goto l_free_exit_error;
}
/*
* spi mode
*/
if (0 > ioctl(ctx->fd, SPI_IOC_WR_MODE, &ctx->mode))
goto l_ioctl_error;
if (0 > ioctl(ctx->fd, SPI_IOC_RD_MODE, &ctx->mode))
goto l_ioctl_error;
/*
* bits per word
*/
if (0 > ioctl(ctx->fd, SPI_IOC_WR_BITS_PER_WORD, &ctx->bits))
goto l_ioctl_error;
if (0 > ioctl(ctx->fd, SPI_IOC_RD_BITS_PER_WORD, &ctx->bits))
goto l_ioctl_error;
/*
* max speed hz
*/
if (0 > ioctl(ctx->fd, SPI_IOC_WR_MAX_SPEED_HZ, &ctx->speed))
goto l_ioctl_error;
if (0 > ioctl(ctx->fd, SPI_IOC_RD_MAX_SPEED_HZ, &ctx->speed))
goto l_ioctl_error;
applog(LOG_INFO, "KnC spi: device %s uses mode %hhu, bits %hhu, speed %u",
dev_fname, ctx->mode, ctx->bits, ctx->speed);
return ctx;
l_ioctl_error:
applog(LOG_ERR, "KnC spi: ioctl error on SPI device %s: %m", dev_fname);
close(ctx->fd);
l_free_exit_error:
free(ctx);
l_exit_error:
return NULL;
}
static void spi_free(struct spidev_context *ctx)
{
if (NULL == ctx)
return;
close(ctx->fd);
free(ctx);
}
static int spi_transfer(struct spidev_context *ctx, uint8_t *txbuf,
uint8_t *rxbuf, int len)
{
struct spi_ioc_transfer xfr;
int ret;
memset(rxbuf, 0xff, len);
ret = len;
xfr.tx_buf = (unsigned long)txbuf;
xfr.rx_buf = (unsigned long)rxbuf;
xfr.len = len;
xfr.speed_hz = ctx->speed;
xfr.delay_usecs = ctx->delay;
xfr.bits_per_word = ctx->bits;
xfr.cs_change = 0;
xfr.pad = 0;
if (1 > (ret = ioctl(ctx->fd, SPI_IOC_MESSAGE(1), &xfr)))
applog(LOG_ERR, "KnC spi xfer: ioctl error on SPI device: %m");
return ret;
}
static void stats_zero_data_if_curindex_updated(unsigned int *data, unsigned int *index, unsigned int cur_index)
{
if (cur_index != *index) {
unsigned int i;
for (i = (*index + 1) % (KNC_MINUTES_IN_STATS_BUFFER + 1);
i != cur_index;
i = ((i + 1 ) % (KNC_MINUTES_IN_STATS_BUFFER + 1)))
data[i] = 0;
data[cur_index] = 0;
*index = cur_index;
}
}
static void stats_update(unsigned int *data, unsigned int *index, unsigned int cur_index)
{
stats_zero_data_if_curindex_updated(data, index, cur_index);
++(data[cur_index]);
}
static unsigned int get_accumulated_stats(unsigned int *data, unsigned int *index, unsigned int cur_index)
{
unsigned int res, i;
stats_zero_data_if_curindex_updated(data, index, cur_index);
res = 0;
for (i = 0; i < (KNC_MINUTES_IN_STATS_BUFFER + 1); ++i) {
if (i != cur_index)
res += data[i];
}
return res;
}
static inline void stats_good_share(struct knc_state *knc, uint32_t asic, uint32_t core, struct timespec *ts)
{
if ((asic >= MAX_ASICS) || (core >= 256))
return;
unsigned int cur_minute = (ts->tv_sec / SECONDS_IN_MINUTE) % (KNC_MINUTES_IN_STATS_BUFFER + 1);
stats_update(knc->last_hour_shares[asic][core], &(knc->last_hour_shares_index[asic][core]), cur_minute);
}
static inline void stats_bad_share(struct knc_state *knc, uint32_t asic, uint32_t core, struct timespec *ts)
{
if ((asic >= MAX_ASICS) || (core >= 256))
return;
unsigned int cur_minute = (ts->tv_sec / SECONDS_IN_MINUTE) % (KNC_MINUTES_IN_STATS_BUFFER + 1);
stats_update(knc->last_hour_hwerrs[asic][core], &(knc->last_hour_hwerrs_index[asic][core]), cur_minute);
