Hash :
60534e57
Author :
Date :
2013-12-24T00:33:42
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
/*
* cgminer SPI driver for Bitmine.ch A1 devices
*
* Copyright 2013, 2014 Zefir Kurtisi <zefir.kurtisi@gmail.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 3 of the License, or (at your option)
* any later version. See COPYING for more details.
*/
#include <stdlib.h>
#include <assert.h>
#include <fcntl.h>
#include <limits.h>
#include <unistd.h>
#include <stdbool.h>
#include "spi-context.h"
#include "logging.h"
#include "miner.h"
#include "util.h"
/********** work queue */
struct work_ent {
struct work *work;
struct list_head head;
};
struct work_queue {
int num_elems;
struct list_head head;
};
static bool wq_enqueue(struct work_queue *wq, struct work *work)
{
if (work == NULL)
return false;
struct work_ent *we = malloc(sizeof(*we));
assert(we != NULL);
we->work = work;
INIT_LIST_HEAD(&we->head);
list_add_tail(&we->head, &wq->head);
wq->num_elems++;
return true;
}
static struct work *wq_dequeue(struct work_queue *wq)
{
if (wq == NULL)
return NULL;
if (wq->num_elems == 0)
return NULL;
struct work_ent *we;
we = list_entry(wq->head.next, struct work_ent, head);
struct work *work = we->work;
list_del(&we->head);
free(we);
wq->num_elems--;
return work;
}
static FILE *log_file = NULL;
#if 1
#undef applog
#define applog(X,...) \
do { \
if (log_file == NULL) { \
log_file = fopen("/run/A1.log", "w");\
if (log_file==NULL) continue;\
}\
fprintf(log_file, __VA_ARGS__);\
fprintf(log_file, "\n");\
} while(0)
#endif
/********** chip and chain context structures */
/*
* if not cooled sufficiently, communication fails and chip is temporary
* disabled. we let it inactive for 10 seconds to cool down
*
* TODO: to be removed after bring up / test phase
*/
#define COOLDOWN_MS (10 * 1000)
/* the WRITE_JOB command is the largest (2 bytes command, 56 bytes payload) */
#define WRITE_JOB_LENGTH 58
#define MAX_CHAIN_LENGTH 255
/*
* For commands to traverse the chain, we need to issue dummy writes to
* keep SPI clock running. To reach the last chip in the chain, we need to
* write the command, followed by chain-length words to pass it through the
* chain and another chain-length words to get the ACK back to host
*/
#define MAX_CMD_LENGTH (WRITE_JOB_LENGTH + MAX_CHAIN_LENGTH * 2 * 2)
struct A1_chip {
int num_cores;
int last_queued_id;
struct work *work[4];
/* stats */
int hw_errors;
int stales;
int nonces_found;
int nonce_ranges_done;
/* systime in ms when chip was disabled */
int cooldown_begin;
};
struct A1_chain {
struct cgpu_info *cgpu;
int num_chips;
int num_cores;
int num_active_chips;
uint8_t spi_tx[MAX_CMD_LENGTH];
uint8_t spi_rx[MAX_CMD_LENGTH];
struct spi_ctx *spi_ctx;
struct A1_chip *chips;
pthread_mutex_t lock;
struct work_queue active_wq;
};
enum A1_command {
A1_BIST_START = 0x01,
A1_BIST_FIX = 0x03,
A1_RESET = 0x04,
A1_WRITE_JOB = 0x07,
A1_READ_RESULT = 0x08,
A1_WRITE_REG = 0x09,
A1_READ_REG = 0x0a,
A1_READ_REG_RESP = 0x1a,
};
/********** config paramters */
struct A1_config_options {
int ref_clk_khz;
int sys_clk_khz;
int spi_clk_khz;
/* limit chip chain to this number of chips (testing only) */
int override_chip_num;
};
/*
* for now, we have one global config, defaulting values:
