1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
/*
* DiabloMiner - OpenCL miner for BitCoin
* Copyright (C) 2010, 2011 Patrick McFarland <diablod3@gmail.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
typedef uint z;
#if BITALIGN
#pragma OPENCL EXTENSION cl_amd_media_ops : enable
#define Zrotr(a, b) amd_bitalign((z)a, (z)a, (z)b)
#define Ch(a, b, c) amd_bytealign(a, b, c)
#define Ma(a, b, c) amd_bytealign((b), (a | c), (c & a))
#else
#define Zrotr(a, b) rotate((z)a, (z)(32 - b))
#define Ch(a, b, c) (c ^ (a & (b ^ c)))
#define Ma(a, b, c) ((b & c) | (a & (b | c)))
#endif
#define WORKSIZE 128
#define Ma2(a, b, c) ((b & c) | (a & (b | c)))
__constant uint K[64] = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
};
typedef struct {
uint ctx_a; uint ctx_b; uint ctx_c; uint ctx_d;
uint ctx_e; uint ctx_f; uint ctx_g; uint ctx_h;
uint cty_a; uint cty_b; uint cty_c; uint cty_d;
uint cty_e; uint cty_f; uint cty_g; uint cty_h;
uint merkle; uint ntime; uint nbits; uint nonce;
uint fW0; uint fW1; uint fW2; uint fW3; uint fW15;
uint fW01r; uint fcty_e; uint fcty_e2;
} dev_blk_ctx;
__kernel __attribute__((reqd_work_group_size(WORKSIZE, 1, 1))) void search(
__constant dev_blk_ctx *ctx,
__global uint * output)
{
const uint fW0 = ctx->fW0;
const uint fW1 = ctx->fW1;
const uint fW2 = ctx->fW2;
const uint fW3 = ctx->fW3;
const uint fW15 = ctx->fW15;
const uint fW01r = ctx->fW01r;
const uint fcty_e = ctx->fcty_e;
const uint fcty_e2 = ctx->fcty_e2;
const uint fcty_e_plus_e2 = fcty_e + fcty_e2;
const uint state0 = ctx->ctx_a;
const uint fcty_e_plus_state0 = fcty_e + state0;
const uint state1 = ctx->ctx_b;
const uint state2 = ctx->ctx_c;
const uint state3 = ctx->ctx_d;
const uint state4 = ctx->ctx_e;
const uint state5 = ctx->ctx_f;
const uint state6 = ctx->ctx_g;
const uint state7 = ctx->ctx_h;
const uint b1 = ctx->cty_b;
const uint c1 = ctx->cty_c;
const uint d1 = ctx->cty_d;
const uint f1 = ctx->cty_f;
const uint g1 = ctx->cty_g;
const uint h1 = ctx->cty_h;
const uint base = ctx->nonce;
z ZA, ZB, ZC, ZD, ZE, ZF, ZG, ZH;
z ZW0, ZW1, ZW2, ZW3, ZW4, ZW5, ZW6, ZW7, ZW8, ZW9, ZW10, ZW11, ZW12, ZW13, ZW14, ZW15;
z Znonce = base + get_global_id(0);
#ifdef DOLOOPS
Znonce *= (z)loops;
uint it;
const z Zloopnonce = Znonce;
for(it = loops; it != 0; it--) {
Znonce = (loops - it) ^ Zloopnonce;
#endif
ZW3 = Znonce + fW3;
ZE = Znonce + fcty_e_plus_e2 ;
ZA = Znonce + fcty_e_plus_state0;
ZD = d1 + (Zrotr(ZA, 6) ^ Zrotr(ZA, 11) ^ Zrotr(ZA, 25)) + Ch(ZA, b1, c1);
ZH = h1 + ZD;
ZD = ZD + (Zrotr(ZE, 2) ^ Zrotr(ZE, 13) ^ Zrotr(ZE, 22)) + Ma2(g1, ZE, f1);
ZC = c1 + (Zrotr(ZH, 6) ^ Zrotr(ZH, 11) ^ Zrotr(ZH, 25)) + Ch(ZH, ZA, b1) + K[ 5];
ZG = g1 + ZC;
ZC = ZC + (Zrotr(ZD, 2) ^ Zrotr(ZD, 13) ^ Zrotr(ZD, 22)) + Ma2(f1, ZD, ZE);
ZB = b1 + (Zrotr(ZG, 6) ^ Zrotr(ZG, 11) ^ Zrotr(ZG, 25)) + Ch(ZG, ZH, ZA) + K[ 6];
ZF = f1 + ZB;
ZB = ZB + (Zrotr(ZC, 2) ^ Zrotr(ZC, 13) ^ Zrotr(ZC, 22)) + Ma(ZE, ZC, ZD);
ZA = ZA + (Zrotr(ZF, 6) ^ Zrotr(ZF, 11) ^ Zrotr(ZF, 25)) + Ch(ZF, ZG, ZH) + K[ 7];
ZE = ZE + ZA;
ZA = ZA + (Zrotr(ZB, 2) ^ Zrotr(ZB, 13) ^ Zrotr(ZB, 22)) + Ma(ZD, ZB, ZC);
ZH = ZH + (Zrotr(ZE, 6) ^ Zrotr(ZE, 11) ^ Zrotr(ZE, 25)) + Ch(ZE, ZF, ZG) + K[ 8];
ZD = ZD + ZH;
ZH = ZH + (Zrotr(ZA, 2) ^ Zrotr(ZA, 13) ^ Zrotr(ZA, 22)) + Ma(ZC, ZA, ZB);
ZG = ZG + (Zrotr(ZD, 6) ^ Zrotr(ZD, 11) ^ Zrotr(ZD, 25)) + Ch(ZD, ZE, ZF) + K[ 9];
ZC = ZC + ZG;
ZG = ZG + (Zrotr(ZH, 2) ^ Zrotr(ZH, 13) ^ Zrotr(ZH, 22)) + Ma(ZB, ZH, ZA);
ZF = ZF + (Zrotr(ZC, 6) ^ Zrotr(ZC, 11) ^ Zrotr(ZC, 25)) + Ch(ZC, ZD, ZE) + K[10];
ZB = ZB + ZF;
ZF = ZF + (Zrotr(ZG, 2) ^ Zrotr(ZG, 13) ^ Zrotr(ZG, 22)) + Ma(ZA, ZG, ZH);
ZE = ZE + (Zrotr(ZB, 6) ^ Zrotr(ZB, 11) ^ Zrotr(ZB, 25)) + Ch(ZB, ZC, ZD) + K[11];
ZA = ZA + ZE;
ZE = ZE + (Zrotr(ZF, 2) ^ Zrotr(ZF, 13) ^ Zrotr(ZF, 22)) + Ma(ZH, ZF, ZG);
ZD = ZD + (Zrotr(ZA, 6) ^ Zrotr(ZA, 11) ^ Zrotr(ZA, 25)) + Ch(ZA, ZB, ZC) + K[12];
ZH = ZH + ZD;
ZD = ZD + (Zrotr(ZE, 2) ^ Zrotr(ZE, 13) ^ Zrotr(ZE, 22)) + Ma(ZG, ZE, ZF);
ZC = ZC + (Zrotr(ZH, 6) ^ Zrotr(ZH, 11) ^ Zrotr(ZH, 25)) + Ch(ZH, ZA, ZB) + K[13];
ZG = ZG + ZC;
ZC = ZC + (Zrotr(ZD, 2) ^ Zrotr(ZD, 13) ^ Zrotr(ZD, 22)) + Ma(ZF, ZD, ZE);
