Hash :
98b79587
Author :
Date :
2013-12-03T03:59:51
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
/*
* Copyright 2013 Andrew Smith - BlackArrow Ltd
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 3 of the License, or (at your option)
* any later version. See COPYING for more details.
*/
#include "config.h"
#include "compat.h"
#include "miner.h"
#ifndef LINUX
static void minion_detect(__maybe_unused bool hotplug)
{
}
#else
#include <unistd.h>
#include <linux/spi/spidev.h>
#include <sys/mman.h>
#include <sys/ioctl.h>
#include <fcntl.h>
#define MINION_SPI_BUS 0
#define MINION_SPI_CHIP 0
#define MINION_SPI_SPEED 96000
#define MINION_SPI_BUFSIZ 1024
#define MINION_CHIPS 32
#define MINION_CORES 64
#define MINION_FFL " - from %s %s() line %d"
#define MINION_FFL_HERE __FILE__, __func__, __LINE__
#define MINION_FFL_PASS file, func, line
#define minion_txrx(_task, _ignore) _minion_txrx(minioncgpu, minioninfo, _task, _ignore, MINION_FFL_HERE)
#define MINION_SYS_REGS 0x00
#define MINION_CORE_REGS 0x10
#define MINION_RES_BUF 0x20
#define MINION_CMD_QUE 0x30
#define MINION_NONCE_RANGE 0x70
#define DATA_SIZ (sizeof(uint32_t))
// All SYS data sizes are DATA_SIZ
#define MINION_SYS_CHIP_SIG 0x00
#define MINION_SYS_CHIP_STA 0x01
#define MINION_SYS_TEMP_CTL 0x03
#define MINION_SYS_FREQ_CTL 0x04
#define MINION_SYS_NONCE_LED 0x05
#define MINION_SYS_MISC_CTL 0x06
#define MINION_SYS_RSTN_CTL 0x07
#define MINION_SYS_INT_ENA 0x08
#define MINION_SYS_INT_CLR 0x09
#define MINION_SYS_INT_STA 0x0a
#define MINION_SYS_FIFO_STA 0x0b
#define MINION_SYS_QUE_TRIG 0x0c
#define MINION_SYS_BUF_TRIG 0x0d
// CORE data size is minion_core
#define MINION_CORE_ENA0_31 0x10
#define MINION_CORE_ENA32_63 0x11
#define MINION_CORE_ACT0_31 0x14
#define MINION_CORE_ACT32_63 0x15
// RES data size is minion_result
#define MINION_RES_DATA 0x20
#define MINION_RES_PEEK 0x21
// QUE data size is minion_que
#define MINION_QUE_0 0x30
#define MINION_QUE_R 0x31
// RANGE data sizes are DATA_SIZ
#define MINION_NONCE_STA 0x70
#define MINION_NONCE_FIN 0x71
#define SET_HEAD_READ(_h, _reg) ((_h)->reg) = ((_reg) & 0x7f)
#define SET_HEAD_WRITE(_h, _reg) ((_h)->reg) = ((_reg) | 0x80)
#define SET_HEAD_SIZ(_h, _siz) \
do { \
((_h)->siz)[0] = (uint8_t)((_siz) & 0xff); \
((_h)->siz)[1] = (uint8_t)(((_siz) & 0xff00) << 8); \
} while (0)
struct minion_header {
uint8_t chip;
uint8_t reg;
uint8_t siz[2];
uint8_t data[4]; // placeholder
};
#define HSIZE() (sizeof(struct minion_header) - 4)
#define MINION_CHIP_SIG 0x32020ffa
#define SET_CORE(_core, _n) ((_core)->core[_n << 4] &= (2 >> (_n % 8)))
#define CORE_IDLE(_core, _n) ((_core)->core[_n << 4] & (2 >> (_n % 8)))
struct minion_core {
uint8_t core[DATA_SIZ];
};
#define RES_GOLD(_res) ((((_res)->status[0]) & 0x80) == 0)
#define RES_CHIP(_res) (((_res)->status[0]) & 0x1f)
#define RES_CORE(_res) ((_res)->status[1])
#define RES_TASK(_res) ((int)((_res)->status[2]) * 0x100 + (int)((_res)->status[2]))
#define RES_NONCE(_res) (*(uint32_t *)(&((_res)->nonce[0])))
struct minion_result {
uint8_t status[DATA_SIZ];
uint8_t nonce[DATA_SIZ];
};
#define MIDSTATE_BYTES 32
#define MERKLE7_OFFSET 64
#define MERKLE_BYTES 12
#define MINION_MAX_TASK_ID 0xffff
struct minion_que {
uint8_t reserved[2];
uint8_t task_id[2];
uint8_t midstate[MIDSTATE_BYTES];
uint8_t merkle7[DATA_SIZ];
uint8_t ntime[DATA_SIZ];
uint8_t bits[DATA_SIZ];
};
#define ALLOC_WITEMS 4096
typedef struct witem {
struct work *work;
uint32_t task_id;
struct timeval sent;
int nonces;
bool urgent;
} WITEM;
#define ALLOC_TITEMS 256
typedef struct titem {
uint8_t chip;
bool write;
uint8_t address;
uint32_t task_id;
uint32_t siz;
uint8_t wbuf[1024]; // TODO: tune the size of these 3
uint8_t obuf[1024];
uint8_t rbuf[1024];
int reply;
bool urgent;
struct work *work;
} TITEM;
#define ALLOC_RITEMS 256
typedef struct ritem {
int chip;
int core;
uint32_t task_id;
uint32_t nonce;
bool no_nonce;
} RITEM;
typedef struct k_item {
struct k_item *prev;
struct k_item *next;
void *data;
} K_ITEM;
#define DATAW(_item) ((WITEM *)(_item->data))