* - ref_clk 16MHz / sys_clk 250MHz
* - 800 kHz SPI clock
*/
static struct A1_config_options config_options = {
.ref_clk_khz = 16000, .sys_clk_khz = 250000, .spi_clk_khz = 800,
};
/* override values with --bitmine-a1-options ref:sys:spi: - use 0 for default */
static struct A1_config_options *parsed_config_options;
/********** temporary helper for hexdumping SPI traffic */
#define DEBUG_HEXDUMP 1
static void hexdump(char *prefix, uint8_t *buff, int len)
{
#if DEBUG_HEXDUMP
static char line[256];
char *pos = line;
int i;
if (len < 1)
return;
pos += sprintf(pos, "%s: %d bytes:", prefix, len);
for (i = 0; i < len; i++) {
if (i > 0 && (i % 32) == 0) {
applog(LOG_DEBUG, "%s", line);
pos = line;
pos += sprintf(pos, "\t");
}
pos += sprintf(pos, "%.2X ", buff[i]);
}
applog(LOG_DEBUG, "%s", line);
#endif
}
/********** upper layer SPI functions */
static bool spi_send_command(struct A1_chain *a1, uint8_t cmd, uint8_t addr,
uint8_t *buff, int len)
{
memset(a1->spi_tx + 2, 0, len);
a1->spi_tx[0] = cmd;
a1->spi_tx[1] = addr;
if (len > 0 && buff != NULL)
memcpy(a1->spi_tx + 2, buff, len);
int tx_len = (2 + len + 1) & ~1;
applog(LOG_DEBUG, "Processing command 0x%02x%02x\n", cmd, addr);
bool retval = spi_transfer(a1->spi_ctx, a1->spi_tx, a1->spi_rx, tx_len);
hexdump("TX", a1->spi_tx, tx_len);
hexdump("RX", a1->spi_rx, tx_len);
return retval;
}
static bool spi_poll_result(struct A1_chain *a1, uint8_t cmd,
uint8_t chip_id, int len)
{
int i;
int max_poll_words = a1->num_chips * 2 + 1;
/* at startup, we don't know the chain-length */
if (a1->num_chips == 0)
max_poll_words += MAX_CHAIN_LENGTH * 2;
for(i = 0; i < max_poll_words; i++) {
bool s = spi_transfer(a1->spi_ctx, NULL, a1->spi_rx, 2);
hexdump("RX", a1->spi_rx, 2);
if (!s)
return false;
if (a1->spi_rx[0] == cmd && a1->spi_rx[1] == chip_id) {
applog(LOG_DEBUG, "Cmd 0x%02x ACK'd", cmd);
if (len == 0)
return true;
s = spi_transfer(a1->spi_ctx, NULL,
a1->spi_rx + 2, len);
hexdump("RX", a1->spi_rx + 2, len);
if (!s)
return false;
hexdump("poll_result", a1->spi_rx, len + 2);
return true;
}
}
applog(LOG_WARNING, "Failure: missing ACK for cmd 0x%02x", cmd);
return false;
}
/********** A1 SPI commands */
static bool cmd_BIST_START(struct A1_chain *a1)
{
return spi_send_command(a1, A1_BIST_START, 0x00, NULL, 0) &&
spi_poll_result(a1, A1_BIST_START, 0x00, 2);
}
static bool cmd_BIST_FIX_BCAST(struct A1_chain *a1)
{
return spi_send_command(a1, A1_BIST_FIX, 0x00, NULL, 0) &&
spi_poll_result(a1, A1_BIST_FIX, 0x00, 0);
}
static bool cmd_RESET_BCAST(struct A1_chain *a1)
{
return spi_send_command(a1, A1_RESET, 0x00, NULL, 0) &&
spi_poll_result(a1, A1_RESET, 0x00, 0);
}
static bool cmd_WRITE_REG_BCAST(struct A1_chain *a1, uint8_t *reg)
{
return spi_send_command(a1, A1_WRITE_REG, 0, reg, 6) &&
spi_poll_result(a1, A1_WRITE_REG, 0, 6);
}
static bool cmd_WRITE_REG(struct A1_chain *a1, uint8_t chip, uint8_t *reg)
{
/* ensure we push the SPI command to the last chip in chain */
int tx_length = 8 + a1->num_chips * 4;
memcpy(a1->spi_tx, reg, 8);
memset(a1->spi_tx + 8, 0, tx_length - 8);
return spi_transfer(a1->spi_ctx, a1->spi_tx, a1->spi_rx, tx_length);
}
static bool cmd_READ_REG(struct A1_chain *a1, uint8_t chip)
{