ZB = ZB + (Zrotr(ZG, 6) ^ Zrotr(ZG, 11) ^ Zrotr(ZG, 25)) + Ch(ZG, ZH, ZA) + K[14];
ZF = ZF + ZB;
ZB = ZB + (Zrotr(ZC, 2) ^ Zrotr(ZC, 13) ^ Zrotr(ZC, 22)) + Ma(ZE, ZC, ZD);
ZA = ZA + (Zrotr(ZF, 6) ^ Zrotr(ZF, 11) ^ Zrotr(ZF, 25)) + Ch(ZF, ZG, ZH) + K[15] + 0x00000280U;
ZE = ZE + ZA;
ZA = ZA + (Zrotr(ZB, 2) ^ Zrotr(ZB, 13) ^ Zrotr(ZB, 22)) + Ma(ZD, ZB, ZC);
ZH = ZH + (Zrotr(ZE, 6) ^ Zrotr(ZE, 11) ^ Zrotr(ZE, 25)) + Ch(ZE, ZF, ZG) + K[16] + fW0;
ZD = ZD + ZH;
ZH = ZH + (Zrotr(ZA, 2) ^ Zrotr(ZA, 13) ^ Zrotr(ZA, 22)) + Ma(ZC, ZA, ZB);
ZG = ZG + (Zrotr(ZD, 6) ^ Zrotr(ZD, 11) ^ Zrotr(ZD, 25)) + Ch(ZD, ZE, ZF) + K[17] + fW1;
ZC = ZC + ZG;
ZG = ZG + (Zrotr(ZH, 2) ^ Zrotr(ZH, 13) ^ Zrotr(ZH, 22)) + Ma(ZB, ZH, ZA);
ZW2 = (Zrotr(Znonce, 7) ^ Zrotr(Znonce, 18) ^ (Znonce >> 3U)) + fW2;
ZF = ZF + (Zrotr(ZC, 6) ^ Zrotr(ZC, 11) ^ Zrotr(ZC, 25)) + Ch(ZC, ZD, ZE) + K[18] + ZW2;
ZB = ZB + ZF;
ZF = ZF + (Zrotr(ZG, 2) ^ Zrotr(ZG, 13) ^ Zrotr(ZG, 22)) + Ma(ZA, ZG, ZH);
ZE = ZE + (Zrotr(ZB, 6) ^ Zrotr(ZB, 11) ^ Zrotr(ZB, 25)) + Ch(ZB, ZC, ZD) + K[19] + ZW3;
ZA = ZA + ZE;
ZE = ZE + (Zrotr(ZF, 2) ^ Zrotr(ZF, 13) ^ Zrotr(ZF, 22)) + Ma(ZH, ZF, ZG);
ZW4 = (Zrotr(ZW2, 17) ^ Zrotr(ZW2, 19) ^ (ZW2 >> 10U)) + 0x80000000U;
ZD = ZD + (Zrotr(ZA, 6) ^ Zrotr(ZA, 11) ^ Zrotr(ZA, 25)) + Ch(ZA, ZB, ZC) + K[20] + ZW4;
ZH = ZH + ZD;
ZD = ZD + (Zrotr(ZE, 2) ^ Zrotr(ZE, 13) ^ Zrotr(ZE, 22)) + Ma(ZG, ZE, ZF);
ZW5 = (Zrotr(ZW3, 17) ^ Zrotr(ZW3, 19) ^ (ZW3 >> 10U));
ZC = ZC + (Zrotr(ZH, 6) ^ Zrotr(ZH, 11) ^ Zrotr(ZH, 25)) + Ch(ZH, ZA, ZB) + K[21] + ZW5;
ZG = ZG + ZC;
ZC = ZC + (Zrotr(ZD, 2) ^ Zrotr(ZD, 13) ^ Zrotr(ZD, 22)) + Ma(ZF, ZD, ZE);
ZW6 = (Zrotr(ZW4, 17) ^ Zrotr(ZW4, 19) ^ (ZW4 >> 10U)) + 0x00000280U;
ZB = ZB + (Zrotr(ZG, 6) ^ Zrotr(ZG, 11) ^ Zrotr(ZG, 25)) + Ch(ZG, ZH, ZA) + K[22] + ZW6;
ZF = ZF + ZB;
ZB = ZB + (Zrotr(ZC, 2) ^ Zrotr(ZC, 13) ^ Zrotr(ZC, 22)) + Ma(ZE, ZC, ZD);
ZW7 = (Zrotr(ZW5, 17) ^ Zrotr(ZW5, 19) ^ (ZW5 >> 10U)) + fW0;
ZA = ZA + (Zrotr(ZF, 6) ^ Zrotr(ZF, 11) ^ Zrotr(ZF, 25)) + Ch(ZF, ZG, ZH) + K[23] + ZW7;
ZE = ZE + ZA;
ZA = ZA + (Zrotr(ZB, 2) ^ Zrotr(ZB, 13) ^ Zrotr(ZB, 22)) + Ma(ZD, ZB, ZC);
ZW8 = (Zrotr(ZW6, 17) ^ Zrotr(ZW6, 19) ^ (ZW6 >> 10U)) + fW1;
ZH = ZH + (Zrotr(ZE, 6) ^ Zrotr(ZE, 11) ^ Zrotr(ZE, 25)) + Ch(ZE, ZF, ZG) + K[24] + ZW8;
ZD = ZD + ZH;
ZH = ZH + (Zrotr(ZA, 2) ^ Zrotr(ZA, 13) ^ Zrotr(ZA, 22)) + Ma(ZC, ZA, ZB);
ZW9 = ZW2 + (Zrotr(ZW7, 17) ^ Zrotr(ZW7, 19) ^ (ZW7 >> 10U));
ZG = ZG + (Zrotr(ZD, 6) ^ Zrotr(ZD, 11) ^ Zrotr(ZD, 25)) + Ch(ZD, ZE, ZF) + K[25] + ZW9;
ZC = ZC + ZG;
ZG = ZG + (Zrotr(ZH, 2) ^ Zrotr(ZH, 13) ^ Zrotr(ZH, 22)) + Ma(ZB, ZH, ZA);
ZW10 = ZW3 + (Zrotr(ZW8, 17) ^ Zrotr(ZW8, 19) ^ (ZW8 >> 10U));
ZF = ZF + (Zrotr(ZC, 6) ^ Zrotr(ZC, 11) ^ Zrotr(ZC, 25)) + Ch(ZC, ZD, ZE) + K[26] + ZW10;
ZB = ZB + ZF;
ZF = ZF + (Zrotr(ZG, 2) ^ Zrotr(ZG, 13) ^ Zrotr(ZG, 22)) + Ma(ZA, ZG, ZH);
ZW11 = ZW4 + (Zrotr(ZW9, 17) ^ Zrotr(ZW9, 19) ^ (ZW9 >> 10U));
ZE = ZE + (Zrotr(ZB, 6) ^ Zrotr(ZB, 11) ^ Zrotr(ZB, 25)) + Ch(ZB, ZC, ZD) + K[27] + ZW11;
ZA = ZA + ZE;
ZE = ZE + (Zrotr(ZF, 2) ^ Zrotr(ZF, 13) ^ Zrotr(ZF, 22)) + Ma(ZH, ZF, ZG);
ZW12 = ZW5 + (Zrotr(ZW10, 17) ^ Zrotr(ZW10, 19) ^ (ZW10 >> 10U));
ZD = ZD + (Zrotr(ZA, 6) ^ Zrotr(ZA, 11) ^ Zrotr(ZA, 25)) + Ch(ZA, ZB, ZC) + K[28] + ZW12;
ZH = ZH + ZD;
ZD = ZD + (Zrotr(ZE, 2) ^ Zrotr(ZE, 13) ^ Zrotr(ZE, 22)) + Ma(ZG, ZE, ZF);
ZW13 = ZW6 + (Zrotr(ZW11, 17) ^ Zrotr(ZW11, 19) ^ (ZW11 >> 10U));
ZC = ZC + (Zrotr(ZH, 6) ^ Zrotr(ZH, 11) ^ Zrotr(ZH, 25)) + Ch(ZH, ZA, ZB) + K[29] + ZW13;
ZG = ZG + ZC;
ZC = ZC + (Zrotr(ZD, 2) ^ Zrotr(ZD, 13) ^ Zrotr(ZD, 22)) + Ma(ZF, ZD, ZE);
ZW14 = 0x00a00055U + ZW7 + (Zrotr(ZW12, 17) ^ Zrotr(ZW12, 19) ^ (ZW12 >> 10U));
ZB = ZB + (Zrotr(ZG, 6) ^ Zrotr(ZG, 11) ^ Zrotr(ZG, 25)) + Ch(ZG, ZH, ZA) + K[30] + ZW14;
ZF = ZF + ZB;
ZB = ZB + (Zrotr(ZC, 2) ^ Zrotr(ZC, 13) ^ Zrotr(ZC, 22)) + Ma(ZE, ZC, ZD);
ZW15 = fW15 + ZW8 + (Zrotr(ZW13, 17) ^ Zrotr(ZW13, 19) ^ (ZW13 >> 10U));
ZA = ZA + (Zrotr(ZF, 6) ^ Zrotr(ZF, 11) ^ Zrotr(ZF, 25)) + Ch(ZF, ZG, ZH) + K[31] + ZW15;
ZE = ZE + ZA;
ZA = ZA + (Zrotr(ZB, 2) ^ Zrotr(ZB, 13) ^ Zrotr(ZB, 22)) + Ma(ZD, ZB, ZC);
ZW0 = fW01r + ZW9 + (Zrotr(ZW14, 17) ^ Zrotr(ZW14, 19) ^ (ZW14 >> 10U));