}
static inline unsigned int get_hour_shares(struct knc_state *knc, uint32_t asic, uint32_t core, struct timespec *ts)
{
if ((asic >= MAX_ASICS) || (core >= 256))
return 0;
unsigned int cur_minute = (ts->tv_sec / SECONDS_IN_MINUTE) % (KNC_MINUTES_IN_STATS_BUFFER + 1);
return get_accumulated_stats(knc->last_hour_shares[asic][core], &(knc->last_hour_shares_index[asic][core]), cur_minute);
}
static inline unsigned int get_hour_errors(struct knc_state *knc, uint32_t asic, uint32_t core, struct timespec *ts)
{
if ((asic >= MAX_ASICS) || (core >= 256))
return 0;
unsigned int cur_minute = (ts->tv_sec / SECONDS_IN_MINUTE) % (KNC_MINUTES_IN_STATS_BUFFER + 1);
return get_accumulated_stats(knc->last_hour_hwerrs[asic][core], &(knc->last_hour_hwerrs_index[asic][core]), cur_minute);
}
static struct api_data *knc_api_stats(struct cgpu_info *cgpu)
{
struct knc_state *knc = cgpu->device_data;
struct api_data *root = NULL;
unsigned int cursize;
int asic, core, n;
char buf[4096];
struct timespec ts_now;
clock_gettime(CLOCK_MONOTONIC, &ts_now);
for (asic = 0; asic < MAX_ASICS; ++asic) {
char asic_name[128];
snprintf(asic_name, sizeof(asic_name), "asic_%d_shares", asic + 1);
cursize = 0;
for (core = 0; core < CORES_PER_ASIC; ++core) {
unsigned int shares = get_hour_shares(knc, asic, core, &ts_now);
n = snprintf(buf + cursize, sizeof(buf) - cursize, "%d,", shares);
cursize += n;
if (sizeof(buf) < cursize) {
cursize = sizeof(buf);
break;
}
}
if (0 < cursize)
buf[cursize - 1] = '\0'; /* last comma */
root = api_add_string(root, asic_name, buf, true);
snprintf(asic_name, sizeof(asic_name), "asic_%d_hwerrs", asic + 1);
cursize = 0;
for (core = 0; core < CORES_PER_ASIC; ++core) {
unsigned int errors = get_hour_errors(knc, asic, core, &ts_now);
n = snprintf(buf + cursize, sizeof(buf) - cursize, "%d,", errors);
cursize += n;
if (sizeof(buf) < cursize) {
cursize = sizeof(buf);
break;
}
}
if (0 < cursize)
buf[cursize - 1] = '\0'; /* last comma */
root = api_add_string(root, asic_name, buf, true);
}
return root;
}
static void disable_core(uint8_t asic, uint8_t core)
{
char str[256];
snprintf(str, sizeof(str), "i2cset -y 2 0x2%hhu %hhu 0", asic, core);
if (0 != WEXITSTATUS(system(str)))
applog(LOG_ERR, "KnC: system call failed");
}
static void enable_core(uint8_t asic, uint8_t core)
{
char str[256];
snprintf(str, sizeof(str), "i2cset -y 2 0x2%hhu %hhu 1", asic, core);
if (0 != WEXITSTATUS(system(str)))
applog(LOG_ERR, "KnC: system call failed");
}
static int64_t timediff(const struct timeval *a, const struct timeval *b)
{
struct timeval diff;
timersub(a, b, &diff);
return diff.tv_sec * 1000000 + diff.tv_usec;
}
static void knc_check_disabled_cores(struct knc_state *knc)
{
struct core_disa_data *core;
int next_read_d, cidx;
struct timeval now;
int64_t us;
next_read_d = knc->read_d;
knc_disa_cores_fifo_inc_idx(&next_read_d);
if (next_read_d == knc->write_d)
return; /* queue empty */
core = &knc->disa_cores_fifo[next_read_d];