#define DATAT(_item) ((TITEM *)(_item->data))
#define DATAR(_item) ((RITEM *)(_item->data))
typedef struct k_list {
const char *name;
bool is_store;
cglock_t *lock;
struct k_item *head;
struct k_item *tail;
size_t siz; // item data size
int total; // total allocated
int count; // in this list
int stale_count; // for the work list
int allocate; // number to intially allocate and each time we run out
bool do_tail; // store tail
} K_LIST;
/*
* K_STORE is for a list of items taken from a K_LIST
* The restriction is, a K_STORE must not allocate new items,
* only the K_LIST should do that
* i.e. all K_STORE items came from a K_LIST
*/
#define K_STORE K_LIST
#define K_WLOCK(_list) cg_wlock(_list->lock)
#define K_WUNLOCK(_list) cg_wunlock(_list->lock)
#define K_RLOCK(_list) cg_rlock(_list->lock)
#define K_RUNLOCK(_list) cg_runlock(_list->lock)
struct minion_info {
struct thr_info spiw_thr;
struct thr_info spir_thr;
struct thr_info res_thr;
pthread_mutex_t spi_lock;
// TODO: can there be 2x fd's one for each spi thread?
// or do I need to have one (as current code) and lock access each ioctl?
int spifd;
// TODO: need to track disabled chips
// detect chip scan will need to check all chips
int chips;
bool chip[MINION_CHIPS];
uint32_t next_task_id;
// Stats
uint64_t chip_nonces[MINION_CHIPS];
uint64_t chip_good[MINION_CHIPS];
uint64_t chip_bad[MINION_CHIPS];
uint64_t core_good[MINION_CHIPS][MINION_CORES];
uint64_t core_bad[MINION_CHIPS][MINION_CORES];
pthread_mutex_t nonce_lock;
uint64_t new_nonces;
uint64_t ok_nonces;
uint64_t untested_nonces;
uint64_t tested_nonces;
// Work items
K_LIST *wfree_list;
K_STORE *wwork_list;
K_STORE *wchip_list[MINION_CHIPS];
// Task list
K_LIST *tfree_list;
K_STORE *task_list;
K_STORE *reply_list;
// Nonce replies
K_LIST *rfree_list;
K_STORE *rnonce_list;
struct timeval last_did;
bool initialised;
};
static void alloc_items(K_LIST *list)
{
K_ITEM *item;
int i;
if (list->is_store) {
quithere(1, "List %s store can't %s",
list->name, __func__);
}
item = calloc(list->allocate, sizeof(*item));
if (!item) {
quithere(1, "List %s failed to calloc %d new items - total was %d",
list->name, list->allocate, list->total);
}
list->total += list->allocate;
list->count = list->allocate;
item[0].prev = NULL;
item[0].next = &(item[1]);
for (i = 1; i < list->allocate-1; i++) {
item[i].prev = &item[i-1];
item[i].next = &item[i+1];
}
item[list->allocate-1].prev = &(item[list->allocate-2]);
item[list->allocate-1].next = NULL;
list->head = item;
if (list->do_tail)
list->tail = &(item[list->allocate-1]);
}
static K_STORE *new_store(K_LIST *list, bool do_tail)
{
K_STORE *store;
store = calloc(1, sizeof(*store));
if (!store)
quithere(1, "Failed to calloc store for %s", list->name);
store->is_store = true;
store->lock = list->lock;
store->name = list->name;
list->do_tail = do_tail;
return store;
}
static K_LIST *new_list(const char *name, size_t siz, int allocate, bool do_tail)
{
K_LIST *list;
if (allocate < 1)
quithere(1, "Invalid new list %s with allocate %d must be > 0", name, allocate);
list = calloc(1, sizeof(*list));
if (!list)
quithere(1, "Failed to calloc list %s", name);
list->is_store = false;
list->lock = calloc(1, sizeof(*(list->lock)));
if (!(list->lock))
quithere(1, "Failed to calloc lock for list %s", name);
cglock_init(list->lock);
list->name = name;
list->siz = siz;
list->allocate = allocate;
list->do_tail = do_tail;
alloc_items(list);
return list;
}
static K_ITEM *k_get_head(K_LIST *list)
{
K_ITEM *item;
item = list->head;
if (item) {
list->count--;
if (item->next) {
list->head = item->next;
list->head->prev = NULL;
} else {
list->head = NULL;
if (list->do_tail)
list->tail = NULL;
}
}
item->prev = NULL;
item->next = NULL;
return item;
}
static void k_add_head(K_LIST *list, K_ITEM *item)
{
item->prev = NULL;
item->next = list->head;
if (list->head)
list->head->prev = item;
if (list->do_tail) {
if (list->do_tail && !(list->tail))
list->tail = item;
}
list->head = item;
}
static void k_remove(K_LIST *list, K_ITEM *item)
{
if (item->prev) {
item->prev->next = item->next;