ZH = ZH + (Zrotr(ZE, 6) ^ Zrotr(ZE, 11) ^ Zrotr(ZE, 25)) + Ch(ZE, ZF, ZG) + K[32] + ZW0;
ZD = ZD + ZH;
ZH = ZH + (Zrotr(ZA, 2) ^ Zrotr(ZA, 13) ^ Zrotr(ZA, 22)) + Ma(ZC, ZA, ZB);
ZW1 = fW1 + (Zrotr(ZW2, 7) ^ Zrotr(ZW2, 18) ^ (ZW2 >> 3U)) + ZW10 + (Zrotr(ZW15, 17) ^ Zrotr(ZW15, 19) ^ (ZW15 >> 10U));
ZG = ZG + (Zrotr(ZD, 6) ^ Zrotr(ZD, 11) ^ Zrotr(ZD, 25)) + Ch(ZD, ZE, ZF) + K[33] + ZW1;
ZC = ZC + ZG;
ZG = ZG + (Zrotr(ZH, 2) ^ Zrotr(ZH, 13) ^ Zrotr(ZH, 22)) + Ma(ZB, ZH, ZA);
ZW2 = ZW2 + (Zrotr(ZW3, 7) ^ Zrotr(ZW3, 18) ^ (ZW3 >> 3U)) + ZW11 + (Zrotr(ZW0, 17) ^ Zrotr(ZW0, 19) ^ (ZW0 >> 10U));
ZF = ZF + (Zrotr(ZC, 6) ^ Zrotr(ZC, 11) ^ Zrotr(ZC, 25)) + Ch(ZC, ZD, ZE) + K[34] + ZW2;
ZB = ZB + ZF;
ZF = ZF + (Zrotr(ZG, 2) ^ Zrotr(ZG, 13) ^ Zrotr(ZG, 22)) + Ma(ZA, ZG, ZH);
ZW3 = ZW3 + (Zrotr(ZW4, 7) ^ Zrotr(ZW4, 18) ^ (ZW4 >> 3U)) + ZW12 + (Zrotr(ZW1, 17) ^ Zrotr(ZW1, 19) ^ (ZW1 >> 10U));
ZE = ZE + (Zrotr(ZB, 6) ^ Zrotr(ZB, 11) ^ Zrotr(ZB, 25)) + Ch(ZB, ZC, ZD) + K[35] + ZW3;
ZA = ZA + ZE;
ZE = ZE + (Zrotr(ZF, 2) ^ Zrotr(ZF, 13) ^ Zrotr(ZF, 22)) + Ma(ZH, ZF, ZG);
ZW4 = ZW4 + (Zrotr(ZW5, 7) ^ Zrotr(ZW5, 18) ^ (ZW5 >> 3U)) + ZW13 + (Zrotr(ZW2, 17) ^ Zrotr(ZW2, 19) ^ (ZW2 >> 10U));
ZD = ZD + (Zrotr(ZA, 6) ^ Zrotr(ZA, 11) ^ Zrotr(ZA, 25)) + Ch(ZA, ZB, ZC) + K[36] + ZW4;
ZH = ZH + ZD;
ZD = ZD + (Zrotr(ZE, 2) ^ Zrotr(ZE, 13) ^ Zrotr(ZE, 22)) + Ma(ZG, ZE, ZF);
ZW5 = ZW5 + (Zrotr(ZW6, 7) ^ Zrotr(ZW6, 18) ^ (ZW6 >> 3U)) + ZW14 + (Zrotr(ZW3, 17) ^ Zrotr(ZW3, 19) ^ (ZW3 >> 10U));
ZC = ZC + (Zrotr(ZH, 6) ^ Zrotr(ZH, 11) ^ Zrotr(ZH, 25)) + Ch(ZH, ZA, ZB) + K[37] + ZW5;
ZG = ZG + ZC;
ZC = ZC + (Zrotr(ZD, 2) ^ Zrotr(ZD, 13) ^ Zrotr(ZD, 22)) + Ma(ZF, ZD, ZE);
ZW6 = ZW6 + (Zrotr(ZW7, 7) ^ Zrotr(ZW7, 18) ^ (ZW7 >> 3U)) + ZW15 + (Zrotr(ZW4, 17) ^ Zrotr(ZW4, 19) ^ (ZW4 >> 10U));
ZB = ZB + (Zrotr(ZG, 6) ^ Zrotr(ZG, 11) ^ Zrotr(ZG, 25)) + Ch(ZG, ZH, ZA) + K[38] + ZW6;
ZF = ZF + ZB;
ZB = ZB + (Zrotr(ZC, 2) ^ Zrotr(ZC, 13) ^ Zrotr(ZC, 22)) + Ma(ZE, ZC, ZD);
ZW7 = ZW7 + (Zrotr(ZW8, 7) ^ Zrotr(ZW8, 18) ^ (ZW8 >> 3U)) + ZW0 + (Zrotr(ZW5, 17) ^ Zrotr(ZW5, 19) ^ (ZW5 >> 10U));
ZA = ZA + (Zrotr(ZF, 6) ^ Zrotr(ZF, 11) ^ Zrotr(ZF, 25)) + Ch(ZF, ZG, ZH) + K[39] + ZW7;
ZE = ZE + ZA;
ZA = ZA + (Zrotr(ZB, 2) ^ Zrotr(ZB, 13) ^ Zrotr(ZB, 22)) + Ma(ZD, ZB, ZC);
ZW8 = ZW8 + (Zrotr(ZW9, 7) ^ Zrotr(ZW9, 18) ^ (ZW9 >> 3U)) + ZW1 + (Zrotr(ZW6, 17) ^ Zrotr(ZW6, 19) ^ (ZW6 >> 10U));
ZH = ZH + (Zrotr(ZE, 6) ^ Zrotr(ZE, 11) ^ Zrotr(ZE, 25)) + Ch(ZE, ZF, ZG) + K[40] + ZW8;
ZD = ZD + ZH;
ZH = ZH + (Zrotr(ZA, 2) ^ Zrotr(ZA, 13) ^ Zrotr(ZA, 22)) + Ma(ZC, ZA, ZB);
ZW9 = ZW9 + (Zrotr(ZW10, 7) ^ Zrotr(ZW10, 18) ^ (ZW10 >> 3U)) + ZW2 + (Zrotr(ZW7, 17) ^ Zrotr(ZW7, 19) ^ (ZW7 >> 10U));
ZG = ZG + (Zrotr(ZD, 6) ^ Zrotr(ZD, 11) ^ Zrotr(ZD, 25)) + Ch(ZD, ZE, ZF) + K[41] + ZW9;
ZC = ZC + ZG;
ZG = ZG + (Zrotr(ZH, 2) ^ Zrotr(ZH, 13) ^ Zrotr(ZH, 22)) + Ma(ZB, ZH, ZA);
ZW10 = ZW10 + (Zrotr(ZW11, 7) ^ Zrotr(ZW11, 18) ^ (ZW11 >> 3U)) + ZW3 + (Zrotr(ZW8, 17) ^ Zrotr(ZW8, 19) ^ (ZW8 >> 10U));
ZF = ZF + (Zrotr(ZC, 6) ^ Zrotr(ZC, 11) ^ Zrotr(ZC, 25)) + Ch(ZC, ZD, ZE) + K[42] + ZW10;
ZB = ZB + ZF;
ZF = ZF + (Zrotr(ZG, 2) ^ Zrotr(ZG, 13) ^ Zrotr(ZG, 22)) + Ma(ZA, ZG, ZH);
ZW11 = ZW11 + (Zrotr(ZW12, 7) ^ Zrotr(ZW12, 18) ^ (ZW12 >> 3U)) + ZW4 + (Zrotr(ZW9, 17) ^ Zrotr(ZW9, 19) ^ (ZW9 >> 10U));
ZE = ZE + (Zrotr(ZB, 6) ^ Zrotr(ZB, 11) ^ Zrotr(ZB, 25)) + Ch(ZB, ZC, ZD) + K[43] + ZW11;
ZA = ZA + ZE;
ZE = ZE + (Zrotr(ZF, 2) ^ Zrotr(ZF, 13) ^ Zrotr(ZF, 22)) + Ma(ZH, ZF, ZG);
ZW12 = ZW12 + (Zrotr(ZW13, 7) ^ Zrotr(ZW13, 18) ^ (ZW13 >> 3U)) + ZW5 + (Zrotr(ZW10, 17) ^ Zrotr(ZW10, 19) ^ (ZW10 >> 10U));
ZD = ZD + (Zrotr(ZA, 6) ^ Zrotr(ZA, 11) ^ Zrotr(ZA, 25)) + Ch(ZA, ZB, ZC) + K[44] + ZW12;
ZH = ZH + ZD;
ZD = ZD + (Zrotr(ZE, 2) ^ Zrotr(ZE, 13) ^ Zrotr(ZE, 22)) + Ma(ZG, ZE, ZF);
ZW13 = ZW13 + (Zrotr(ZW14, 7) ^ Zrotr(ZW14, 18) ^ (ZW14 >> 3U)) + ZW6 + (Zrotr(ZW11, 17) ^ Zrotr(ZW11, 19) ^ (ZW11 >> 10U));
ZC = ZC + (Zrotr(ZH, 6) ^ Zrotr(ZH, 11) ^ Zrotr(ZH, 25)) + Ch(ZH, ZA, ZB) + K[45] + ZW13;
ZG = ZG + ZC;
ZC = ZC + (Zrotr(ZD, 2) ^ Zrotr(ZD, 13) ^ Zrotr(ZD, 22)) + Ma(ZF, ZD, ZE);
ZW14 = ZW14 + (Zrotr(ZW15, 7) ^ Zrotr(ZW15, 18) ^ (ZW15 >> 3U)) + ZW7 + (Zrotr(ZW12, 17) ^ Zrotr(ZW12, 19) ^ (ZW12 >> 10U));