gettimeofday(&now, NULL);
us = timediff(&now, &core->disa_begin);
if ((us >= 0) && (us < CORE_DISA_PERIOD_US))
return; /* latest disabled core still not expired */
cidx = core->asic * 256 + core->core;
enable_core(core->asic, core->core);
knc->hwerrs[cidx] = 0;
applog(LOG_NOTICE,
"KnC: core %u-%u was enabled back from disabled state",
core->asic, core->core);
knc->read_d = next_read_d;
}
static void knc_work_from_queue_to_spi(struct knc_state *knc,
struct active_work *q_work,
struct spi_request *spi_req, uint32_t work_id)
{
uint32_t *buf_from, *buf_to;
int i;
spi_req->cmd = CMD_SUBMIT_WORK;
spi_req->queue_id = 0; /* at the moment we have one and only queue #0 */
spi_req->work_id = (work_id ^ knc->salt) & WORK_ID_MASK;
q_work->work_id = spi_req->work_id;
buf_to = spi_req->midstate;
buf_from = (uint32_t *)q_work->work->midstate;
for (i = 0; i < WORK_MIDSTATE_WORDS; ++i)
buf_to[i] = le32toh(buf_from[8 - i - 1]);
buf_to = spi_req->data;
buf_from = (uint32_t *)&(q_work->work->data[16 * 4]);
for (i = 0; i < WORK_DATA_WORDS; ++i)
buf_to[i] = le32toh(buf_from[3 - i - 1]);
}
static int64_t knc_process_response(struct thr_info *thr, struct cgpu_info *cgpu,
struct spi_rx_t *rxbuf)
{
struct knc_state *knc = cgpu->device_data;
int submitted, successful, i, num_sent;
int next_read_q, next_read_a;
struct timeval now;
struct timespec ts_now;
struct work *work;
int64_t us;
num_sent = knc->write_q - knc->read_q - 1;
if (knc->write_q <= knc->read_q)
num_sent += KNC_QUEUED_BUFFER_SIZE;
knc->next_work_id += rxbuf->works_accepted;
/* Actually process SPI response */
if (rxbuf->works_accepted) {
applog(LOG_DEBUG, "KnC spi: raw response %08X %08X",
((uint32_t *)rxbuf)[0], ((uint32_t *)rxbuf)[1]);
applog(LOG_DEBUG,
"KnC spi: response, accepted %u (from %u), full %u",
rxbuf->works_accepted, num_sent,
rxbuf->response_queue_full);
}
/* move works_accepted number of items from queued_fifo to active_fifo */
gettimeofday(&now, NULL);
clock_gettime(CLOCK_MONOTONIC, &ts_now);
submitted = 0;
for (i = 0; i < rxbuf->works_accepted; ++i) {
next_read_q = knc->read_q;
knc_queued_fifo_inc_idx(&next_read_q);
if ((next_read_q == knc->write_q) || knc_active_fifo_full(knc))
break;
memcpy(&knc->active_fifo[knc->write_a],
&knc->queued_fifo[next_read_q],
sizeof(struct active_work));
knc->active_fifo[knc->write_a].begin = now;
knc->queued_fifo[next_read_q].work = NULL;
knc->read_q = next_read_q;
knc_active_fifo_inc_idx(&knc->write_a);
++submitted;
}
if (submitted != rxbuf->works_accepted) {
applog(LOG_ERR,
"KnC: accepted by FPGA %u works, but only %d submitted",
rxbuf->works_accepted, submitted);
}
/* check for completed works and calculated nonces */
gettimeofday(&now, NULL);
successful = 0;
for (i = 0; i < (int)MAX_RESPONSES_IN_BATCH; ++i) {
if ((rxbuf->responses[i].type != RESPONSE_TYPE_NONCE_FOUND) &&
(rxbuf->responses[i].type != RESPONSE_TYPE_WORK_DONE))
continue;
applog(LOG_DEBUG, "KnC spi: raw response %08X %08X",
((uint32_t *)&rxbuf->responses[i])[0],