} else {
list->head = item->next;
if (list->head)
list->head->prev = NULL;
}
if (item->next) {
item->next->prev = item->prev;
} else {
if (list->do_tail) {
list->tail = item->prev;
if (list->tail)
list->tail->next = NULL;
}
}
item->prev = item->next = NULL;
list->count--;
}
static void ready_work(struct cgpu_info *minioncgpu, struct work *work)
{
struct minion_info *minioninfo = (struct minion_info *)(minioncgpu->device_data);
K_ITEM *item = NULL;
K_WLOCK(minioninfo->wfree_list);
item = k_get_head(minioninfo->wfree_list);
DATAW(item)->work = work;
DATAW(item)->task_id = 0;
memset(&(DATAW(item)->sent), 0, sizeof(DATAW(item)->sent));
DATAW(item)->nonces = 0;
DATAW(item)->urgent = false;
k_add_head(minioninfo->wwork_list, item);
K_WUNLOCK(minioninfo->wfree_list);
}
static bool oldest_nonce(struct cgpu_info *minioncgpu, int *chip, int *core, uint32_t *task_id, uint32_t *nonce, bool *no_nonce)
{
struct minion_info *minioninfo = (struct minion_info *)(minioncgpu->device_data);
K_ITEM *item = NULL;
bool found = false;
K_WLOCK(minioninfo->rnonce_list);
item = minioninfo->rnonce_list->tail;
if (item) {
// unlink from res
k_remove(minioninfo->rnonce_list, item);
found = true;
*chip = DATAR(item)->chip;
*core = DATAR(item)->core;
*task_id = DATAR(item)->task_id;
*nonce = DATAR(item)->nonce;
*no_nonce = DATAR(item)->no_nonce;
k_add_head(minioninfo->rfree_list, item);
}
K_WUNLOCK(minioninfo->rnonce_list);
return found;
}
#define MINION_UNKNOWN_TASK -999
#define MINION_OVERSIZE_TASK -998
static int do_ioctl(struct minion_info *minioninfo, uintptr_t wbuf, uint32_t wsiz, uintptr_t rbuf)
{
struct spi_ioc_transfer tran;
int ret;
memset(&tran, 0, sizeof(tran));
if (wsiz < MINION_SPI_BUFSIZ)
tran.len = wsiz;
else
return MINION_OVERSIZE_TASK;
tran.delay_usecs = 0;
tran.speed_hz = MINION_SPI_SPEED;
tran.tx_buf = wbuf;
tran.rx_buf = rbuf;
tran.speed_hz = MINION_SPI_SPEED;
mutex_lock(&(minioninfo->spi_lock));
ret = ioctl(minioninfo->spifd, SPI_IOC_MESSAGE(1), (void *)&tran);
mutex_unlock(&(minioninfo->spi_lock));
return ret;
}
static bool _minion_txrx(struct cgpu_info *minioncgpu, struct minion_info *minioninfo, TITEM *task, bool detect_ignore, const char *file, const char *func, const int line)
{
struct minion_header *head;
uintptr_t obuf, rbuf;
uint32_t wsiz;
head = (struct minion_header *)(task->obuf);
head->chip = task->chip;
if (task->write)
SET_HEAD_WRITE(head, task->address);
else
SET_HEAD_READ(head, task->address);
SET_HEAD_SIZ(head, task->siz); // TODO: divide by 4?
memcpy(&(head->data[0]), task->wbuf, task->siz);
obuf = (uintptr_t)(&(task->obuf));
wsiz = HSIZE() + task->siz;
rbuf = (uintptr_t)(&(task->rbuf));
task->reply = do_ioctl(minioninfo, obuf, wsiz, rbuf);
//TODO: if (task->reply < 0 && (!detect_ignore || errno != 110)) {
if (task->reply < 0) {
applog(LOG_ERR, "%s%d: ioctl failed err=%d" MINION_FFL,
minioncgpu->drv->name, minioncgpu->device_id,
errno, MINION_FFL_PASS);
}
return (task->reply >= 0);
}
// Simple detect - just check each chip for the signature
// TODO: retry on failure?
void minion_detect_chips(struct cgpu_info *minioncgpu, struct minion_info *minioninfo)
{
struct minion_header head;
uint8_t rbuf[32];
uint32_t wsiz;
int chip, reply;
SET_HEAD_READ(&head, MINION_SYS_CHIP_SIG);
SET_HEAD_SIZ(&head, 0);
wsiz = HSIZE();
for (chip = 0; chip < MINION_CHIPS; chip++) {
head.chip = (uint8_t)chip;
reply = do_ioctl(minioninfo, (uintptr_t)(&head), wsiz, (uintptr_t)&(rbuf[0]));
if (reply == 4) {
uint32_t sig = rbuf[0] + rbuf[1] * 0x100 + rbuf[2] * 0x10000 + rbuf[3] * 0x1000000;
if (sig == MINION_CHIP_SIG) {
minioninfo->chip[chip] = true;
minioninfo->chips++;
} else {
applog(LOG_ERR, "%s: chip %d detect failed got 0x%08x wanted 0x%08x",
minioncgpu->drv->dname, chip, sig, MINION_CHIP_SIG);
}
} else {
applog(LOG_ERR, "%s: chip %d reply %d ignored",
minioncgpu->drv->dname, chip, reply);
}
}
}
static const char *minion_modules[] = {
"i2c-dev",
"i2c-bcm2708",
"spidev",
"spi-bcm2708",
NULL
};
static struct {
int request;
int value;
} minion_ioc[] = {
{ SPI_IOC_RD_MODE, 0 }, // ?