ZB = ZB + (Zrotr(ZG, 6) ^ Zrotr(ZG, 11) ^ Zrotr(ZG, 25)) + Ch(ZG, ZH, ZA) + K[46] + ZW14;
ZF = ZF + ZB;
ZB = ZB + (Zrotr(ZC, 2) ^ Zrotr(ZC, 13) ^ Zrotr(ZC, 22)) + Ma(ZE, ZC, ZD);
ZW15 = ZW15 + (Zrotr(ZW0, 7) ^ Zrotr(ZW0, 18) ^ (ZW0 >> 3U)) + ZW8 + (Zrotr(ZW13, 17) ^ Zrotr(ZW13, 19) ^ (ZW13 >> 10U));
ZA = ZA + (Zrotr(ZF, 6) ^ Zrotr(ZF, 11) ^ Zrotr(ZF, 25)) + Ch(ZF, ZG, ZH) + K[47] + ZW15;
ZE = ZE + ZA;
ZA = ZA + (Zrotr(ZB, 2) ^ Zrotr(ZB, 13) ^ Zrotr(ZB, 22)) + Ma(ZD, ZB, ZC);
ZW0 = ZW0 + (Zrotr(ZW1, 7) ^ Zrotr(ZW1, 18) ^ (ZW1 >> 3U)) + ZW9 + (Zrotr(ZW14, 17) ^ Zrotr(ZW14, 19) ^ (ZW14 >> 10U));
ZH = ZH + (Zrotr(ZE, 6) ^ Zrotr(ZE, 11) ^ Zrotr(ZE, 25)) + Ch(ZE, ZF, ZG) + K[48] + ZW0;
ZD = ZD + ZH;
ZH = ZH + (Zrotr(ZA, 2) ^ Zrotr(ZA, 13) ^ Zrotr(ZA, 22)) + Ma(ZC, ZA, ZB);
ZW1 = ZW1 + (Zrotr(ZW2, 7) ^ Zrotr(ZW2, 18) ^ (ZW2 >> 3U)) + ZW10 + (Zrotr(ZW15, 17) ^ Zrotr(ZW15, 19) ^ (ZW15 >> 10U));
ZG = ZG + (Zrotr(ZD, 6) ^ Zrotr(ZD, 11) ^ Zrotr(ZD, 25)) + Ch(ZD, ZE, ZF) + K[49] + ZW1;
ZC = ZC + ZG;
ZG = ZG + (Zrotr(ZH, 2) ^ Zrotr(ZH, 13) ^ Zrotr(ZH, 22)) + Ma(ZB, ZH, ZA);
ZW2 = ZW2 + (Zrotr(ZW3, 7) ^ Zrotr(ZW3, 18) ^ (ZW3 >> 3U)) + ZW11 + (Zrotr(ZW0, 17) ^ Zrotr(ZW0, 19) ^ (ZW0 >> 10U));
ZF = ZF + (Zrotr(ZC, 6) ^ Zrotr(ZC, 11) ^ Zrotr(ZC, 25)) + Ch(ZC, ZD, ZE) + K[50] + ZW2;
ZB = ZB + ZF;
ZF = ZF + (Zrotr(ZG, 2) ^ Zrotr(ZG, 13) ^ Zrotr(ZG, 22)) + Ma(ZA, ZG, ZH);
ZW3 = ZW3 + (Zrotr(ZW4, 7) ^ Zrotr(ZW4, 18) ^ (ZW4 >> 3U)) + ZW12 + (Zrotr(ZW1, 17) ^ Zrotr(ZW1, 19) ^ (ZW1 >> 10U));
ZE = ZE + (Zrotr(ZB, 6) ^ Zrotr(ZB, 11) ^ Zrotr(ZB, 25)) + Ch(ZB, ZC, ZD) + K[51] + ZW3;
ZA = ZA + ZE;
ZE = ZE + (Zrotr(ZF, 2) ^ Zrotr(ZF, 13) ^ Zrotr(ZF, 22)) + Ma(ZH, ZF, ZG);
ZW4 = ZW4 + (Zrotr(ZW5, 7) ^ Zrotr(ZW5, 18) ^ (ZW5 >> 3U)) + ZW13 + (Zrotr(ZW2, 17) ^ Zrotr(ZW2, 19) ^ (ZW2 >> 10U));
ZD = ZD + (Zrotr(ZA, 6) ^ Zrotr(ZA, 11) ^ Zrotr(ZA, 25)) + Ch(ZA, ZB, ZC) + K[52] + ZW4;
ZH = ZH + ZD;
ZD = ZD + (Zrotr(ZE, 2) ^ Zrotr(ZE, 13) ^ Zrotr(ZE, 22)) + Ma(ZG, ZE, ZF);
ZW5 = ZW5 + (Zrotr(ZW6, 7) ^ Zrotr(ZW6, 18) ^ (ZW6 >> 3U)) + ZW14 + (Zrotr(ZW3, 17) ^ Zrotr(ZW3, 19) ^ (ZW3 >> 10U));
ZC = ZC + (Zrotr(ZH, 6) ^ Zrotr(ZH, 11) ^ Zrotr(ZH, 25)) + Ch(ZH, ZA, ZB) + K[53] + ZW5;
ZG = ZG + ZC;
ZC = ZC + (Zrotr(ZD, 2) ^ Zrotr(ZD, 13) ^ Zrotr(ZD, 22)) + Ma(ZF, ZD, ZE);
ZW6 = ZW6 + (Zrotr(ZW7, 7) ^ Zrotr(ZW7, 18) ^ (ZW7 >> 3U)) + ZW15 + (Zrotr(ZW4, 17) ^ Zrotr(ZW4, 19) ^ (ZW4 >> 10U));
ZB = ZB + (Zrotr(ZG, 6) ^ Zrotr(ZG, 11) ^ Zrotr(ZG, 25)) + Ch(ZG, ZH, ZA) + K[54] + ZW6;
ZF = ZF + ZB;
ZB = ZB + (Zrotr(ZC, 2) ^ Zrotr(ZC, 13) ^ Zrotr(ZC, 22)) + Ma(ZE, ZC, ZD);
ZW7 = ZW7 + (Zrotr(ZW8, 7) ^ Zrotr(ZW8, 18) ^ (ZW8 >> 3U)) + ZW0 + (Zrotr(ZW5, 17) ^ Zrotr(ZW5, 19) ^ (ZW5 >> 10U));
ZA = ZA + (Zrotr(ZF, 6) ^ Zrotr(ZF, 11) ^ Zrotr(ZF, 25)) + Ch(ZF, ZG, ZH) + K[55] + ZW7;
ZE = ZE + ZA;
ZA = ZA + (Zrotr(ZB, 2) ^ Zrotr(ZB, 13) ^ Zrotr(ZB, 22)) + Ma(ZD, ZB, ZC);
ZW8 = ZW8 + (Zrotr(ZW9, 7) ^ Zrotr(ZW9, 18) ^ (ZW9 >> 3U)) + ZW1 + (Zrotr(ZW6, 17) ^ Zrotr(ZW6, 19) ^ (ZW6 >> 10U));
ZH = ZH + (Zrotr(ZE, 6) ^ Zrotr(ZE, 11) ^ Zrotr(ZE, 25)) + Ch(ZE, ZF, ZG) + K[56] + ZW8;
ZD = ZD + ZH;
ZH = ZH + (Zrotr(ZA, 2) ^ Zrotr(ZA, 13) ^ Zrotr(ZA, 22)) + Ma(ZC, ZA, ZB);
ZW9 = ZW9 + (Zrotr(ZW10, 7) ^ Zrotr(ZW10, 18) ^ (ZW10 >> 3U)) + ZW2 + (Zrotr(ZW7, 17) ^ Zrotr(ZW7, 19) ^ (ZW7 >> 10U));
ZG = ZG + (Zrotr(ZD, 6) ^ Zrotr(ZD, 11) ^ Zrotr(ZD, 25)) + Ch(ZD, ZE, ZF) + K[57] + ZW9;
ZC = ZC + ZG;
ZG = ZG + (Zrotr(ZH, 2) ^ Zrotr(ZH, 13) ^ Zrotr(ZH, 22)) + Ma(ZB, ZH, ZA);
ZW10 = ZW10 + (Zrotr(ZW11, 7) ^ Zrotr(ZW11, 18) ^ (ZW11 >> 3U)) + ZW3 + (Zrotr(ZW8, 17) ^ Zrotr(ZW8, 19) ^ (ZW8 >> 10U));
ZF = ZF + (Zrotr(ZC, 6) ^ Zrotr(ZC, 11) ^ Zrotr(ZC, 25)) + Ch(ZC, ZD, ZE) + K[58] + ZW10;
ZB = ZB + ZF;
ZF = ZF + (Zrotr(ZG, 2) ^ Zrotr(ZG, 13) ^ Zrotr(ZG, 22)) + Ma(ZA, ZG, ZH);
ZW11 = ZW11 + (Zrotr(ZW12, 7) ^ Zrotr(ZW12, 18) ^ (ZW12 >> 3U)) + ZW4 + (Zrotr(ZW9, 17) ^ Zrotr(ZW9, 19) ^ (ZW9 >> 10U));
ZE = ZE + (Zrotr(ZB, 6) ^ Zrotr(ZB, 11) ^ Zrotr(ZB, 25)) + Ch(ZB, ZC, ZD) + K[59] + ZW11;
ZA = ZA + ZE;
ZE = ZE + (Zrotr(ZF, 2) ^ Zrotr(ZF, 13) ^ Zrotr(ZF, 22)) + Ma(ZH, ZF, ZG);
ZW12 = ZW12 + (Zrotr(ZW13, 7) ^ Zrotr(ZW13, 18) ^ (ZW13 >> 3U)) + ZW5 + (Zrotr(ZW10, 17) ^ Zrotr(ZW10, 19) ^ (ZW10 >> 10U));
