Hash :
fa4c10b1
Author :
Date :
2011-06-22T00:45:35
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
typedef uint z;
#define BITALIGN
#ifdef BITALIGN
#pragma OPENCL EXTENSION cl_amd_media_ops : enable
#define rotr(a, b) amd_bitalign((z)a, (z)a, (z)b)
#define Ch(a, b, c) amd_bytealign(a, b, c)
#define Ma(a, b, c) amd_bytealign((b), (a | c), (c & a))
#else
#define rotr(a, b) rotate((z)a, (z)(32 - b))
#define Ch(a, b, c) (c ^ (a & (b ^ c)))
#define Ma(a, b, c) ((b & c) | (a & (b | c)))
#endif
#define WGS __attribute__((reqd_work_group_size(128, 1, 1)))
__constant uint K[64] = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
};
typedef struct {
uint ctx_a;
uint ctx_b;
uint ctx_c;
uint ctx_d;
uint ctx_e;
uint ctx_f;
uint ctx_g;
uint ctx_h;
uint cty_a;
uint cty_b;
uint cty_c;
uint cty_d;
uint cty_e;
uint cty_f;
uint cty_g;
uint cty_h;
uint merkle;
uint ntime;
uint nbits;
uint nonce;
uint fW0;
uint fW1;
uint fW2;
uint fW3;
uint fW15;
uint fW01r;
uint fcty_e;
uint fcty_e2;
} dev_blk_ctx;
__kernel __attribute__((vec_type_hint(uint))) WGS void search(
const uint state0, const uint state1, const uint state2, const uint state3,
const uint state4, const uint state5, const uint state6, const uint state7,
const uint B1, const uint C1, const uint D1,
const uint F1, const uint G1, const uint H1,
const uint base,
const uint fW0, const uint fW1, const uint fW2, const uint fW3, const uint fW15, const uint fW01r, const uint fcty_e, const uint fcty_e2,
__global uint *output)
{
uint A, B, C, D, E, F, G, H;
uint W0, W1, W2, W3, W4, W5, W6, W7, W8, W9, W10, W11, W12, W13, W14, W15;
uint it;
const uint myid = get_global_id(0);
const uint tnonce = base + myid;
W3 = 0 ^ tnonce;
E = fcty_e + W3;
A = state0 + E;
E = E + fcty_e2;
D = D1 + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B1, C1) + K[ 4] + 0x80000000;
H = H1 + D;
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G1, E, F1);
C = C1 + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B1) + K[ 5];
G = G1 + C;
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F1, D, E);
B = B1 + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[ 6];
F = F1 + B;
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D);
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[ 7];
E = E + A;
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C);
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[ 8];
D = D + H;
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B);
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[ 9];
C = C + G;
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A);
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[10];
B = B + F;
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H);
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[11];
A = A + E;
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G);
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[12];
H = H + D;
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F);
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[13];
G = G + C;
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E);
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[14];
F = F + B;
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D);
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[15] + 0x00000280;
E = E + A;
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C);
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[16] + fW0;
D = D + H;
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B);
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[17] + fW1;
C = C + G;
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A);
W2 = (rotr(W3, 7) ^ rotr(W3, 18) ^ (W3 >> 3)) + fW2;
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[18] + W2;
B = B + F;
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H);
W3 = W3 + fW3;
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[19] + W3;
A = A + E;
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G);
W4 = (rotr(W2, 17) ^ rotr(W2, 19) ^ (W2 >> 10)) + 0x80000000;
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[20] + W4;
H = H + D;
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F);
W5 = (rotr(W3, 17) ^ rotr(W3, 19) ^ (W3 >> 10));
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[21] + W5;
G = G + C;
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E);
W6 = (rotr(W4, 17) ^ rotr(W4, 19) ^ (W4 >> 10)) + 0x00000280;