{ SPI_IOC_WR_MODE, 0 }, // ?
{ SPI_IOC_RD_BITS_PER_WORD, 8 }, // 32? 8?
{ SPI_IOC_WR_BITS_PER_WORD, 8 }, // 32? 8?
{ SPI_IOC_RD_MAX_SPEED_HZ, 1000000 }, // 3000000 ?
{ SPI_IOC_WR_MAX_SPEED_HZ, 1000000 }, // 3000000 ?
{ -1, -1 }
};
static bool minion_init_spi(struct cgpu_info *minioncgpu, struct minion_info *minioninfo, int bus, int chip)
{
int i, err, data;
char buf[64];
for (i = 0; minion_modules[i]; i++) {
snprintf(buf, sizeof(buf), "modprobe %s", minion_modules[i]);
err = system(buf);
if (err) {
applog(LOG_ERR, "%s: failed to modprobe %s (%d) - you need to be root?",
minioncgpu->drv->dname,
minion_modules[i], err);
goto bad_out;
}
}
snprintf(buf, sizeof(buf), "/dev/spidev%d.%d", bus, chip);
minioninfo->spifd = open(buf, O_RDWR);
if (minioninfo->spifd < 0) {
applog(LOG_ERR, "%s: failed to open spidev (%d)",
minioncgpu->drv->dname,
errno);
goto bad_out;
}
minioncgpu->device_path = strdup(buf);
for (i = 0; minion_ioc[i].value != -1; i++) {
data = minion_ioc[i].value;
err = ioctl(minioninfo->spifd, minion_ioc[i].request, (void *)&data);
if (err < 0) {
applog(LOG_ERR, "%s: failed ioctl (%d) (%d)",
minioncgpu->drv->dname,
i, errno);
goto close_out;
}
}
return true;
close_out:
close(minioninfo->spifd);
minioninfo->spifd = 0;
free(minioncgpu->device_path);
minioncgpu->device_path = NULL;
bad_out:
return false;
}
static void minion_detect(bool hotplug)
{
struct cgpu_info *minioncgpu = NULL;
struct minion_info *minioninfo = NULL;
int i;
if (hotplug)
return;
minioncgpu = calloc(1, sizeof(*minioncgpu));
if (unlikely(!minioncgpu))
quithere(1, "Failed to calloc minioncgpu");
minioncgpu->drv = &minion_drv;
minioncgpu->deven = DEV_ENABLED;
minioncgpu->threads = 1;
minioninfo = calloc(1, sizeof(*minioninfo));
if (unlikely(!minioninfo))
quithere(1, "Failed to calloc minioninfo");
minioncgpu->device_data = (void *)minioninfo;
if (!minion_init_spi(minioncgpu, minioninfo, MINION_SPI_BUS, MINION_SPI_CHIP))
goto unalloc;
mutex_init(&(minioninfo->spi_lock));
applog(LOG_WARNING, "%s: checking for chips ...", minioncgpu->drv->dname);
minion_detect_chips(minioncgpu, minioninfo);
applog(LOG_WARNING, "%s: found %d chips", minioncgpu->drv->dname, minioninfo->chips);
if (minioninfo->chips == 0)
goto cleanup;
if (!add_cgpu(minioncgpu))
goto cleanup;
mutex_init(&(minioninfo->nonce_lock));
minioninfo->wfree_list = new_list("Work", sizeof(WITEM), ALLOC_WITEMS, true);
minioninfo->wwork_list = new_store(minioninfo->wfree_list, true);
// Initialise them all in case we later decide to enable chips
for (i = 0; i < minioninfo->chips; i++)
minioninfo->wchip_list[i] = new_store(minioninfo->wfree_list, true);
minioninfo->tfree_list = new_list("Task", sizeof(TITEM), ALLOC_TITEMS, true);
minioninfo->task_list = new_store(minioninfo->tfree_list, true);
minioninfo->rfree_list = new_list("Reply", sizeof(RITEM), ALLOC_RITEMS, true);
minioninfo->rnonce_list = new_store(minioninfo->rfree_list, true);
minioninfo->initialised = true;
return;
cleanup:
close(minioninfo->spifd);
mutex_destroy(&(minioninfo->spi_lock));
unalloc:
free(minioninfo);
free(minioncgpu);
}
static void minion_identify(__maybe_unused struct cgpu_info *minioncgpu)
{
}
#define MINION_POLL_uS 3000
#define MINION_TASK_uS 29000
#define MINION_REPLY_uS 9000
#define MINION_REPLY_MORE_uS 3000
/*
* SPI/ioctl write thread
* Poll task queue every POLL_uS to see if a new task is waiting to be sent
* TODO: use a timeout cgsem_wait instead
* If the new task isn't urgent, then don't send it unless it's TASK_uS since last send
* Non urgent work is to keep the queue full
* Urgent work is when an LP occurs (or the queue is empty/low)
*/
static void *minion_spi_write(void *userdata)
{
struct cgpu_info *minioncgpu = (struct cgpu_info *)userdata;
struct minion_info *minioninfo = (struct minion_info *)(minioncgpu->device_data);
struct timeval start, stop;
K_ITEM *item;
bool do_task;
double wait;
applog(LOG_DEBUG, "%s%i: SPI writing...",
minioncgpu->drv->name, minioncgpu->device_id);