ZD = ZD + (Zrotr(ZA, 6) ^ Zrotr(ZA, 11) ^ Zrotr(ZA, 25)) + Ch(ZA, ZB, ZC) + K[60] + ZW12;
ZH = ZH + ZD;
ZD = ZD + (Zrotr(ZE, 2) ^ Zrotr(ZE, 13) ^ Zrotr(ZE, 22)) + Ma(ZG, ZE, ZF);
ZW13 = ZW13 + (Zrotr(ZW14, 7) ^ Zrotr(ZW14, 18) ^ (ZW14 >> 3U)) + ZW6 + (Zrotr(ZW11, 17) ^ Zrotr(ZW11, 19) ^ (ZW11 >> 10U));
ZC = ZC + (Zrotr(ZH, 6) ^ Zrotr(ZH, 11) ^ Zrotr(ZH, 25)) + Ch(ZH, ZA, ZB) + K[61] + ZW13;
ZG = ZG + ZC;
ZC = ZC + (Zrotr(ZD, 2) ^ Zrotr(ZD, 13) ^ Zrotr(ZD, 22)) + Ma(ZF, ZD, ZE);
ZW14 = ZW14 + (Zrotr(ZW15, 7) ^ Zrotr(ZW15, 18) ^ (ZW15 >> 3U)) + ZW7 + (Zrotr(ZW12, 17) ^ Zrotr(ZW12, 19) ^ (ZW12 >> 10U));
ZB = ZB + (Zrotr(ZG, 6) ^ Zrotr(ZG, 11) ^ Zrotr(ZG, 25)) + Ch(ZG, ZH, ZA) + K[62] + ZW14;
ZF = ZF + ZB;
ZB = ZB + (Zrotr(ZC, 2) ^ Zrotr(ZC, 13) ^ Zrotr(ZC, 22)) + Ma(ZE, ZC, ZD);
ZW15 = ZW15 + (Zrotr(ZW0, 7) ^ Zrotr(ZW0, 18) ^ (ZW0 >> 3U)) + ZW8 + (Zrotr(ZW13, 17) ^ Zrotr(ZW13, 19) ^ (ZW13 >> 10U));
ZA = ZA + (Zrotr(ZF, 6) ^ Zrotr(ZF, 11) ^ Zrotr(ZF, 25)) + Ch(ZF, ZG, ZH) + K[63] + ZW15;
ZW0 = ZA + state0 + (Zrotr(ZB, 2) ^ Zrotr(ZB, 13) ^ Zrotr(ZB, 22)) + Ma(ZD, ZB, ZC);
ZW1 = ZB + state1;
ZW2 = ZC + state2;
ZW3 = ZD + state3;
ZW4 = ZE + ZA + state4;
ZW5 = ZF + state5;
ZW6 = ZG + state6;
ZW7 = ZH + state7;
ZD = 0x98C7E2A2U + ZW0;
ZH = 0xFC08884DU + ZW0;
ZC = 0xCD2A11AEU + (Zrotr(ZD, 6) ^ Zrotr(ZD, 11) ^ Zrotr(ZD, 25)) + Ch(ZD, 0x510e527fU, 0x9b05688cU) + ZW1;
ZG = 0xC3910C8EU + ZC + (Zrotr(ZH, 2) ^ Zrotr(ZH, 13) ^ Zrotr(ZH, 22)) + Ma2(0xbb67ae85U, ZH, 0x6a09e667U);
ZB = 0x0C2E12E0U + (Zrotr(ZC, 6) ^ Zrotr(ZC, 11) ^ Zrotr(ZC, 25)) + Ch(ZC, ZD, 0x510e527fU) + ZW2;
ZF = 0x4498517BU + ZB + (Zrotr(ZG, 2) ^ Zrotr(ZG, 13) ^ Zrotr(ZG, 22)) + Ma2(ZG, ZH, 0x6a09e667U);
ZA = 0xA4CE148BU + (Zrotr(ZB, 6) ^ Zrotr(ZB, 11) ^ Zrotr(ZB, 25)) + Ch(ZB, ZC, ZD) + ZW3;
ZE = 0x95F61999U + ZA + (Zrotr(ZF, 2) ^ Zrotr(ZF, 13) ^ Zrotr(ZF, 22)) + Ma2(ZH, ZF, ZG);
ZD = ZD + (Zrotr(ZA, 6) ^ Zrotr(ZA, 11) ^ Zrotr(ZA, 25)) + Ch(ZA, ZB, ZC) + K[ 4] + ZW4;
ZH = ZH + ZD;
ZD = ZD + (Zrotr(ZE, 2) ^ Zrotr(ZE, 13) ^ Zrotr(ZE, 22)) + Ma(ZG, ZE, ZF);
ZC = ZC + (Zrotr(ZH, 6) ^ Zrotr(ZH, 11) ^ Zrotr(ZH, 25)) + Ch(ZH, ZA, ZB) + K[ 5] + ZW5;
ZG = ZG + ZC;
ZC = ZC + (Zrotr(ZD, 2) ^ Zrotr(ZD, 13) ^ Zrotr(ZD, 22)) + Ma(ZF, ZD, ZE);
ZB = ZB + (Zrotr(ZG, 6) ^ Zrotr(ZG, 11) ^ Zrotr(ZG, 25)) + Ch(ZG, ZH, ZA) + K[ 6] + ZW6;
ZF = ZF + ZB;
ZB = ZB + (Zrotr(ZC, 2) ^ Zrotr(ZC, 13) ^ Zrotr(ZC, 22)) + Ma(ZE, ZC, ZD);
ZA = ZA + (Zrotr(ZF, 6) ^ Zrotr(ZF, 11) ^ Zrotr(ZF, 25)) + Ch(ZF, ZG, ZH) + K[ 7] + ZW7;
ZE = ZE + ZA;
ZA = ZA + (Zrotr(ZB, 2) ^ Zrotr(ZB, 13) ^ Zrotr(ZB, 22)) + Ma(ZD, ZB, ZC);
ZH = ZH + (Zrotr(ZE, 6) ^ Zrotr(ZE, 11) ^ Zrotr(ZE, 25)) + Ch(ZE, ZF, ZG) + K[ 8] + 0x80000000U;
ZD = ZD + ZH;
ZH = ZH + (Zrotr(ZA, 2) ^ Zrotr(ZA, 13) ^ Zrotr(ZA, 22)) + Ma(ZC, ZA, ZB);
ZG = ZG + (Zrotr(ZD, 6) ^ Zrotr(ZD, 11) ^ Zrotr(ZD, 25)) + Ch(ZD, ZE, ZF) + K[ 9];
ZC = ZC + ZG;
ZG = ZG + (Zrotr(ZH, 2) ^ Zrotr(ZH, 13) ^ Zrotr(ZH, 22)) + Ma(ZB, ZH, ZA);
ZF = ZF + (Zrotr(ZC, 6) ^ Zrotr(ZC, 11) ^ Zrotr(ZC, 25)) + Ch(ZC, ZD, ZE) + K[10];
ZB = ZB + ZF;
ZF = ZF + (Zrotr(ZG, 2) ^ Zrotr(ZG, 13) ^ Zrotr(ZG, 22)) + Ma(ZA, ZG, ZH);
ZE = ZE + (Zrotr(ZB, 6) ^ Zrotr(ZB, 11) ^ Zrotr(ZB, 25)) + Ch(ZB, ZC, ZD) + K[11];
ZA = ZA + ZE;
ZE = ZE + (Zrotr(ZF, 2) ^ Zrotr(ZF, 13) ^ Zrotr(ZF, 22)) + Ma(ZH, ZF, ZG);
ZD = ZD + (Zrotr(ZA, 6) ^ Zrotr(ZA, 11) ^ Zrotr(ZA, 25)) + Ch(ZA, ZB, ZC) + K[12];
ZH = ZH + ZD;
ZD = ZD + (Zrotr(ZE, 2) ^ Zrotr(ZE, 13) ^ Zrotr(ZE, 22)) + Ma(ZG, ZE, ZF);
ZC = ZC + (Zrotr(ZH, 6) ^ Zrotr(ZH, 11) ^ Zrotr(ZH, 25)) + Ch(ZH, ZA, ZB) + K[13];
ZG = ZG + ZC;
ZC = ZC + (Zrotr(ZD, 2) ^ Zrotr(ZD, 13) ^ Zrotr(ZD, 22)) + Ma(ZF, ZD, ZE);
ZB = ZB + (Zrotr(ZG, 6) ^ Zrotr(ZG, 11) ^ Zrotr(ZG, 25)) + Ch(ZG, ZH, ZA) + K[14];
ZF = ZF + ZB;
ZB = ZB + (Zrotr(ZC, 2) ^ Zrotr(ZC, 13) ^ Zrotr(ZC, 22)) + Ma(ZE, ZC, ZD);
ZA = ZA + (Zrotr(ZF, 6) ^ Zrotr(ZF, 11) ^ Zrotr(ZF, 25)) + Ch(ZF, ZG, ZH) + K[15] + 0x00000100U;
ZE = ZE + ZA;
ZA = ZA + (Zrotr(ZB, 2) ^ Zrotr(ZB, 13) ^ Zrotr(ZB, 22)) + Ma(ZD, ZB, ZC);
ZW0 = ZW0 + (Zrotr(ZW1, 7) ^ Zrotr(ZW1, 18) ^ (ZW1 >> 3U));
ZH = ZH + (Zrotr(ZE, 6) ^ Zrotr(ZE, 11) ^ Zrotr(ZE, 25)) + Ch(ZE, ZF, ZG) + K[16] + ZW0;