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[22] + W6;
F = F + B;
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D);
W7 = (rotr(W5, 17) ^ rotr(W5, 19) ^ (W5 >> 10)) + fW0;
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[23] + W7;
E = E + A;
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C);
W8 = (rotr(W6, 17) ^ rotr(W6, 19) ^ (W6 >> 10)) + fW1;
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[24] + W8;
D = D + H;
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B);
W9 = W2 + (rotr(W7, 17) ^ rotr(W7, 19) ^ (W7 >> 10));
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[25] + W9;
C = C + G;
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A);
W10 = W3 + (rotr(W8, 17) ^ rotr(W8, 19) ^ (W8 >> 10));
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[26] + W10;
B = B + F;
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H);
W11 = W4 + (rotr(W9, 17) ^ rotr(W9, 19) ^ (W9 >> 10));
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[27] + W11;
A = A + E;
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G);
W12 = W5 + (rotr(W10, 17) ^ rotr(W10, 19) ^ (W10 >> 10));
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[28] + W12;
H = H + D;
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F);
W13 = W6 + (rotr(W11, 17) ^ rotr(W11, 19) ^ (W11 >> 10));
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[29] + W13;
G = G + C;
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E);
W14 = 0x00a00055 + W7 + (rotr(W12, 17) ^ rotr(W12, 19) ^ (W12 >> 10));
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[30] + W14;
F = F + B;
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D);
W15 = fW15 + W8 + (rotr(W13, 17) ^ rotr(W13, 19) ^ (W13 >> 10));
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[31] + W15;
E = E + A;
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C);
W0 = fW01r + W9 + (rotr(W14, 17) ^ rotr(W14, 19) ^ (W14 >> 10));
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[32] + W0;
D = D + H;
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B);
W1 = fW1 + (rotr(W2, 7) ^ rotr(W2, 18) ^ (W2 >> 3)) + W10 + (rotr(W15, 17) ^ rotr(W15, 19) ^ (W15 >> 10));
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[33] + W1;
C = C + G;
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A);
W2 = W2 + (rotr(W3, 7) ^ rotr(W3, 18) ^ (W3 >> 3)) + W11 + (rotr(W0, 17) ^ rotr(W0, 19) ^ (W0 >> 10));
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[34] + W2;
B = B + F;
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H);
W3 = W3 + (rotr(W4, 7) ^ rotr(W4, 18) ^ (W4 >> 3)) + W12 + (rotr(W1, 17) ^ rotr(W1, 19) ^ (W1 >> 10));
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[35] + W3;
A = A + E;
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G);
W4 = W4 + (rotr(W5, 7) ^ rotr(W5, 18) ^ (W5 >> 3)) + W13 + (rotr(W2, 17) ^ rotr(W2, 19) ^ (W2 >> 10));
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[36] + W4;
H = H + D;
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F);
W5 = W5 + (rotr(W6, 7) ^ rotr(W6, 18) ^ (W6 >> 3)) + W14 + (rotr(W3, 17) ^ rotr(W3, 19) ^ (W3 >> 10));
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[37] + W5;
G = G + C;
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E);
W6 = W6 + (rotr(W7, 7) ^ rotr(W7, 18) ^ (W7 >> 3)) + W15 + (rotr(W4, 17) ^ rotr(W4, 19) ^ (W4 >> 10));
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[38] + W6;
F = F + B;
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D);
W7 = W7 + (rotr(W8, 7) ^ rotr(W8, 18) ^ (W8 >> 3)) + W0 + (rotr(W5, 17) ^ rotr(W5, 19) ^ (W5 >> 10));
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[39] + W7;
E = E + A;
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C);
W8 = W8 + (rotr(W9, 7) ^ rotr(W9, 18) ^ (W9 >> 3)) + W1 + (rotr(W6, 17) ^ rotr(W6, 19) ^ (W6 >> 10));
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[40] + W8;
D = D + H;
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B);
W9 = W9 + (rotr(W10, 7) ^ rotr(W10, 18) ^ (W10 >> 3)) + W2 + (rotr(W7, 17) ^ rotr(W7, 19) ^ (W7 >> 10));
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[41] + W9;
C = C + G;
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A);
W10 = W10 + (rotr(W11, 7) ^ rotr(W11, 18) ^ (W11 >> 3)) + W3 + (rotr(W8, 17) ^ rotr(W8, 19) ^ (W8 >> 10));
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[42] + W10;
B = B + F;