// Wait until we're ready
while (minioncgpu->shutdown == false) {
if (minioninfo->initialised) {
break;
}
cgsleep_ms(3);
}
cgtime(&start);
while (minioncgpu->shutdown == false) {
do_task = false;
cgtime(&stop);
wait = us_tdiff(&stop, &start);
if (wait >= MINION_TASK_uS)
do_task = true;
K_WLOCK(minioninfo->task_list);
item = minioninfo->task_list->tail;
if (item)
if (DATAT(item)->urgent)
do_task = true;
if (do_task)
k_remove(minioninfo->task_list, item);
else
item = NULL;
K_WUNLOCK(minioninfo->task_list);
if (item) {
bool dotxrx = true;
switch (DATAT(item)->address) {
// TODO: STA
// TODO: case MINION_CORE_ENA0_31:
// TODO: case MINION_CORE_ENA32_63:
// TODO: case MINION_SYS_RSTN_CTL:
// TODO: case MINION_SYS_TEMP_CTL:
// TODO: case MINION_SYS_FREQ_CTL:
case MINION_QUE_0:
break;
default:
dotxrx = false;
DATAT(item)->reply = MINION_UNKNOWN_TASK;
applog(LOG_ERR, "%s%i: Unknown task address 0x%02x",
minioncgpu->drv->name, minioncgpu->device_id,
(unsigned int)(DATAT(item)->address));
break;
}
if (dotxrx) {
cgtime(&start);
minion_txrx(DATAT(item), false);
}
K_WLOCK(minioninfo->reply_list);
k_add_head(minioninfo->reply_list, item);
K_WUNLOCK(minioninfo->reply_list);
// always do the next task if there is one
continue;
}
// TODO: rather than polling - use a timeout cgsem_wait - work creation would notify the sem
// but only urgent work
cgsleep_us(MINION_POLL_uS);
}
return NULL;
}
/*
* SPI/ioctl reply thread
* ioctl done every REPLY_uS checking for results
*/
static void *minion_spi_reply(void *userdata)
{
struct cgpu_info *minioncgpu = (struct cgpu_info *)userdata;
struct minion_info *minioninfo = (struct minion_info *)(minioncgpu->device_data);
struct minion_result *result;
K_ITEM *item;
TITEM task;
applog(LOG_DEBUG, "%s%i: SPI replying...",
minioncgpu->drv->name, minioncgpu->device_id);
// Wait until we're ready
while (minioncgpu->shutdown == false) {
if (minioninfo->initialised) {
break;
}
cgsleep_ms(3);
}
task.chip = 0;
task.write = false;
task.address = MINION_RES_DATA;
task.siz = 0;
task.urgent = false;
task.work = NULL;
while (minioncgpu->shutdown == false) {
task.reply = 0;
minion_txrx(&task, false);
if (task.reply > 0) {
if (task.reply < (int)sizeof(struct minion_result)) {
applog(LOG_ERR, "%s%i: Bad work reply size %d should be %d",
minioncgpu->drv->name, minioncgpu->device_id,
task.reply, (int)sizeof(struct minion_result));
} else {
if (task.reply > (int)sizeof(struct minion_result)) {
applog(LOG_ERR, "%s%i: Unexpected work reply size %d expected %d",
minioncgpu->drv->name, minioncgpu->device_id,
task.reply, (int)sizeof(struct minion_result));
}
result = (struct minion_result *)&(task.rbuf[0]);
K_WLOCK(minioninfo->rfree_list);
item = k_get_head(minioninfo->rfree_list);
K_WUNLOCK(minioninfo->rfree_list);
DATAR(item)->chip = RES_CHIP(result);
DATAR(item)->core = RES_CORE(result);
DATAR(item)->task_id = RES_TASK(result);
DATAR(item)->nonce = RES_NONCE(result);
DATAR(item)->no_nonce = !RES_GOLD(result);
K_WLOCK(minioninfo->rnonce_list);
k_add_head(minioninfo->rnonce_list, item);
K_WUNLOCK(minioninfo->rnonce_list);
cgsleep_us(MINION_REPLY_MORE_uS);
continue;
}
}
cgsleep_us(MINION_REPLY_uS);
}
return NULL;
}
/*
* Find the matching work item
* Discard any older work items
*/
static bool oknonce(struct thr_info *thr, struct cgpu_info *minioncgpu, int chip, int core, uint32_t task_id, uint32_t nonce)
{
struct minion_info *minioninfo = (struct minion_info *)(minioncgpu->device_data);
K_ITEM *item, *tail;
minioninfo->chip_nonces[chip]++;
/*
* TODO: change this to start at the tail
* and find the work while still in the lock
* N.B. the head is OK to follow ->next without a lock
* and the tail is OK to follow ->prev back to the head without a lock
*/
K_RLOCK(minioninfo->wchip_list[chip]);
item = minioninfo->wchip_list[chip]->head;
K_RUNLOCK(minioninfo->wchip_list[chip]);
if (!item) {
applog(LOG_ERR, "%s%i: no work (chip %d core %d task 0x%04x)",