return spi_send_command(a1, A1_READ_REG, chip, NULL, 0) &&
spi_poll_result(a1, A1_READ_REG_RESP, chip, 6);
}
static bool cmd_WRITE_JOB(struct A1_chain *a1, uint8_t chip_id, uint8_t *job)
{
/* ensure we push the SPI command to the last chip in chain */
int tx_length = WRITE_JOB_LENGTH + a1->num_chips * 4;
memcpy(a1->spi_tx, job, WRITE_JOB_LENGTH);
memset(a1->spi_tx + WRITE_JOB_LENGTH, 0, tx_length - WRITE_JOB_LENGTH);
return spi_transfer(a1->spi_ctx, a1->spi_tx, a1->spi_rx, tx_length);
}
/********** A1 low level functions */
static void A1_hw_reset(void)
{
/*
* TODO: issue cold reset
*
* NOTE: suggested sequence
* a) reset the RSTN pin for at least 1s
* b) release the RSTN pin
* c) wait at least 1s before sending the first CMD
*/
#ifdef NOTYET
a1_nreset_low();
cgsleep_ms(1000);
a1_nreset_hi();
cgsleep_ms(1000);
#endif
}
static bool is_busy(struct A1_chain *a1, uint8_t chip)
{
if (!cmd_READ_REG(a1, chip))
return false;
return (a1->spi_rx[5] & 0x01) == 0x01;
}
#define MAX_PLL_WAIT_CYCLES 25
#define PLL_CYCLE_WAIT_TIME 40
static bool check_chip_pll_lock(struct A1_chain *a1, int chip_id, uint8_t *wr)
{
int n;
for (n = 0; n < MAX_PLL_WAIT_CYCLES; n++) {
/* check for PLL lock status */
if (cmd_READ_REG(a1, chip_id) && (a1->spi_rx[4] & 1) == 1)
/* double check that we read back what we set before */
return wr[0] == a1->spi_rx[2] && wr[1] == a1->spi_rx[3];
cgsleep_ms(40);
}
applog(LOG_ERR, "Chip %d failed PLL lock", chip_id);
return false;
}
static bool set_pll_config(struct A1_chain *a1,
int ref_clock_khz, int sys_clock_khz)
{
/*
* TODO: this is only an initial approach with binary adjusted
* dividers and thus not exploiting the whole divider range.
*
* If required, the algorithm can be adapted to find the PLL
* parameters after:
*
* sys_clk = (ref_clk * pll_fbdiv) / (pll_prediv * pll_postdiv)
*
* with a higher pll_postdiv being desired over a higher pll_prediv
*/
int i, n;
static uint8_t writereg[128] = { 0x00, 0x00, 0x21, 0x84 /*0x80*/, };
uint8_t pre_div = 2;
uint8_t post_div = 4;
uint32_t fb_div = (sys_clock_khz * pre_div * post_div) / ref_clock_khz;
applog(LOG_WARNING, "Setting PLL: CLK_REF=%dMHz, SYS_CLK=%dMHz",
ref_clock_khz / 1000, sys_clock_khz / 1000);
while (fb_div > 511) {
post_div <<= 1;
fb_div >>= 1;
}
if (post_div > 16) {
applog(LOG_WARNING, "Can't set PLL parameters");
return false;
}
writereg[0] = (pre_div << 6) | (post_div << 1) | (fb_div >> 8);
writereg[1] = fb_div & 0xff;
applog(LOG_WARNING, "Setting PLL to pre_div=%d, post_div=%d, fb_div=%d"
": 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x",
pre_div, post_div, fb_div,
writereg[0], writereg[1], writereg[2],
writereg[3], writereg[4], writereg[5]);
if (!cmd_WRITE_REG_BCAST(a1, writereg))
return false;
for (i = 0; i < a1->num_active_chips; i++) {
int chip_id = i + 1;
if (!check_chip_pll_lock(a1, chip_id, writereg)) {
applog(LOG_ERR, "Chip %d failed PLL lock", chip_id);
return false;
}
}
return true;
}
/*
* BIST_START works only once after HW reset, on subsequent calls it
* returns 0 as number of chips.
*
* During testing / chip-bring up one might not be able or not want to reset
* chips on each cgminer restart, therefore this is an indirect alternative
* to enumerate chips in a chain by reading the chips' registers.