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H);
W11 = W11 + (rotr(W12, 7) ^ rotr(W12, 18) ^ (W12 >> 3)) + W4 + (rotr(W9, 17) ^ rotr(W9, 19) ^ (W9 >> 10));
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[43] + W11;
A = A + E;
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G);
W12 = W12 + (rotr(W13, 7) ^ rotr(W13, 18) ^ (W13 >> 3)) + W5 + (rotr(W10, 17) ^ rotr(W10, 19) ^ (W10 >> 10));
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[44] + W12;
H = H + D;
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F);
W13 = W13 + (rotr(W14, 7) ^ rotr(W14, 18) ^ (W14 >> 3)) + W6 + (rotr(W11, 17) ^ rotr(W11, 19) ^ (W11 >> 10));
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[45] + W13;
G = G + C;
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E);
W14 = W14 + (rotr(W15, 7) ^ rotr(W15, 18) ^ (W15 >> 3)) + W7 + (rotr(W12, 17) ^ rotr(W12, 19) ^ (W12 >> 10));
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[46] + W14;
F = F + B;
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D);
W15 = W15 + (rotr(W0, 7) ^ rotr(W0, 18) ^ (W0 >> 3)) + W8 + (rotr(W13, 17) ^ rotr(W13, 19) ^ (W13 >> 10));
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[47] + W15;
E = E + A;
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C);
W0 = W0 + (rotr(W1, 7) ^ rotr(W1, 18) ^ (W1 >> 3)) + W9 + (rotr(W14, 17) ^ rotr(W14, 19) ^ (W14 >> 10));
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[48] + W0;
D = D + H;
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B);
W1 = W1 + (rotr(W2, 7) ^ rotr(W2, 18) ^ (W2 >> 3)) + W10 + (rotr(W15, 17) ^ rotr(W15, 19) ^ (W15 >> 10));
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[49] + W1;
C = C + G;
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A);
W2 = W2 + (rotr(W3, 7) ^ rotr(W3, 18) ^ (W3 >> 3)) + W11 + (rotr(W0, 17) ^ rotr(W0, 19) ^ (W0 >> 10));
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[50] + W2;
B = B + F;
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H);
W3 = W3 + (rotr(W4, 7) ^ rotr(W4, 18) ^ (W4 >> 3)) + W12 + (rotr(W1, 17) ^ rotr(W1, 19) ^ (W1 >> 10));
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[51] + W3;
A = A + E;
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G);
W4 = W4 + (rotr(W5, 7) ^ rotr(W5, 18) ^ (W5 >> 3)) + W13 + (rotr(W2, 17) ^ rotr(W2, 19) ^ (W2 >> 10));
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[52] + W4;
H = H + D;
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F);
W5 = W5 + (rotr(W6, 7) ^ rotr(W6, 18) ^ (W6 >> 3)) + W14 + (rotr(W3, 17) ^ rotr(W3, 19) ^ (W3 >> 10));
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[53] + W5;
G = G + C;
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E);
W6 = W6 + (rotr(W7, 7) ^ rotr(W7, 18) ^ (W7 >> 3)) + W15 + (rotr(W4, 17) ^ rotr(W4, 19) ^ (W4 >> 10));
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[54] + W6;
F = F + B;
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D);
W7 = W7 + (rotr(W8, 7) ^ rotr(W8, 18) ^ (W8 >> 3)) + W0 + (rotr(W5, 17) ^ rotr(W5, 19) ^ (W5 >> 10));
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[55] + W7;
E = E + A;
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C);
W8 = W8 + (rotr(W9, 7) ^ rotr(W9, 18) ^ (W9 >> 3)) + W1 + (rotr(W6, 17) ^ rotr(W6, 19) ^ (W6 >> 10));
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[56] + W8;
D = D + H;
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B);
W9 = W9 + (rotr(W10, 7) ^ rotr(W10, 18) ^ (W10 >> 3)) + W2 + (rotr(W7, 17) ^ rotr(W7, 19) ^ (W7 >> 10));
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[57] + W9;
C = C + G;
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A);
W10 = W10 + (rotr(W11, 7) ^ rotr(W11, 18) ^ (W11 >> 3)) + W3 + (rotr(W8, 17) ^ rotr(W8, 19) ^ (W8 >> 10));
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[58] + W10;
B = B + F;
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H);
W11 = W11 + (rotr(W12, 7) ^ rotr(W12, 18) ^ (W12 >> 3)) + W4 + (rotr(W9, 17) ^ rotr(W9, 19) ^ (W9 >> 10));
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[59] + W11;
A = A + E;
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G);
W12 = W12 + (rotr(W13, 7) ^ rotr(W13, 18) ^ (W13 >> 3)) + W5 + (rotr(W10, 17) ^ rotr(W10, 19) ^ (W10 >> 10));
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[60] + W12;
H = H + D;
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F);