ZD = ZD + ZH;
ZH = ZH + (Zrotr(ZA, 2) ^ Zrotr(ZA, 13) ^ Zrotr(ZA, 22)) + Ma(ZC, ZA, ZB);
ZW1 = ZW1 + (Zrotr(ZW2, 7) ^ Zrotr(ZW2, 18) ^ (ZW2 >> 3U)) + 0x00a00000U;
ZG = ZG + (Zrotr(ZD, 6) ^ Zrotr(ZD, 11) ^ Zrotr(ZD, 25)) + Ch(ZD, ZE, ZF) + K[17] + ZW1;
ZC = ZC + ZG;
ZG = ZG + (Zrotr(ZH, 2) ^ Zrotr(ZH, 13) ^ Zrotr(ZH, 22)) + Ma(ZB, ZH, ZA);
ZW2 = ZW2 + (Zrotr(ZW3, 7) ^ Zrotr(ZW3, 18) ^ (ZW3 >> 3U)) + (Zrotr(ZW0, 17) ^ Zrotr(ZW0, 19) ^ (ZW0 >> 10U));
ZF = ZF + (Zrotr(ZC, 6) ^ Zrotr(ZC, 11) ^ Zrotr(ZC, 25)) + Ch(ZC, ZD, ZE) + K[18] + ZW2;
ZB = ZB + ZF;
ZF = ZF + (Zrotr(ZG, 2) ^ Zrotr(ZG, 13) ^ Zrotr(ZG, 22)) + Ma(ZA, ZG, ZH);
ZW3 = ZW3 + (Zrotr(ZW4, 7) ^ Zrotr(ZW4, 18) ^ (ZW4 >> 3U)) + (Zrotr(ZW1, 17) ^ Zrotr(ZW1, 19) ^ (ZW1 >> 10U));
ZE = ZE + (Zrotr(ZB, 6) ^ Zrotr(ZB, 11) ^ Zrotr(ZB, 25)) + Ch(ZB, ZC, ZD) + K[19] + ZW3;
ZA = ZA + ZE;
ZE = ZE + (Zrotr(ZF, 2) ^ Zrotr(ZF, 13) ^ Zrotr(ZF, 22)) + Ma(ZH, ZF, ZG);
ZW4 = ZW4 + (Zrotr(ZW5, 7) ^ Zrotr(ZW5, 18) ^ (ZW5 >> 3U)) + (Zrotr(ZW2, 17) ^ Zrotr(ZW2, 19) ^ (ZW2 >> 10U));
ZD = ZD + (Zrotr(ZA, 6) ^ Zrotr(ZA, 11) ^ Zrotr(ZA, 25)) + Ch(ZA, ZB, ZC) + K[20] + ZW4;
ZH = ZH + ZD;
ZD = ZD + (Zrotr(ZE, 2) ^ Zrotr(ZE, 13) ^ Zrotr(ZE, 22)) + Ma(ZG, ZE, ZF);
ZW5 = ZW5 + (Zrotr(ZW6, 7) ^ Zrotr(ZW6, 18) ^ (ZW6 >> 3U)) + (Zrotr(ZW3, 17) ^ Zrotr(ZW3, 19) ^ (ZW3 >> 10U));
ZC = ZC + (Zrotr(ZH, 6) ^ Zrotr(ZH, 11) ^ Zrotr(ZH, 25)) + Ch(ZH, ZA, ZB) + K[21] + ZW5;
ZG = ZG + ZC;
ZC = ZC + (Zrotr(ZD, 2) ^ Zrotr(ZD, 13) ^ Zrotr(ZD, 22)) + Ma(ZF, ZD, ZE);
ZW6 = ZW6 + (Zrotr(ZW7, 7) ^ Zrotr(ZW7, 18) ^ (ZW7 >> 3U)) + 0x00000100U + (Zrotr(ZW4, 17) ^ Zrotr(ZW4, 19) ^ (ZW4 >> 10U));
ZB = ZB + (Zrotr(ZG, 6) ^ Zrotr(ZG, 11) ^ Zrotr(ZG, 25)) + Ch(ZG, ZH, ZA) + K[22] + ZW6;
ZF = ZF + ZB;
ZB = ZB + (Zrotr(ZC, 2) ^ Zrotr(ZC, 13) ^ Zrotr(ZC, 22)) + Ma(ZE, ZC, ZD);
ZW7 = ZW7 + 0x11002000U + ZW0 + (Zrotr(ZW5, 17) ^ Zrotr(ZW5, 19) ^ (ZW5 >> 10U));
ZA = ZA + (Zrotr(ZF, 6) ^ Zrotr(ZF, 11) ^ Zrotr(ZF, 25)) + Ch(ZF, ZG, ZH) + K[23] + ZW7;
ZE = ZE + ZA;
ZA = ZA + (Zrotr(ZB, 2) ^ Zrotr(ZB, 13) ^ Zrotr(ZB, 22)) + Ma(ZD, ZB, ZC);
ZW8 = 0x80000000U + ZW1 + (Zrotr(ZW6, 17) ^ Zrotr(ZW6, 19) ^ (ZW6 >> 10U));
ZH = ZH + (Zrotr(ZE, 6) ^ Zrotr(ZE, 11) ^ Zrotr(ZE, 25)) + Ch(ZE, ZF, ZG) + K[24] + ZW8;
ZD = ZD + ZH;
ZH = ZH + (Zrotr(ZA, 2) ^ Zrotr(ZA, 13) ^ Zrotr(ZA, 22)) + Ma(ZC, ZA, ZB);
ZW9 = ZW2 + (Zrotr(ZW7, 17) ^ Zrotr(ZW7, 19) ^ (ZW7 >> 10U));
ZG = ZG + (Zrotr(ZD, 6) ^ Zrotr(ZD, 11) ^ Zrotr(ZD, 25)) + Ch(ZD, ZE, ZF) + K[25] + ZW9;
ZC = ZC + ZG;
ZG = ZG + (Zrotr(ZH, 2) ^ Zrotr(ZH, 13) ^ Zrotr(ZH, 22)) + Ma(ZB, ZH, ZA);
ZW10 = ZW3 + (Zrotr(ZW8, 17) ^ Zrotr(ZW8, 19) ^ (ZW8 >> 10U));
ZF = ZF + (Zrotr(ZC, 6) ^ Zrotr(ZC, 11) ^ Zrotr(ZC, 25)) + Ch(ZC, ZD, ZE) + K[26] + ZW10;
ZB = ZB + ZF;
ZF = ZF + (Zrotr(ZG, 2) ^ Zrotr(ZG, 13) ^ Zrotr(ZG, 22)) + Ma(ZA, ZG, ZH);
ZW11 = ZW4 + (Zrotr(ZW9, 17) ^ Zrotr(ZW9, 19) ^ (ZW9 >> 10U));
ZE = ZE + (Zrotr(ZB, 6) ^ Zrotr(ZB, 11) ^ Zrotr(ZB, 25)) + Ch(ZB, ZC, ZD) + K[27] + ZW11;
ZA = ZA + ZE;
ZE = ZE + (Zrotr(ZF, 2) ^ Zrotr(ZF, 13) ^ Zrotr(ZF, 22)) + Ma(ZH, ZF, ZG);
ZW12 = ZW5 + (Zrotr(ZW10, 17) ^ Zrotr(ZW10, 19) ^ (ZW10 >> 10U));
ZD = ZD + (Zrotr(ZA, 6) ^ Zrotr(ZA, 11) ^ Zrotr(ZA, 25)) + Ch(ZA, ZB, ZC) + K[28] + ZW12;
ZH = ZH + ZD;
ZD = ZD + (Zrotr(ZE, 2) ^ Zrotr(ZE, 13) ^ Zrotr(ZE, 22)) + Ma(ZG, ZE, ZF);
ZW13 = ZW6 + (Zrotr(ZW11, 17) ^ Zrotr(ZW11, 19) ^ (ZW11 >> 10U));
ZC = ZC + (Zrotr(ZH, 6) ^ Zrotr(ZH, 11) ^ Zrotr(ZH, 25)) + Ch(ZH, ZA, ZB) + K[29] + ZW13;
ZG = ZG + ZC;
ZC = ZC + (Zrotr(ZD, 2) ^ Zrotr(ZD, 13) ^ Zrotr(ZD, 22)) + Ma(ZF, ZD, ZE);
ZW14 = 0x00400022U + ZW7 + (Zrotr(ZW12, 17) ^ Zrotr(ZW12, 19) ^ (ZW12 >> 10U));
ZB = ZB + (Zrotr(ZG, 6) ^ Zrotr(ZG, 11) ^ Zrotr(ZG, 25)) + Ch(ZG, ZH, ZA) + K[30] + ZW14;
ZF = ZF + ZB;
ZB = ZB + (Zrotr(ZC, 2) ^ Zrotr(ZC, 13) ^ Zrotr(ZC, 22)) + Ma(ZE, ZC, ZD);
ZW15 = 0x00000100U + (Zrotr(ZW0, 7) ^ Zrotr(ZW0, 18) ^ (ZW0 >> 3U)) + ZW8 + (Zrotr(ZW13, 17) ^ Zrotr(ZW13, 19) ^ (ZW13 >> 10U));
ZA = ZA + (Zrotr(ZF, 6) ^ Zrotr(ZF, 11) ^ Zrotr(ZF, 25)) + Ch(ZF, ZG, ZH) + K[31] + ZW15;
ZE = ZE + ZA;
ZA = ZA + (Zrotr(ZB, 2) ^ Zrotr(ZB, 13) ^ Zrotr(ZB, 22)) + Ma(ZD, ZB, ZC);