*
* TODO: to be removed after chip bring-up / testing
*/
static int manual_chain_detect(struct A1_chain *a1)
{
spi_send_command(a1, A1_BIST_START, 0x00, NULL, 2);
int i;
int max_poll_words = MAX_CHAIN_LENGTH * 2;
for(i = 1; i < max_poll_words; i++) {
if (a1->spi_rx[0] == A1_BIST_START && a1->spi_rx[1] == 0) {
spi_transfer(a1->spi_ctx, NULL, a1->spi_rx, 2);
hexdump("RX", a1->spi_rx, 2);
uint8_t n = a1->spi_rx[1];
a1->num_chips = i / 2;
if (a1->num_chips != n) {
applog(LOG_ERR, "WARN: Enumeration: %d <-> %d",
a1->num_chips, n);
if (n != 0)
a1->num_chips = n;
}
applog(LOG_WARNING, "manually detected %d chips", a1->num_chips);
return a1->num_chips;
}
bool s = spi_transfer(a1->spi_ctx, NULL, a1->spi_rx, 2);
hexdump("RX", a1->spi_rx, 2);
if (!s)
return false;
}
applog(LOG_WARNING, "Failed to manual find chips");
return false;
}
/********** disable / re-enable related section (temporary for testing) */
static int get_current_ms(void)
{
cgtimer_t ct;
cgtimer_time(&ct);
return cgtimer_to_ms(&ct);
}
static bool is_chip_disabled(struct A1_chain *a1, uint8_t chip_id)
{
struct A1_chip *chip = &a1->chips[chip_id - 1];
return chip->cooldown_begin != 0;
}
/* check and disable chip, remember time */
static void disable_chip(struct A1_chain *a1, uint8_t chip_id)
{
struct A1_chip *chip = &a1->chips[chip_id - 1];
if (is_chip_disabled(a1, chip_id)) {
applog(LOG_WARNING, "Chip %d already disabled", chip_id);
return;
}
if (cmd_READ_REG(a1, chip_id)) {
applog(LOG_WARNING, "Chip %d is working, not going to disable",
chip_id);
return;
}
applog(LOG_WARNING, "Disabling chip %d", chip_id);
chip->cooldown_begin = get_current_ms();
}
/* check if disabled chips can be re-enabled */
void check_disabled_chips(struct A1_chain *a1)
{
int i;
for (i = 0; i < a1->num_active_chips; i++) {
int chip_id = i + 1;
struct A1_chip *chip = &a1->chips[i];
if (!is_chip_disabled(a1, chip_id))
continue;
if (chip->cooldown_begin + COOLDOWN_MS > get_current_ms())
continue;
if (!cmd_READ_REG(a1, chip_id)) {
applog(LOG_WARNING, "Chip %d not yet working", chip_id);
/* restart cooldown period */
chip->cooldown_begin = get_current_ms();
continue;
}
applog(LOG_WARNING, "Chip %d is working again", chip_id);
chip->cooldown_begin = 0;
}
}
/********** job creation and result evaluation */
static uint8_t *create_job(uint8_t chip_id, uint8_t job_id,
const char *midstate, const char *wdata)
{
static uint8_t job[WRITE_JOB_LENGTH] = {
/* command */
0x00, 0x00,
/* midstate */
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
/* wdata */
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
/* start nonce */
0x00, 0x00, 0x00, 0x00,
/* difficulty 1 */
0xff, 0xff, 0x00, 0x1d,
/* end nonce */
0xff, 0xff, 0xff, 0xff,
};
uint32_t *p1 = (uint32_t *) &job[34];
uint32_t *p2 = (uint32_t *) wdata;
unsigned char mid[32], data[12];
job[0] = (job_id << 4) | A1_WRITE_JOB;
job[1] = chip_id;
swab256(job + 2, midstate);
p1 = (uint32_t *) &job[34];
p2 = (uint32_t *) wdata;
p1[0] = bswap_32(p2[0]);
p1[1] = bswap_32(p2[1]);
p1[2] = bswap_32(p2[2]);
return job;
}
/* set work for given chip, returns true if a nonce range was finished */
static bool set_work(struct A1_chain *a1, uint8_t chip_id, struct work *work)
{
unsigned char *midstate = work->midstate;
unsigned char *wdata = work->data + 64;
struct A1_chip *chip = &a1->chips[chip_id - 1];
bool retval = false;
chip->last_queued_id++;
chip->last_queued_id &= 3;
if (chip->work[chip->last_queued_id] != NULL) {
work_completed(a1->cgpu, chip->work[chip->last_queued_id]);
chip->work[chip->last_queued_id] = NULL;
retval = true;
}
uint8_t *jobdata = create_job(chip_id, chip->last_queued_id + 1,
midstate, wdata);
if (!cmd_WRITE_JOB(a1, chip_id, jobdata)) {
/* give back work */
work_completed(a1->cgpu, work);
applog(LOG_ERR, "Failed to set work for chip %d.%d",
chip_id, chip->last_queued_id + 1);
// TODO: what else?