W13 = W13 + (rotr(W14, 7) ^ rotr(W14, 18) ^ (W14 >> 3)) + W6 + (rotr(W11, 17) ^ rotr(W11, 19) ^ (W11 >> 10));
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[61] + W13;
G = G + C;
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E);
W14 = W14 + (rotr(W15, 7) ^ rotr(W15, 18) ^ (W15 >> 3)) + W7 + (rotr(W12, 17) ^ rotr(W12, 19) ^ (W12 >> 10));
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[62] + W14;
F = F + B;
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D);
W15 = W15 + (rotr(W0, 7) ^ rotr(W0, 18) ^ (W0 >> 3)) + W8 + (rotr(W13, 17) ^ rotr(W13, 19) ^ (W13 >> 10));
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[63] + W15;
E = E + A;
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C);
W0 = A + state0;
W1 = B + state1;
W2 = C + state2;
W3 = D + state3;
W4 = E + state4;
W5 = F + state5;
W6 = G + state6;
W7 = H + state7;
H = 0xb0edbdd0 + K[ 0] + W0;
D = 0xa54ff53a + H;
H = H + 0x08909ae5;
G = 0x1f83d9ab + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + (0x9b05688c ^ (D & 0xca0b3af3)) + K[ 1] + W1;
C = 0x3c6ef372 + G;
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(0xbb67ae85, H, 0x6a09e667);
F = 0x9b05688c + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, 0x510e527f) + K[ 2] + W2;
B = 0xbb67ae85 + F;
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(0x6a09e667, G, H);
E = 0x510e527f + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[ 3] + W3;
A = 0x6a09e667 + E;
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G);
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[ 4] + W4;
H = H + D;
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F);
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[ 5] + W5;
G = G + C;
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E);
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[ 6] + W6;
F = F + B;
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D);
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[ 7] + W7;
E = E + A;
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C);
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[ 8] + 0x80000000;
D = D + H;
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B);
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[ 9];
C = C + G;
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A);
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[10];
B = B + F;
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H);
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[11];
A = A + E;
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G);
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[12];
H = H + D;
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F);
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[13];
G = G + C;
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E);
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[14];
F = F + B;
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D);
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[15] + 0x00000100;
E = E + A;
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C);
W0 = W0 + (rotr(W1, 7) ^ rotr(W1, 18) ^ (W1 >> 3));
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[16] + W0;
D = D + H;
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B);
W1 = W1 + (rotr(W2, 7) ^ rotr(W2, 18) ^ (W2 >> 3)) + 0x00a00000;
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[17] + W1;
C = C + G;
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A);
W2 = W2 + (rotr(W3, 7) ^ rotr(W3, 18) ^ (W3 >> 3)) + (rotr(W0, 17) ^ rotr(W0, 19) ^ (W0 >> 10));
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[18] + W2;
B = B + F;
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H);
W3 = W3 + (rotr(W4, 7) ^ rotr(W4, 18) ^ (W4 >> 3)) + (rotr(W1, 17) ^ rotr(W1, 19) ^ (W1 >> 10));
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[19] + W3;
A = A + E;
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G);
W4 = W4 + (rotr(W5, 7) ^ rotr(W5, 18) ^ (W5 >> 3)) + (rotr(W2, 17) ^ rotr(W2, 19) ^ (W2 >> 10));
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[20] + W4;
H = H + D;
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F);
W5 = W5 + (rotr(W6, 7) ^ rotr(W6, 18) ^ (W6 >> 3)) + (rotr(W3, 17) ^ rotr(W3, 19) ^ (W3 >> 10));
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[21] + W5;
G = G + C;
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E);
W6 = W6 + (rotr(W7, 7) ^ rotr(W7, 18) ^ (W7 >> 3)) + 0x00000100 + (rotr(W4, 17) ^ rotr(W4, 19) ^ (W4 >> 10));