minioncgpu->drv->name, minioncgpu->device_id,
chip, core, (int)task_id);
minioninfo->untested_nonces++;
return false;
}
while (item) {
if (DATAW(item)->task_id == task_id)
break;
item = item->next;
}
if (!item) {
applog(LOG_ERR, "%s%i: chip %d core %d unknown work task 0x%04x",
minioncgpu->drv->name, minioncgpu->device_id,
chip, core, (int)task_id);
minioninfo->untested_nonces++;
return false;
}
minioninfo->tested_nonces++;
if (test_nonce(DATAW(item)->work, nonce)) {
submit_tested_work(thr, DATAW(item)->work);
minioninfo->chip_good[chip]++;
minioninfo->core_good[chip][core]++;
DATAW(item)->nonces++;
mutex_lock(&(minioninfo->nonce_lock));
minioninfo->new_nonces++;
mutex_unlock(&(minioninfo->nonce_lock));
minioninfo->ok_nonces++;
// remove older work items
if (item->next) {
K_WLOCK(minioninfo->wchip_list[chip]);
tail = minioninfo->wchip_list[chip]->tail;
while (tail && tail != item) {
k_remove(minioninfo->wchip_list[chip], tail);
K_WUNLOCK(minioninfo->wchip_list[chip]);
work_completed(minioncgpu, DATAW(tail)->work);
K_WLOCK(minioninfo->wchip_list[chip]);
k_add_head(minioninfo->wfree_list, tail);
tail = minioninfo->wchip_list[chip]->tail;
}
K_WUNLOCK(minioninfo->wchip_list[chip]);
}
return true;
}
minioninfo->chip_bad[chip]++;
minioninfo->core_bad[chip][core]++;
inc_hw_errors(thr);
return false;
}
// Results checking thread
static void *minion_results(void *userdata)
{
struct cgpu_info *minioncgpu = (struct cgpu_info *)userdata;
struct minion_info *minioninfo = (struct minion_info *)(minioncgpu->device_data);
struct thr_info *thr = minioncgpu->thr[0];
int chip, core;
uint32_t task_id;
uint32_t nonce;
bool no_nonce;
applog(LOG_DEBUG, "%s%i: Results...",
minioncgpu->drv->name, minioncgpu->device_id);
// Wait until we're ready
while (minioncgpu->shutdown == false) {
if (minioninfo->initialised) {
break;
}
cgsleep_ms(3);
}
while (minioncgpu->shutdown == false) {
// TODO: rather than polling - use a cgsem_wait in minion_spi_reply() like in api.c
if (!oldest_nonce(minioncgpu, &chip, &core, &task_id, &nonce, &no_nonce)) {
cgsleep_ms(3);
continue;
}
oknonce(thr, minioncgpu, chip, core, task_id, nonce);
}
return NULL;
}
static void minion_flush_work(struct cgpu_info *minioncgpu)
{
struct minion_info *minioninfo = (struct minion_info *)(minioncgpu->device_data);
int i;
applog(LOG_DEBUG, "%s%i: flushing work",
minioncgpu->drv->name, minioncgpu->device_id);
K_WLOCK(minioninfo->wwork_list);
// TODO: add task flush chip (or a flag to say to flush it) - a flag will avoid an extra lock
for (i = 0; i < MINION_CHIPS; i++)
if (minioninfo->chip[i])
minioninfo->wchip_list[i]->stale_count = minioninfo->wchip_list[i]->count;
// TODO: discard wwork_list
K_WUNLOCK(minioninfo->wwork_list);
// TODO: maybe send a signal to force sending new work - needs cgsem_wait in the sending thread
}
static void new_work_task(struct cgpu_info *minioncgpu, struct work *work, int chip, bool urgent)
{
struct minion_info *minioninfo = (struct minion_info *)(minioncgpu->device_data);
struct minion_que *que;
K_ITEM *item;
K_WLOCK(minioninfo->tfree_list);
item = k_get_head(minioninfo->tfree_list);
K_WUNLOCK(minioninfo->tfree_list);
DATAT(item)->chip = chip;
DATAT(item)->write = true;
DATAT(item)->address = MINION_QUE_0;
// if threaded access to new_work_task() is added, this will need locking
DATAT(item)->task_id = minioninfo->next_task_id;
minioninfo->next_task_id = (minioninfo->next_task_id + 1) & MINION_MAX_TASK_ID;
DATAT(item)->urgent = urgent;
DATAT(item)->work = work;
que = (struct minion_que *)&(DATAT(item)->wbuf[0]);
que->task_id[0] = DATAT(item)->task_id & 0xff;
que->task_id[1] = (DATAT(item)->task_id & 0xff00) << 8;
memcpy(&(que->midstate[0]), &(work->midstate[0]), MIDSTATE_BYTES);
memcpy(&(que->merkle7[0]), &(work->data[MERKLE7_OFFSET]), MERKLE_BYTES);
DATAT(item)->siz = (int)sizeof(*que);
K_WLOCK(minioninfo->task_list);
k_add_head(minioninfo->task_list, item);
K_WUNLOCK(minioninfo->task_list);
}
// TODO: stale work ...