((uint32_t *)&rxbuf->responses[i])[1]);
applog(LOG_DEBUG, "KnC spi: response, T:%u C:%u-%u Q:%u W:%u",
rxbuf->responses[i].type,
rxbuf->responses[i].asic, rxbuf->responses[i].core,
rxbuf->responses[i].queue_id,
rxbuf->responses[i].work_id);
/* Find active work with matching ID */
next_read_a = knc->read_a;
knc_active_fifo_inc_idx(&next_read_a);
while (next_read_a != knc->write_a) {
if (knc->active_fifo[next_read_a].work_id ==
rxbuf->responses[i].work_id)
break;
/* check for stale works */
us = timediff(&now,
&knc->active_fifo[next_read_a].begin);
if ((us < 0) || (us >= WORK_STALE_US)) {
applog(LOG_DEBUG,
"KnC spi: remove stale work %u",
knc->active_fifo[next_read_a].work_id);
work = knc->active_fifo[next_read_a].work;
knc_active_fifo_inc_idx(&knc->read_a);
work_completed(cgpu, work);
if (next_read_a != knc->read_a) {
memcpy(&(knc->active_fifo[next_read_a]),
&(knc->active_fifo[knc->read_a]),
sizeof(struct active_work));
}
knc->active_fifo[knc->read_a].work = NULL;
}
knc_active_fifo_inc_idx(&next_read_a);
}
if (next_read_a == knc->write_a)
continue;
applog(LOG_DEBUG, "KnC spi: response work %u found",
rxbuf->responses[i].work_id);
work = knc->active_fifo[next_read_a].work;
if (rxbuf->responses[i].type == RESPONSE_TYPE_NONCE_FOUND) {
if (NULL != thr) {
int cidx = rxbuf->responses[i].asic * 256 +
rxbuf->responses[i].core;
if (submit_nonce(thr, work,
rxbuf->responses[i].nonce)) {
stats_good_share(knc, rxbuf->responses[i].asic, rxbuf->responses[i].core, &ts_now);
if (cidx < (int)sizeof(knc->hwerrs)) {
knc->hwerrs[cidx] = 0;
knc->disa_cnt[cidx] = 0;
knc->hwerr_work_id[cidx] = 0xFFFFFFFF;
}
successful++;
} else {
stats_bad_share(knc, rxbuf->responses[i].asic, rxbuf->responses[i].core, &ts_now);
bool process_hwerr = (cidx < (int)sizeof(knc->hwerrs));
if (process_hwerr && opt_knc_DP_checkworkid &&
(knc->hwerr_work_id[cidx] == rxbuf->responses[i].work_id))
process_hwerr = false;
if (process_hwerr) {
knc->hwerr_work_id[cidx] = rxbuf->responses[i].work_id;
if (++(knc->hwerrs[cidx]) >= HW_ERR_LIMIT) {
struct core_disa_data *core;
core = &knc->disa_cores_fifo[knc->write_d];
core->disa_begin = now;
core->asic = rxbuf->responses[i].asic;
core->core = rxbuf->responses[i].core;
disable_core(core->asic, core->core);
if (opt_knc_DP_disable_permanently &&
(++(knc->disa_cnt[cidx]) >= DISA_ERR_LIMIT)) {
applog(LOG_WARNING,
"KnC: core %u-%u was disabled permanently", core->asic, core->core);
} else {
applog(LOG_WARNING,
"KnC: core %u-%u was disabled due to %u HW errors in a row",
core->asic, core->core, HW_ERR_LIMIT);
knc_disa_cores_fifo_inc_idx(&knc->write_d);
}
}
}
};
}
continue;
}
/* Work completed */
knc_active_fifo_inc_idx(&knc->read_a);
work_completed(cgpu, work);
if (next_read_a != knc->read_a) {
memcpy(&(knc->active_fifo[next_read_a]),
&(knc->active_fifo[knc->read_a]),
sizeof(struct active_work));
}
knc->active_fifo[knc->read_a].work = NULL;
}
return ((uint64_t)successful) * 0x100000000UL;
}
/* Send flush command via SPI */
static int _internal_knc_flush_fpga(struct knc_state *knc)