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[22] + W6;
F = F + B;
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D);
W7 = W7 + 0x11002000 + W0 + (rotr(W5, 17) ^ rotr(W5, 19) ^ (W5 >> 10));
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[23] + W7;
E = E + A;
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C);
W8 = 0x80000000 + W1 + (rotr(W6, 17) ^ rotr(W6, 19) ^ (W6 >> 10));
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[24] + W8;
D = D + H;
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B);
W9 = W2 + (rotr(W7, 17) ^ rotr(W7, 19) ^ (W7 >> 10));
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[25] + W9;
C = C + G;
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A);
W10 = W3 + (rotr(W8, 17) ^ rotr(W8, 19) ^ (W8 >> 10));
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[26] + W10;
B = B + F;
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H);
W11 = W4 + (rotr(W9, 17) ^ rotr(W9, 19) ^ (W9 >> 10));
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[27] + W11;
A = A + E;
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G);
W12 = W5 + (rotr(W10, 17) ^ rotr(W10, 19) ^ (W10 >> 10));
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[28] + W12;
H = H + D;
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F);
W13 = W6 + (rotr(W11, 17) ^ rotr(W11, 19) ^ (W11 >> 10));
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[29] + W13;
G = G + C;
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E);
W14 = 0x00400022 + W7 + (rotr(W12, 17) ^ rotr(W12, 19) ^ (W12 >> 10));
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[30] + W14;
F = F + B;
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D);
W15 = 0x00000100 + (rotr(W0, 7) ^ rotr(W0, 18) ^ (W0 >> 3)) + W8 + (rotr(W13, 17) ^ rotr(W13, 19) ^ (W13 >> 10));
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[31] + W15;
E = E + A;
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C);
W0 = W0 + (rotr(W1, 7) ^ rotr(W1, 18) ^ (W1 >> 3)) + W9 + (rotr(W14, 17) ^ rotr(W14, 19) ^ (W14 >> 10));
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[32] + W0;
D = D + H;
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B);
W1 = W1 + (rotr(W2, 7) ^ rotr(W2, 18) ^ (W2 >> 3)) + W10 + (rotr(W15, 17) ^ rotr(W15, 19) ^ (W15 >> 10));
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[33] + W1;
C = C + G;
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A);
W2 = W2 + (rotr(W3, 7) ^ rotr(W3, 18) ^ (W3 >> 3)) + W11 + (rotr(W0, 17) ^ rotr(W0, 19) ^ (W0 >> 10));
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[34] + W2;
B = B + F;
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H);
W3 = W3 + (rotr(W4, 7) ^ rotr(W4, 18) ^ (W4 >> 3)) + W12 + (rotr(W1, 17) ^ rotr(W1, 19) ^ (W1 >> 10));
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[35] + W3;
A = A + E;
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G);
W4 = W4 + (rotr(W5, 7) ^ rotr(W5, 18) ^ (W5 >> 3)) + W13 + (rotr(W2, 17) ^ rotr(W2, 19) ^ (W2 >> 10));
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[36] + W4;
H = H + D;
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F);
W5 = W5 + (rotr(W6, 7) ^ rotr(W6, 18) ^ (W6 >> 3)) + W14 + (rotr(W3, 17) ^ rotr(W3, 19) ^ (W3 >> 10));
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[37] + W5;
G = G + C;
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E);
W6 = W6 + (rotr(W7, 7) ^ rotr(W7, 18) ^ (W7 >> 3)) + W15 + (rotr(W4, 17) ^ rotr(W4, 19) ^ (W4 >> 10));
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[38] + W6;
F = F + B;
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D);
W7 = W7 + (rotr(W8, 7) ^ rotr(W8, 18) ^ (W8 >> 3)) + W0 + (rotr(W5, 17) ^ rotr(W5, 19) ^ (W5 >> 10));
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[39] + W7;
E = E + A;
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C);
W8 = W8 + (rotr(W9, 7) ^ rotr(W9, 18) ^ (W9 >> 3)) + W1 + (rotr(W6, 17) ^ rotr(W6, 19) ^ (W6 >> 10));
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[40] + W8;
D = D + H;
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B);
W9 = W9 + (rotr(W10, 7) ^ rotr(W10, 18) ^ (W10 >> 3)) + W2 + (rotr(W7, 17) ^ rotr(W7, 19) ^ (W7 >> 10));
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[41] + W9;
C = C + G;
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A);