static K_ITEM *next_work(struct minion_info *minioninfo)
{
K_ITEM *item;
K_WLOCK(minioninfo->wwork_list);
item = minioninfo->wwork_list->tail;
if (item)
k_remove(minioninfo->wwork_list, item);
K_WUNLOCK(minioninfo->wwork_list);
return item;
}
#define MINION_QUE_HIGH 15
#define MINION_QUE_LOW 5
static void minion_do_work(struct cgpu_info *minioncgpu)
{
struct minion_info *minioninfo = (struct minion_info *)(minioncgpu->device_data);
int count;
int state, i, j;
K_ITEM *item;
/*
* Fill the queues as follows:
* 1) put at least 1 in each queue
* 2) push each queue up to LOW
* 3) push each LOW queue up to HIGH
*/
for (state = 0; state < 2; state++) {
for (i = 0; i < MINION_CHIPS; i++) {
if (minioninfo->chip[i]) {
K_RLOCK(minioninfo->wchip_list[i]);
count = minioninfo->wchip_list[i]->count - minioninfo->wchip_list[i]->stale_count;
K_RUNLOCK(minioninfo->wchip_list[i]);
switch (state) {
case 0:
if (count == 0) {
item = next_work(minioninfo);
if (item)
new_work_task(minioncgpu, DATAW(item)->work, i, true);
else {
applog(LOG_ERR, "%s%i: chip %d urgent empty work list",
minioncgpu->drv->name,
minioncgpu->device_id,
i);
}
}
break;
case 1:
if (count < MINION_QUE_LOW) {
for (j = count; j < MINION_QUE_LOW; j++) {
item = next_work(minioninfo);
if (item)
new_work_task(minioncgpu, DATAW(item)->work, i, false);
else {
applog(LOG_ERR, "%s%i: chip %d non-urgent lo empty work list (count=%d)",
minioncgpu->drv->name,
minioncgpu->device_id,
i, j);
}
}
}
break;
case 2:
if (count <= MINION_QUE_LOW) {
for (j = count; j < MINION_QUE_HIGH; j++) {
item = next_work(minioninfo);
if (item)
new_work_task(minioncgpu, DATAW(item)->work, i, false);
else {
applog(LOG_ERR, "%s%i: chip %d non-urgent hi empty work list (count=%d)",
minioncgpu->drv->name,
minioncgpu->device_id,
i, j);
}
}
}
break;
}
}
}
}
}
static bool minion_thread_prepare(struct thr_info *thr)
{
struct cgpu_info *minioncgpu = thr->cgpu;
struct minion_info *minioninfo = (struct minion_info *)(minioncgpu->device_data);
/*
* SPI/ioctl write thread
*/
if (thr_info_create(&(minioninfo->spiw_thr), NULL, minion_spi_write, (void *)minioncgpu)) {
applog(LOG_ERR, "%s%i: SPI write thread create failed",
minioncgpu->drv->name, minioncgpu->device_id);
return false;
}
pthread_detach(minioninfo->spiw_thr.pth);
/*
* SPI/ioctl results thread
*/
if (thr_info_create(&(minioninfo->spir_thr), NULL, minion_spi_reply, (void *)minioncgpu)) {
applog(LOG_ERR, "%s%i: SPI reply thread create failed",
minioncgpu->drv->name, minioncgpu->device_id);
return false;
}
pthread_detach(minioninfo->spir_thr.pth);
/*
* Seperate results checking thread so ioctl timing can ignore the results checking
*/
if (thr_info_create(&(minioninfo->res_thr), NULL, minion_results, (void *)minioncgpu)) {
applog(LOG_ERR, "%s%i: Results thread create failed",
minioncgpu->drv->name, minioncgpu->device_id);
return false;
}
pthread_detach(minioninfo->res_thr.pth);
return true;
}
static void minion_shutdown(struct thr_info *thr)
{
struct cgpu_info *minioncgpu = thr->cgpu;
struct minion_info *minioninfo = (struct minion_info *)(minioncgpu->device_data);
int i;
applog(LOG_DEBUG, "%s%i: shutting down",
minioncgpu->drv->name, minioncgpu->device_id);
for (i = 0; i < minioninfo->chips; i++)
if (minioninfo->chip[i])
// TODO: minion_shutdown(minioncgpu, minioninfo, i);
i = i;
minioncgpu->shutdown = true;
}
static bool minion_queue_full(struct cgpu_info *minioncgpu)
{
struct minion_info *minioninfo = (struct minion_info *)(minioncgpu->device_data);
struct work *work;
int count;
bool ret;
K_RLOCK(minioninfo->wwork_list);
count = minioninfo->wwork_list->count;
K_RUNLOCK(minioninfo->wwork_list);
if (count >= (MINION_QUE_HIGH * minioninfo->chips))
ret = true;
else {
work = get_queued(minioncgpu);
if (work)
ready_work(minioncgpu, work);
else