ZW0 = ZW0 + (Zrotr(ZW1, 7) ^ Zrotr(ZW1, 18) ^ (ZW1 >> 3U)) + ZW9 + (Zrotr(ZW14, 17) ^ Zrotr(ZW14, 19) ^ (ZW14 >> 10U));
ZH = ZH + (Zrotr(ZE, 6) ^ Zrotr(ZE, 11) ^ Zrotr(ZE, 25)) + Ch(ZE, ZF, ZG) + K[32] + ZW0;
ZD = ZD + ZH;
ZH = ZH + (Zrotr(ZA, 2) ^ Zrotr(ZA, 13) ^ Zrotr(ZA, 22)) + Ma(ZC, ZA, ZB);
ZW1 = ZW1 + (Zrotr(ZW2, 7) ^ Zrotr(ZW2, 18) ^ (ZW2 >> 3U)) + ZW10 + (Zrotr(ZW15, 17) ^ Zrotr(ZW15, 19) ^ (ZW15 >> 10U));
ZG = ZG + (Zrotr(ZD, 6) ^ Zrotr(ZD, 11) ^ Zrotr(ZD, 25)) + Ch(ZD, ZE, ZF) + K[33] + ZW1;
ZC = ZC + ZG;
ZG = ZG + (Zrotr(ZH, 2) ^ Zrotr(ZH, 13) ^ Zrotr(ZH, 22)) + Ma(ZB, ZH, ZA);
ZW2 = ZW2 + (Zrotr(ZW3, 7) ^ Zrotr(ZW3, 18) ^ (ZW3 >> 3U)) + ZW11 + (Zrotr(ZW0, 17) ^ Zrotr(ZW0, 19) ^ (ZW0 >> 10U));
ZF = ZF + (Zrotr(ZC, 6) ^ Zrotr(ZC, 11) ^ Zrotr(ZC, 25)) + Ch(ZC, ZD, ZE) + K[34] + ZW2;
ZB = ZB + ZF;
ZF = ZF + (Zrotr(ZG, 2) ^ Zrotr(ZG, 13) ^ Zrotr(ZG, 22)) + Ma(ZA, ZG, ZH);
ZW3 = ZW3 + (Zrotr(ZW4, 7) ^ Zrotr(ZW4, 18) ^ (ZW4 >> 3U)) + ZW12 + (Zrotr(ZW1, 17) ^ Zrotr(ZW1, 19) ^ (ZW1 >> 10U));
ZE = ZE + (Zrotr(ZB, 6) ^ Zrotr(ZB, 11) ^ Zrotr(ZB, 25)) + Ch(ZB, ZC, ZD) + K[35] + ZW3;
ZA = ZA + ZE;
ZE = ZE + (Zrotr(ZF, 2) ^ Zrotr(ZF, 13) ^ Zrotr(ZF, 22)) + Ma(ZH, ZF, ZG);
ZW4 = ZW4 + (Zrotr(ZW5, 7) ^ Zrotr(ZW5, 18) ^ (ZW5 >> 3U)) + ZW13 + (Zrotr(ZW2, 17) ^ Zrotr(ZW2, 19) ^ (ZW2 >> 10U));
ZD = ZD + (Zrotr(ZA, 6) ^ Zrotr(ZA, 11) ^ Zrotr(ZA, 25)) + Ch(ZA, ZB, ZC) + K[36] + ZW4;
ZH = ZH + ZD;
ZD = ZD + (Zrotr(ZE, 2) ^ Zrotr(ZE, 13) ^ Zrotr(ZE, 22)) + Ma(ZG, ZE, ZF);
ZW5 = ZW5 + (Zrotr(ZW6, 7) ^ Zrotr(ZW6, 18) ^ (ZW6 >> 3U)) + ZW14 + (Zrotr(ZW3, 17) ^ Zrotr(ZW3, 19) ^ (ZW3 >> 10U));
ZC = ZC + (Zrotr(ZH, 6) ^ Zrotr(ZH, 11) ^ Zrotr(ZH, 25)) + Ch(ZH, ZA, ZB) + K[37] + ZW5;
ZG = ZG + ZC;
ZC = ZC + (Zrotr(ZD, 2) ^ Zrotr(ZD, 13) ^ Zrotr(ZD, 22)) + Ma(ZF, ZD, ZE);
ZW6 = ZW6 + (Zrotr(ZW7, 7) ^ Zrotr(ZW7, 18) ^ (ZW7 >> 3U)) + ZW15 + (Zrotr(ZW4, 17) ^ Zrotr(ZW4, 19) ^ (ZW4 >> 10U));
ZB = ZB + (Zrotr(ZG, 6) ^ Zrotr(ZG, 11) ^ Zrotr(ZG, 25)) + Ch(ZG, ZH, ZA) + K[38] + ZW6;
ZF = ZF + ZB;
ZB = ZB + (Zrotr(ZC, 2) ^ Zrotr(ZC, 13) ^ Zrotr(ZC, 22)) + Ma(ZE, ZC, ZD);
ZW7 = ZW7 + (Zrotr(ZW8, 7) ^ Zrotr(ZW8, 18) ^ (ZW8 >> 3U)) + ZW0 + (Zrotr(ZW5, 17) ^ Zrotr(ZW5, 19) ^ (ZW5 >> 10U));
ZA = ZA + (Zrotr(ZF, 6) ^ Zrotr(ZF, 11) ^ Zrotr(ZF, 25)) + Ch(ZF, ZG, ZH) + K[39] + ZW7;
ZE = ZE + ZA;
ZA = ZA + (Zrotr(ZB, 2) ^ Zrotr(ZB, 13) ^ Zrotr(ZB, 22)) + Ma(ZD, ZB, ZC);
ZW8 = ZW8 + (Zrotr(ZW9, 7) ^ Zrotr(ZW9, 18) ^ (ZW9 >> 3U)) + ZW1 + (Zrotr(ZW6, 17) ^ Zrotr(ZW6, 19) ^ (ZW6 >> 10U));
ZH = ZH + (Zrotr(ZE, 6) ^ Zrotr(ZE, 11) ^ Zrotr(ZE, 25)) + Ch(ZE, ZF, ZG) + K[40] + ZW8;
ZD = ZD + ZH;
ZH = ZH + (Zrotr(ZA, 2) ^ Zrotr(ZA, 13) ^ Zrotr(ZA, 22)) + Ma(ZC, ZA, ZB);
ZW9 = ZW9 + (Zrotr(ZW10, 7) ^ Zrotr(ZW10, 18) ^ (ZW10 >> 3U)) + ZW2 + (Zrotr(ZW7, 17) ^ Zrotr(ZW7, 19) ^ (ZW7 >> 10U));
ZG = ZG + (Zrotr(ZD, 6) ^ Zrotr(ZD, 11) ^ Zrotr(ZD, 25)) + Ch(ZD, ZE, ZF) + K[41] + ZW9;
ZC = ZC + ZG;
ZG = ZG + (Zrotr(ZH, 2) ^ Zrotr(ZH, 13) ^ Zrotr(ZH, 22)) + Ma(ZB, ZH, ZA);
ZW10 = ZW10 + (Zrotr(ZW11, 7) ^ Zrotr(ZW11, 18) ^ (ZW11 >> 3U)) + ZW3 + (Zrotr(ZW8, 17) ^ Zrotr(ZW8, 19) ^ (ZW8 >> 10U));
ZF = ZF + (Zrotr(ZC, 6) ^ Zrotr(ZC, 11) ^ Zrotr(ZC, 25)) + Ch(ZC, ZD, ZE) + K[42] + ZW10;
ZB = ZB + ZF;
ZF = ZF + (Zrotr(ZG, 2) ^ Zrotr(ZG, 13) ^ Zrotr(ZG, 22)) + Ma(ZA, ZG, ZH);
ZW11 = ZW11 + (Zrotr(ZW12, 7) ^ Zrotr(ZW12, 18) ^ (ZW12 >> 3U)) + ZW4 + (Zrotr(ZW9, 17) ^ Zrotr(ZW9, 19) ^ (ZW9 >> 10U));
ZE = ZE + (Zrotr(ZB, 6) ^ Zrotr(ZB, 11) ^ Zrotr(ZB, 25)) + Ch(ZB, ZC, ZD) + K[43] + ZW11;
ZA = ZA + ZE;
ZE = ZE + (Zrotr(ZF, 2) ^ Zrotr(ZF, 13) ^ Zrotr(ZF, 22)) + Ma(ZH, ZF, ZG);
ZW12 = ZW12 + (Zrotr(ZW13, 7) ^ Zrotr(ZW13, 18) ^ (ZW13 >> 3U)) + ZW5 + (Zrotr(ZW10, 17) ^ Zrotr(ZW10, 19) ^ (ZW10 >> 10U));
ZD = ZD + (Zrotr(ZA, 6) ^ Zrotr(ZA, 11) ^ Zrotr(ZA, 25)) + Ch(ZA, ZB, ZC) + K[44] + ZW12;
ZH = ZH + ZD;
ZD = ZD + (Zrotr(ZE, 2) ^ Zrotr(ZE, 13) ^ Zrotr(ZE, 22)) + Ma(ZG, ZE, ZF);
ZW13 = ZW13 + (Zrotr(ZW14, 7) ^ Zrotr(ZW14, 18) ^ (ZW14 >> 3U)) + ZW6 + (Zrotr(ZW11, 17) ^ Zrotr(ZW11, 19) ^ (ZW11 >> 10U));
ZC = ZC + (Zrotr(ZH, 6) ^ Zrotr(ZH, 11) ^ Zrotr(ZH, 25)) + Ch(ZH, ZA, ZB) + K[45] + ZW13;
ZG = ZG + ZC;
ZC = ZC + (Zrotr(ZD, 2) ^ Zrotr(ZD, 13) ^ Zrotr(ZD, 22)) + Ma(ZF, ZD, ZE);