W10 = W10 + (rotr(W11, 7) ^ rotr(W11, 18) ^ (W11 >> 3)) + W3 + (rotr(W8, 17) ^ rotr(W8, 19) ^ (W8 >> 10));
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[42] + W10;
B = B + F;
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H);
W11 = W11 + (rotr(W12, 7) ^ rotr(W12, 18) ^ (W12 >> 3)) + W4 + (rotr(W9, 17) ^ rotr(W9, 19) ^ (W9 >> 10));
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[43] + W11;
A = A + E;
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G);
W12 = W12 + (rotr(W13, 7) ^ rotr(W13, 18) ^ (W13 >> 3)) + W5 + (rotr(W10, 17) ^ rotr(W10, 19) ^ (W10 >> 10));
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[44] + W12;
H = H + D;
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F);
W13 = W13 + (rotr(W14, 7) ^ rotr(W14, 18) ^ (W14 >> 3)) + W6 + (rotr(W11, 17) ^ rotr(W11, 19) ^ (W11 >> 10));
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[45] + W13;
G = G + C;
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E);
W14 = W14 + (rotr(W15, 7) ^ rotr(W15, 18) ^ (W15 >> 3)) + W7 + (rotr(W12, 17) ^ rotr(W12, 19) ^ (W12 >> 10));
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[46] + W14;
F = F + B;
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D);
W15 = W15 + (rotr(W0, 7) ^ rotr(W0, 18) ^ (W0 >> 3)) + W8 + (rotr(W13, 17) ^ rotr(W13, 19) ^ (W13 >> 10));
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[47] + W15;
E = E + A;
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C);
W0 = W0 + (rotr(W1, 7) ^ rotr(W1, 18) ^ (W1 >> 3)) + W9 + (rotr(W14, 17) ^ rotr(W14, 19) ^ (W14 >> 10));
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[48] + W0;
D = D + H;
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B);
W1 = W1 + (rotr(W2, 7) ^ rotr(W2, 18) ^ (W2 >> 3)) + W10 + (rotr(W15, 17) ^ rotr(W15, 19) ^ (W15 >> 10));
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[49] + W1;
C = C + G;
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A);
W2 = W2 + (rotr(W3, 7) ^ rotr(W3, 18) ^ (W3 >> 3)) + W11 + (rotr(W0, 17) ^ rotr(W0, 19) ^ (W0 >> 10));
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[50] + W2;
B = B + F;
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H);
W3 = W3 + (rotr(W4, 7) ^ rotr(W4, 18) ^ (W4 >> 3)) + W12 + (rotr(W1, 17) ^ rotr(W1, 19) ^ (W1 >> 10));
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[51] + W3;
A = A + E;
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G);
W4 = W4 + (rotr(W5, 7) ^ rotr(W5, 18) ^ (W5 >> 3)) + W13 + (rotr(W2, 17) ^ rotr(W2, 19) ^ (W2 >> 10));
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[52] + W4;
H = H + D;
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F);
W5 = W5 + (rotr(W6, 7) ^ rotr(W6, 18) ^ (W6 >> 3)) + W14 + (rotr(W3, 17) ^ rotr(W3, 19) ^ (W3 >> 10));
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[53] + W5;
G = G + C;
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E);
W6 = W6 + (rotr(W7, 7) ^ rotr(W7, 18) ^ (W7 >> 3)) + W15 + (rotr(W4, 17) ^ rotr(W4, 19) ^ (W4 >> 10));
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[54] + W6;
F = F + B;
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D);
W7 = W7 + (rotr(W8, 7) ^ rotr(W8, 18) ^ (W8 >> 3)) + W0 + (rotr(W5, 17) ^ rotr(W5, 19) ^ (W5 >> 10));
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[55] + W7;
E = E + A;
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C);
W8 = W8 + (rotr(W9, 7) ^ rotr(W9, 18) ^ (W9 >> 3)) + W1 + (rotr(W6, 17) ^ rotr(W6, 19) ^ (W6 >> 10));
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[56] + W8;
D = D + H;
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B);
W9 = W9 + (rotr(W10, 7) ^ rotr(W10, 18) ^ (W10 >> 3)) + W2 + (rotr(W7, 17) ^ rotr(W7, 19) ^ (W7 >> 10));
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[57] + W9;
C = C + G;
W10 = W10 + (rotr(W11, 7) ^ rotr(W11, 18) ^ (W11 >> 3)) + W3 + (rotr(W8, 17) ^ rotr(W8, 19) ^ (W8 >> 10));
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[58] + W10;
B = B + F;
W11 = W11 + (rotr(W12, 7) ^ rotr(W12, 18) ^ (W12 >> 3)) + W4 + (rotr(W9, 17) ^ rotr(W9, 19) ^ (W9 >> 10));
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[59] + W11;
A = A + E;
W12 = W12 + (rotr(W13, 7) ^ rotr(W13, 18) ^ (W13 >> 3)) + W5 + (rotr(W10, 17) ^ rotr(W10, 19) ^ (W10 >> 10));
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[60] + W12;
H = H + D;
if (H==0xa41f32e7) {
for (it = 0; it != 127; it++) {
if (!output[it]) {
output[it] = tnonce;
output[127] = 1;
break;
}
}
}
}