// Avoid a hard loop when we can't get work fast enough
cgsleep_ms(3);
ret = false;
}
return ret;
}
static int64_t minion_scanwork(__maybe_unused struct thr_info *thr)
{
struct cgpu_info *minioncgpu = thr->cgpu;
struct minion_info *minioninfo = (struct minion_info *)(minioncgpu->device_data);
int64_t hashcount = 0;
minion_do_work(minioncgpu);
cgsleep_ms(3); // May need to be longer
mutex_lock(&(minioninfo->nonce_lock));
if (minioninfo->new_nonces) {
hashcount += 0xffffffffull * minioninfo->new_nonces;
minioninfo->new_nonces = 0;
}
mutex_unlock(&(minioninfo->nonce_lock));
return hashcount;
}
#define CHIPS_PER_STAT 8
static struct api_data *minion_api_stats(struct cgpu_info *minioncgpu)
{
struct minion_info *minioninfo = (struct minion_info *)(minioncgpu->device_data);
struct api_data *root = NULL;
char data[2048];
char buf[32];
int i, to, j;
if (minioninfo->initialised == false)
return NULL;
root = api_add_uint64(root, "OK Nonces", &(minioninfo->ok_nonces), true);
root = api_add_uint64(root, "New Nonces", &(minioninfo->new_nonces), true);
root = api_add_uint64(root, "Tested Nonces", &(minioninfo->tested_nonces), true);
root = api_add_uint64(root, "Untested Nonces", &(minioninfo->untested_nonces), true);
root = api_add_int(root, "Chips", &(minioninfo->chips), true);
for (i = 0; i < minioninfo->chips; i += CHIPS_PER_STAT) {
to = i + CHIPS_PER_STAT - 1;
if (to >= minioninfo->chips)
to = minioninfo->chips - 1;
data[0] = '\0';
for (j = i; j <= to; j++) {
snprintf(buf, sizeof(buf),
"%s%d",
j == i ? "" : " ",
minioninfo->chip[j] ? 1 : 0);
strcat(data, buf);
}
snprintf(buf, sizeof(buf), "Detected %02d - %02d", i, to);
root = api_add_string(root, buf, data, true);
data[0] = '\0';
for (j = i; j <= to; j++) {
snprintf(buf, sizeof(buf),
"%s%8"PRIu64,
j == i ? "" : " ",
minioninfo->chip_nonces[j]);
strcat(data, buf);
}
snprintf(buf, sizeof(buf), "Nonces %02d - %02d", i, to);
root = api_add_string(root, buf, data, true);
data[0] = '\0';
for (j = i; j <= to; j++) {
snprintf(buf, sizeof(buf),
"%s%8"PRIu64,
j == i ? "" : " ",
minioninfo->chip_good[j]);
strcat(data, buf);
}
snprintf(buf, sizeof(buf), "Good %02d - %02d", i, to);
root = api_add_string(root, buf, data, true);
data[0] = '\0';
for (j = i; j <= to; j++) {
snprintf(buf, sizeof(buf),
"%s%8"PRIu64,
j == i ? "" : " ",
minioninfo->chip_bad[j]);
strcat(data, buf);
}
snprintf(buf, sizeof(buf), "Bad %02d - %02d", i, to);
root = api_add_string(root, buf, data, true);
}
root = api_add_int(root, "WFree Total", &(minioninfo->wfree_list->total), true);
root = api_add_int(root, "WFree Count", &(minioninfo->wfree_list->count), true);
root = api_add_int(root, "WWork Count", &(minioninfo->wwork_list->count), true);
root = api_add_int(root, "TFree Total", &(minioninfo->tfree_list->total), true);
root = api_add_int(root, "TFree Count", &(minioninfo->tfree_list->count), true);
root = api_add_int(root, "Task Count", &(minioninfo->task_list->count), true);
root = api_add_int(root, "Reply Count", &(minioninfo->reply_list->count), true);
root = api_add_int(root, "RFree Total", &(minioninfo->rfree_list->total), true);
root = api_add_int(root, "RFree Count", &(minioninfo->rfree_list->count), true);
root = api_add_int(root, "RNonce Count", &(minioninfo->rnonce_list->count), true);
return root;
}
#endif
struct device_drv minion_drv = {
.drv_id = DRIVER_minion,
.dname = "Minion BlackArrow",
.name = "MBA",
.drv_detect = minion_detect,
#ifdef LINUX
.get_api_stats = minion_api_stats,
//TODO: .get_statline_before = get_minion_statline_before,
.identify_device = minion_identify,
.thread_prepare = minion_thread_prepare,
.hash_work = hash_queued_work,
.scanwork = minion_scanwork,
.queue_full = minion_queue_full,
.flush_work = minion_flush_work,
.thread_shutdown = minion_shutdown
#endif
};