ZW14 = ZW14 + (Zrotr(ZW15, 7) ^ Zrotr(ZW15, 18) ^ (ZW15 >> 3U)) + ZW7 + (Zrotr(ZW12, 17) ^ Zrotr(ZW12, 19) ^ (ZW12 >> 10U));
ZB = ZB + (Zrotr(ZG, 6) ^ Zrotr(ZG, 11) ^ Zrotr(ZG, 25)) + Ch(ZG, ZH, ZA) + K[46] + ZW14;
ZF = ZF + ZB;
ZB = ZB + (Zrotr(ZC, 2) ^ Zrotr(ZC, 13) ^ Zrotr(ZC, 22)) + Ma(ZE, ZC, ZD);
ZW15 = ZW15 + (Zrotr(ZW0, 7) ^ Zrotr(ZW0, 18) ^ (ZW0 >> 3U)) + ZW8 + (Zrotr(ZW13, 17) ^ Zrotr(ZW13, 19) ^ (ZW13 >> 10U));
ZA = ZA + (Zrotr(ZF, 6) ^ Zrotr(ZF, 11) ^ Zrotr(ZF, 25)) + Ch(ZF, ZG, ZH) + K[47] + ZW15;
ZE = ZE + ZA;
ZA = ZA + (Zrotr(ZB, 2) ^ Zrotr(ZB, 13) ^ Zrotr(ZB, 22)) + Ma(ZD, ZB, ZC);
ZW0 = ZW0 + (Zrotr(ZW1, 7) ^ Zrotr(ZW1, 18) ^ (ZW1 >> 3U)) + ZW9 + (Zrotr(ZW14, 17) ^ Zrotr(ZW14, 19) ^ (ZW14 >> 10U));
ZH = ZH + (Zrotr(ZE, 6) ^ Zrotr(ZE, 11) ^ Zrotr(ZE, 25)) + Ch(ZE, ZF, ZG) + K[48] + ZW0;
ZD = ZD + ZH;
ZH = ZH + (Zrotr(ZA, 2) ^ Zrotr(ZA, 13) ^ Zrotr(ZA, 22)) + Ma(ZC, ZA, ZB);
ZW1 = ZW1 + (Zrotr(ZW2, 7) ^ Zrotr(ZW2, 18) ^ (ZW2 >> 3U)) + ZW10 + (Zrotr(ZW15, 17) ^ Zrotr(ZW15, 19) ^ (ZW15 >> 10U));
ZG = ZG + (Zrotr(ZD, 6) ^ Zrotr(ZD, 11) ^ Zrotr(ZD, 25)) + Ch(ZD, ZE, ZF) + K[49] + ZW1;
ZC = ZC + ZG;
ZG = ZG + (Zrotr(ZH, 2) ^ Zrotr(ZH, 13) ^ Zrotr(ZH, 22)) + Ma(ZB, ZH, ZA);
ZW2 = ZW2 + (Zrotr(ZW3, 7) ^ Zrotr(ZW3, 18) ^ (ZW3 >> 3U)) + ZW11 + (Zrotr(ZW0, 17) ^ Zrotr(ZW0, 19) ^ (ZW0 >> 10U));
ZF = ZF + (Zrotr(ZC, 6) ^ Zrotr(ZC, 11) ^ Zrotr(ZC, 25)) + Ch(ZC, ZD, ZE) + K[50] + ZW2;
ZB = ZB + ZF;
ZF = ZF + (Zrotr(ZG, 2) ^ Zrotr(ZG, 13) ^ Zrotr(ZG, 22)) + Ma(ZA, ZG, ZH);
ZW3 = ZW3 + (Zrotr(ZW4, 7) ^ Zrotr(ZW4, 18) ^ (ZW4 >> 3U)) + ZW12 + (Zrotr(ZW1, 17) ^ Zrotr(ZW1, 19) ^ (ZW1 >> 10U));
ZE = ZE + (Zrotr(ZB, 6) ^ Zrotr(ZB, 11) ^ Zrotr(ZB, 25)) + Ch(ZB, ZC, ZD) + K[51] + ZW3;
ZA = ZA + ZE;
ZE = ZE + (Zrotr(ZF, 2) ^ Zrotr(ZF, 13) ^ Zrotr(ZF, 22)) + Ma(ZH, ZF, ZG);
ZW4 = ZW4 + (Zrotr(ZW5, 7) ^ Zrotr(ZW5, 18) ^ (ZW5 >> 3U)) + ZW13 + (Zrotr(ZW2, 17) ^ Zrotr(ZW2, 19) ^ (ZW2 >> 10U));
ZD = ZD + (Zrotr(ZA, 6) ^ Zrotr(ZA, 11) ^ Zrotr(ZA, 25)) + Ch(ZA, ZB, ZC) + K[52] + ZW4;
ZH = ZH + ZD;
ZD = ZD + (Zrotr(ZE, 2) ^ Zrotr(ZE, 13) ^ Zrotr(ZE, 22)) + Ma(ZG, ZE, ZF);
ZW5 = ZW5 + (Zrotr(ZW6, 7) ^ Zrotr(ZW6, 18) ^ (ZW6 >> 3U)) + ZW14 + (Zrotr(ZW3, 17) ^ Zrotr(ZW3, 19) ^ (ZW3 >> 10U));
ZC = ZC + (Zrotr(ZH, 6) ^ Zrotr(ZH, 11) ^ Zrotr(ZH, 25)) + Ch(ZH, ZA, ZB) + K[53] + ZW5;
ZG = ZG + ZC;
ZC = ZC + (Zrotr(ZD, 2) ^ Zrotr(ZD, 13) ^ Zrotr(ZD, 22)) + Ma(ZF, ZD, ZE);
ZW6 = ZW6 + (Zrotr(ZW7, 7) ^ Zrotr(ZW7, 18) ^ (ZW7 >> 3U)) + ZW15 + (Zrotr(ZW4, 17) ^ Zrotr(ZW4, 19) ^ (ZW4 >> 10U));
ZB = ZB + (Zrotr(ZG, 6) ^ Zrotr(ZG, 11) ^ Zrotr(ZG, 25)) + Ch(ZG, ZH, ZA) + K[54] + ZW6;
ZF = ZF + ZB;
ZB = ZB + (Zrotr(ZC, 2) ^ Zrotr(ZC, 13) ^ Zrotr(ZC, 22)) + Ma(ZE, ZC, ZD);
ZW7 = ZW7 + (Zrotr(ZW8, 7) ^ Zrotr(ZW8, 18) ^ (ZW8 >> 3U)) + ZW0 + (Zrotr(ZW5, 17) ^ Zrotr(ZW5, 19) ^ (ZW5 >> 10U));
ZA = ZA + (Zrotr(ZF, 6) ^ Zrotr(ZF, 11) ^ Zrotr(ZF, 25)) + Ch(ZF, ZG, ZH) + K[55] + ZW7;
ZE = ZE + ZA;
ZA = ZA + (Zrotr(ZB, 2) ^ Zrotr(ZB, 13) ^ Zrotr(ZB, 22)) + Ma(ZD, ZB, ZC);
ZW8 = ZW8 + (Zrotr(ZW9, 7) ^ Zrotr(ZW9, 18) ^ (ZW9 >> 3U)) + ZW1 + (Zrotr(ZW6, 17) ^ Zrotr(ZW6, 19) ^ (ZW6 >> 10U));
ZH = ZH + (Zrotr(ZE, 6) ^ Zrotr(ZE, 11) ^ Zrotr(ZE, 25)) + Ch(ZE, ZF, ZG) + K[56] + ZW8;
ZD = ZD + ZH;
ZH = ZH + (Zrotr(ZA, 2) ^ Zrotr(ZA, 13) ^ Zrotr(ZA, 22)) + Ma(ZC, ZA, ZB);
ZW9 = ZW9 + (Zrotr(ZW10, 7) ^ Zrotr(ZW10, 18) ^ (ZW10 >> 3U)) + ZW2 + (Zrotr(ZW7, 17) ^ Zrotr(ZW7, 19) ^ (ZW7 >> 10U));
ZC = ZC + ZG + (Zrotr(ZD, 6) ^ Zrotr(ZD, 11) ^ Zrotr(ZD, 25)) + Ch(ZD, ZE, ZF) + K[57] + ZW9;
ZW10 = ZW10 + (Zrotr(ZW11, 7) ^ Zrotr(ZW11, 18) ^ (ZW11 >> 3U)) + ZW3 + (Zrotr(ZW8, 17) ^ Zrotr(ZW8, 19) ^ (ZW8 >> 10U));
ZB = ZB + ZF + (Zrotr(ZC, 6) ^ Zrotr(ZC, 11) ^ Zrotr(ZC, 25)) + Ch(ZC, ZD, ZE) + K[58] + ZW10;
ZA = ZA + ZE + (Zrotr(ZB, 6) ^ Zrotr(ZB, 11) ^ Zrotr(ZB, 25)) + Ch(ZB, ZC, ZD) + K[59] + ZW11 + (Zrotr(ZW12, 7) ^ Zrotr(ZW12, 18) ^ (ZW12 >> 3U)) + ZW4 + (Zrotr(ZW9, 17) ^ Zrotr(ZW9, 19) ^ (ZW9 >> 10U));
ZH = ZH + ZD + (Zrotr(ZA, 6) ^ Zrotr(ZA, 11) ^ Zrotr(ZA, 25)) + Ch(ZA, ZB, ZC) + ZW12 + (Zrotr(ZW13, 7) ^ Zrotr(ZW13, 18) ^ (ZW13 >> 3U)) + ZW5 + (Zrotr(ZW10, 17) ^ Zrotr(ZW10, 19) ^ (ZW10 >> 10U));
if(ZH == 0x136032ED) { output[Znonce & 0xFF] = Znonce;}
#ifdef DOLOOPS
}
#endif
}