} else {
chip->work[chip->last_queued_id] = work;
}
return retval;
}
/* check for pending results in a chain, returns false if output queue empty */
static bool get_nonce(struct A1_chain *a1, uint8_t *nonce,
uint8_t *chip, uint8_t *job_id)
{
int i;
if (!spi_send_command(a1, A1_READ_RESULT, 0x00, NULL, 0))
return false;
int max_poll_words = a1->num_chips * 2 + 1;
for(i = 0; i < max_poll_words; i++) {
if (!spi_transfer(a1->spi_ctx, NULL, a1->spi_rx, 2))
return false;
hexdump("RX", a1->spi_rx, 2);
if (a1->spi_rx[0] == A1_READ_RESULT && a1->spi_rx[1] == 0x00) {
applog(LOG_DEBUG, "Output queue empty");
return false;
}
if ((a1->spi_rx[0] & 0x0f) == A1_READ_RESULT &&
a1->spi_rx[0] != 0) {
*job_id = a1->spi_rx[0] >> 4;
*chip = a1->spi_rx[1];
if (!spi_transfer(a1->spi_ctx, NULL, nonce, 4))
return false;
applog(LOG_DEBUG, "Got nonce for chip %d / job_id %d",
*chip, *job_id);
return true;
}
}
applog(LOG_ERR, "Failed to poll for results");
return false;
}
/* reset input work queues in chip chain */
static bool abort_work(struct A1_chain *a1)
{
/*
* TODO: implement reliable abort method
* NOTE: until then, we are completing queued work => stales
*/
return true;
}
/********** driver interface */
void exit_A1_chain(struct A1_chain *a1)
{
if (a1 == NULL)
return;
free(a1->chips);
a1->chips = NULL;
spi_exit(a1->spi_ctx);
a1->spi_ctx = NULL;
free(a1);
}
struct A1_chain *init_A1_chain(struct spi_ctx *ctx)
{
int i;
struct A1_chain *a1 = malloc(sizeof(*a1));
assert(a1 != NULL);
applog(LOG_DEBUG, "A1 init chain");
memset(a1, 0, sizeof(*a1));
a1->spi_ctx = ctx;
a1->num_chips = manual_chain_detect(a1);
if (a1->num_chips == 0)
goto failure;
applog(LOG_WARNING, "spidev%d.%d: Found %d A1 chips",
a1->spi_ctx->config.bus, a1->spi_ctx->config.cs_line,
a1->num_chips);
a1->num_active_chips = a1->num_chips;
if (config_options.override_chip_num > 0 &&
a1->num_chips > config_options.override_chip_num) {
a1->num_active_chips = config_options.override_chip_num;
applog(LOG_WARNING, "Limiting chain to %d chips",
a1->num_active_chips);
}
if (!set_pll_config(a1, config_options.ref_clk_khz,
config_options.sys_clk_khz))
goto failure;
a1->chips = calloc(a1->num_active_chips, sizeof(struct A1_chip));
assert (a1->chips != NULL);
if (!cmd_BIST_FIX_BCAST(a1))
goto failure;
for (i = 0; i < a1->num_active_chips; i++) {
int chip_id = i + 1;
if (!cmd_READ_REG(a1, chip_id)) {
applog(LOG_WARNING, "Failed to read register for "
"chip %d -> disabling", chip_id);
a1->chips[i].num_cores = 0;
continue;
}
a1->chips[i].num_cores = a1->spi_rx[7];
a1->num_cores += a1->chips[i].num_cores;
applog(LOG_WARNING, "Found chip %d with %d active cores",
chip_id, a1->chips[i].num_cores);
}
applog(LOG_WARNING, "Found %d chips with total %d active cores",
a1->num_active_chips, a1->num_cores);
mutex_init(&a1->lock);
INIT_LIST_HEAD(&a1->active_wq.head);
return a1;
failure:
exit_A1_chain(a1);
return NULL;
}
static bool A1_detect_one_chain(struct spi_config *cfg)
{
struct cgpu_info *cgpu;
struct spi_ctx *ctx = spi_init(cfg);