{
int len;
spi_txbuf[0].cmd = CMD_FLUSH_QUEUE;
spi_txbuf[0].queue_id = 0; /* at the moment we have one and only queue #0 */
len = spi_transfer(knc->ctx, (uint8_t *)spi_txbuf,
(uint8_t *)&spi_rxbuf, sizeof(struct spi_request));
if (len != sizeof(struct spi_request))
return -1;
len /= sizeof(struct spi_response);
return len;
}
static bool knc_detect_one(struct spidev_context *ctx)
{
/* Scan device for ASICs */
int chip_id, devices = 0;
struct cgpu_info *cgpu;
struct knc_state *knc;
for (chip_id = 0; chip_id < MAX_ASICS; ++chip_id) {
/* TODO: perform the ASIC test/detection */
++devices;
}
if (!devices) {
applog(LOG_INFO, "SPI detected, but not KnCminer ASICs");
return false;
}
applog(LOG_INFO, "Found a KnC miner with %d ASICs", devices);
cgpu = calloc(1, sizeof(*cgpu));
knc = calloc(1, sizeof(*knc));
if (!cgpu || !knc) {
applog(LOG_ERR, "KnC miner detected, but failed to allocate memory");
return false;
}
knc->ctx = ctx;
knc->devices = devices;
knc->read_q = 0;
knc->write_q = 1;
knc->read_a = 0;
knc->write_a = 1;
knc->read_d = 0;
knc->write_d = 1;
knc->salt = rand();
mutex_init(&knc->lock);
memset(knc->hwerr_work_id, 0xFF, sizeof(knc->hwerr_work_id));
_internal_knc_flush_fpga(knc);
cgpu->drv = &knc_drv;
cgpu->name = "KnCminer";
cgpu->threads = 1; // .. perhaps our number of devices?
cgpu->device_data = knc;
add_cgpu(cgpu);
return true;
}
// http://www.concentric.net/~Ttwang/tech/inthash.htm
static unsigned long mix(unsigned long a, unsigned long b, unsigned long c)
{
a = a - b; a = a - c; a = a ^ (c >> 13);
b = b - c; b = b - a; b = b ^ (a << 8);
c = c - a; c = c - b; c = c ^ (b >> 13);
a = a - b; a = a - c; a = a ^ (c >> 12);
b = b - c; b = b - a; b = b ^ (a << 16);
c = c - a; c = c - b; c = c ^ (b >> 5);
a = a - b; a = a - c; a = a ^ (c >> 3);
b = b - c; b = b - a; b = b ^ (a << 10);
c = c - a; c = c - b; c = c ^ (b >> 15);
return c;
}
/* Probe devices and register with add_cgpu */
void knc_detect(bool __maybe_unused hotplug)
{
int idx;
srand(mix(clock(), time(NULL), getpid()));
/* Loop through all possible SPI interfaces */
for (idx = 0; idx < MAX_SPIS; ++idx) {
struct spidev_context *ctx = spi_new(idx + 1);
if (ctx != NULL) {
if (!knc_detect_one(ctx))
spi_free(ctx);
}
}
}
/* return value is number of nonces that have been checked since
* previous call
*/
static int64_t knc_scanwork(struct thr_info *thr)
{
struct cgpu_info *cgpu = thr->cgpu;
struct knc_state *knc = cgpu->device_data;
int len, num, next_read_q;
int64_t ret;
applog(LOG_DEBUG, "KnC running scanwork");
knc_check_disabled_cores(knc);
num = 0;
mutex_lock(&knc->lock);
/* Prepare tx buffer */
memset(spi_txbuf, 0, sizeof(spi_txbuf));
next_read_q = knc->read_q;
knc_queued_fifo_inc_idx(&next_read_q);
while (next_read_q != knc->write_q) {
knc_work_from_queue_to_spi(knc, &knc->queued_fifo[next_read_q],
&spi_txbuf[num], knc->next_work_id + num);
knc_queued_fifo_inc_idx(&next_read_q);
++num;
}
/* knc->read_q is advanced in knc_process_response, not here.