if (ctx == NULL)
return false;
struct A1_chain *a1 = init_A1_chain(ctx);
if (a1 == NULL)
return false;
cgpu = malloc(sizeof(*cgpu));
assert(cgpu != NULL);
memset(cgpu, 0, sizeof(*cgpu));
cgpu->drv = &bitmineA1_drv;
cgpu->name = "BitmineA1";
cgpu->threads = 1;
cgpu->device_data = a1;
a1->cgpu = cgpu;
add_cgpu(cgpu);
return true;
}
#define MAX_SPI_BUS 1
#define MAX_SPI_CS 2
/* Probe SPI channel and register chip chain */
void A1_detect(bool hotplug)
{
int bus;
int cs_line;
/* no hotplug support for now */
if (hotplug)
return;
if (opt_bitmine_a1_options != NULL && parsed_config_options == NULL) {
int ref_clk;
int sys_clk;
int spi_clk;
int override_chip_num;
sscanf(opt_bitmine_a1_options, "%d:%d:%d:%d",
&ref_clk, &sys_clk, &spi_clk, &override_chip_num);
if (ref_clk != 0)
config_options.ref_clk_khz = ref_clk;
if (sys_clk != 0)
config_options.sys_clk_khz = sys_clk;
if (spi_clk != 0)
config_options.spi_clk_khz = spi_clk;
if (override_chip_num != 0)
config_options.override_chip_num = override_chip_num;
/* config options are global, scan them once */
parsed_config_options = &config_options;
}
applog(LOG_DEBUG, "A1 detect");
A1_hw_reset();
for (bus = 0; bus < MAX_SPI_BUS; bus++) {
for (cs_line = 0; cs_line < MAX_SPI_CS; cs_line++) {
struct spi_config cfg = default_spi_config;
cfg.mode = SPI_MODE_1;
cfg.speed = config_options.spi_clk_khz * 1000;
cfg.bus = bus;
cfg.cs_line = cs_line;
A1_detect_one_chain(&cfg);
}
}
}
/* return value is nonces processed since previous call */
static int64_t A1_scanwork(struct thr_info *thr)
{
int i;
struct cgpu_info *cgpu = thr->cgpu;
struct A1_chain *a1 = cgpu->device_data;
int32_t nonce_ranges_processed = 0;
applog(LOG_DEBUG, "A1 running scanwork");
uint32_t nonce;
uint8_t chip_id;
uint8_t job_id;
bool work_updated = false;
mutex_lock(&a1->lock);
/* poll queued results */
while (get_nonce(a1, (uint8_t*)&nonce, &chip_id, &job_id)) {
nonce = bswap_32(nonce);
work_updated = true;
if (chip_id < 1 || chip_id > a1->num_active_chips) {
applog(LOG_WARNING, "wrong chip_id %d",
chip_id);
continue;
}
assert(job_id > 0 && job_id <= 4);
if (job_id < 1 || job_id > 4) {
applog(LOG_WARNING, "chip_id %d: wrong job_id %d",
chip_id, job_id);
continue;
}
struct A1_chip *chip = &a1->chips[chip_id - 1];
struct work *work = chip->work[job_id - 1];
if (work == NULL) {
/* already been flushed => stale */
applog(LOG_WARNING, "chip %d: stale nonce 0x%08x",
chip_id, nonce);
chip->stales++;
continue;
}
if (!submit_nonce(thr, work, nonce)) {
applog(LOG_WARNING, "chip %d: invalid nonce 0x%08x",
chip_id, nonce);
chip->hw_errors++;
/* add a penalty of a full nonce range on HW errors */
nonce_ranges_processed--;
continue;
}
applog(LOG_WARNING, "YEAH: chip %d / job_id %d: nonce 0x%08x",
chip_id, job_id, nonce);
chip->nonces_found++;
}
/* check for completed works */
for (i = 0; i < a1->num_active_chips; i++) {
uint8_t c = i + 1;
if (is_chip_disabled(a1, c))
continue;
if (!cmd_READ_REG(a1, c)) {
applog(LOG_ERR, "Failed to read reg from chip %d", c);
// TODO: what to do now?
disable_chip(a1, c);
continue;
}
if ((a1->spi_rx[5] & 0x02) != 0)
continue;
work_updated = true;
struct work *work;
work = wq_dequeue(&a1->active_wq);
if (work == NULL) {
applog(LOG_ERR, "Chip %d: work underflow", c);
break;
}
if (!set_work(a1, c, work))
continue;
nonce_ranges_processed++;
struct A1_chip *chip = &a1->chips[i];
chip->nonce_ranges_done++;
applog(LOG_DEBUG, "chip %d: job done => %d/%d/%d/%d", c,
chip->nonce_ranges_done, chip->nonces_found,
chip->hw_errors, chip->stales);
// repeat twice in case both jobs were done
if (!cmd_READ_REG(a1, i + 1)) {
applog(LOG_ERR, "Failed to read reg from chip %d", c);
// TODO: what to do now?
disable_chip(a1, c);
continue;
}
if ((a1->spi_rx[5] & 0x02) != 0)
continue;
work = wq_dequeue(&a1->active_wq);
if (work == NULL) {
applog(LOG_ERR, "Chip %d: work underflow", c);
break;
}
if (!set_work(a1, i + 1, work))
continue;
nonce_ranges_processed++;
chip->nonce_ranges_done++;
applog(LOG_DEBUG, "chip %d: job done => %d/%d/%d/%d",
i + 1,
chip->nonce_ranges_done, chip->nonces_found,
chip->hw_errors, chip->stales);
}
check_disabled_chips(a1);
mutex_unlock(&a1->lock);
if (nonce_ranges_processed < 0) {
applog(LOG_ERR, "Negative nonce_processed");
nonce_ranges_processed = 0;
}
if (nonce_ranges_processed != 0) {
applog(LOG_DEBUG, "nonces processed %d",
nonce_ranges_processed);
}
/* in case of no progress, prevent busy looping */
if (!work_updated)
cgsleep_ms(100);
return (int64_t)nonce_ranges_processed << 32;
}
/* queue two work items per chip in chain */
static bool A1_queue_full(struct cgpu_info *cgpu)
{
struct A1_chain *a1 = cgpu->device_data;
int queue_full = false;
struct work *work;
mutex_lock(&a1->lock);
applog(LOG_DEBUG, "A1 running queue_full: %d/%d",
a1->active_wq.num_elems, a1->num_active_chips);
if (a1->active_wq.num_elems >= a1->num_active_chips * 2) {
applog(LOG_DEBUG, "active_wq full");
queue_full = true;
} else {
wq_enqueue(&a1->active_wq, get_queued(cgpu));
}
mutex_unlock(&a1->lock);
return queue_full;
}
static void A1_flush_work(struct cgpu_info *cgpu)
{
struct A1_chain *a1 = cgpu->device_data;
applog(LOG_DEBUG, "A1 running flushwork");
int i;
mutex_lock(&a1->lock);
/* stop chips hashing current work */
if (!abort_work(a1)) {
applog(LOG_ERR, "failed to abort work in chip chain!");
}
/* flush the work chips were currently hashing */
for (i = 0; i < a1->num_active_chips; i++) {
int j;
struct A1_chip *chip = &a1->chips[i];
for (j = 0; j < 4; j++) {
struct work *work = chip->work[j];
if (work == NULL)
continue;
applog(LOG_DEBUG, "flushing chip %d, work %d: 0x%p",
i, j + 1, work);
work_completed(cgpu, work);
chip->work[j] = NULL;
}
}
/* flush queued work */
applog(LOG_DEBUG, "flushing queued work...");
while (a1->active_wq.num_elems > 0) {
struct work *work = wq_dequeue(&a1->active_wq);
assert(work != NULL);
applog(LOG_DEBUG, "flushing 0x%p", work);
work_completed(cgpu, work);
}
mutex_unlock(&a1->lock);
}
static bool A1_thread_init(struct thr_info *t)
{
return true;
}
static void A1_thread_shutdown(struct thr_info *t)
{
if (log_file != NULL)
fclose(log_file);
log_file = NULL;
}
struct device_drv bitmineA1_drv = {
.drv_id = DRIVER_bitmineA1,
.dname = "BitmineA1",
.name = "BA1",
.drv_detect = A1_detect,
.thread_init = A1_thread_init,
.thread_shutdown = A1_thread_shutdown,
.hash_work = hash_queued_work,
.scanwork = A1_scanwork,
.queue_full = A1_queue_full,
.flush_work = A1_flush_work,
};