* knc->next_work_id is advanced in knc_process_response as well,
* because only after SPI response we know how many works were actually
* consumed by FPGA.
*/
len = spi_transfer(knc->ctx, (uint8_t *)spi_txbuf,
(uint8_t *)&spi_rxbuf, sizeof(spi_txbuf));
if (len != sizeof(spi_rxbuf)) {
ret = -1;
goto out_unlock;
}
applog(LOG_DEBUG, "KnC spi: %d works in request", num);
ret = knc_process_response(thr, cgpu, &spi_rxbuf);
out_unlock:
mutex_unlock(&knc->lock);
return ret;
}
static bool knc_queue_full(struct cgpu_info *cgpu)
{
struct knc_state *knc = cgpu->device_data;
int queue_full = false;
struct work *work;
applog(LOG_DEBUG, "KnC running queue full");
mutex_lock(&knc->lock);
if (knc_queued_fifo_full(knc)) {
queue_full = true;
goto out_unlock;
}
work = get_queued(cgpu);
if (!work)
goto out_unlock;
knc->queued_fifo[knc->write_q].work = work;
knc_queued_fifo_inc_idx(&(knc->write_q));
if (knc_queued_fifo_full(knc))
queue_full = true;
out_unlock:
mutex_unlock(&knc->lock);
return queue_full;
}
static void knc_flush_work(struct cgpu_info *cgpu)
{
struct knc_state *knc = cgpu->device_data;
int len, next_read_q, next_read_a;
struct work *work;
applog(LOG_ERR, "KnC running flushwork");
mutex_lock(&knc->lock);
/* Drain queued works */
next_read_q = knc->read_q;
knc_queued_fifo_inc_idx(&next_read_q);
while (next_read_q != knc->write_q) {
work = knc->queued_fifo[next_read_q].work;
work_completed(cgpu, work);
knc->queued_fifo[next_read_q].work = NULL;
knc->read_q = next_read_q;
knc_queued_fifo_inc_idx(&next_read_q);
}
/* Drain active works */
next_read_a = knc->read_a;
knc_active_fifo_inc_idx(&next_read_a);
while (next_read_a != knc->write_a) {
work = knc->active_fifo[next_read_a].work;
work_completed(cgpu, work);
knc->active_fifo[next_read_a].work = NULL;
knc->read_a = next_read_a;
knc_active_fifo_inc_idx(&next_read_a);
}
len = _internal_knc_flush_fpga(knc);
if (len > 0)
knc_process_response(NULL, cgpu, &spi_rxbuf);
mutex_unlock(&knc->lock);
}
struct device_drv knc_drv = {
.drv_id = DRIVER_knc,
.dname = "KnCminer",
.name = "KnC",
.drv_detect = knc_detect, // Probe for devices, add with add_cgpu
.hash_work = hash_queued_work,
.scanwork = knc_scanwork,
.queue_full = knc_queue_full,
.flush_work = knc_flush_work,
.get_api_stats = knc_api_stats,
};