Hash :
fe621944
Author :
Date :
2020-11-10T22:54:37
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
/* Myers diff algorithm implementation, invented by Eugene W. Myers [1].
* Implementations of both the Myers Divide Et Impera (using linear space)
* and the canonical Myers algorithm (using quadratic space). */
/*
* Copyright (c) 2020 Neels Hofmeyr <neels@hofmeyr.de>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <inttypes.h>
#include <stdbool.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <errno.h>
#include <arraylist.h>
#include <diff_main.h>
#include "diff_internal.h"
#include "diff_debug.h"
/* Myers' diff algorithm [1] is nicely explained in [2].
* [1] http://www.xmailserver.org/diff2.pdf
* [2] https://blog.jcoglan.com/2017/02/12/the-myers-diff-algorithm-part-1/ ff.
*
* Myers approaches finding the smallest diff as a graph problem.
* The crux is that the original algorithm requires quadratic amount of memory:
* both sides' lengths added, and that squared. So if we're diffing lines of
* text, two files with 1000 lines each would blow up to a matrix of about
* 2000 * 2000 ints of state, about 16 Mb of RAM to figure out 2 kb of text.
* The solution is using Myers' "divide and conquer" extension algorithm, which
* does the original traversal from both ends of the files to reach a middle
* where these "snakes" touch, hence does not need to backtrace the traversal,
* and so gets away with only keeping a single column of that huge state matrix
* in memory.
*/
struct diff_box {
unsigned int left_start;
unsigned int left_end;
unsigned int right_start;
unsigned int right_end;
};
/* If the two contents of a file are A B C D E and X B C Y,
* the Myers diff graph looks like:
*
* k0 k1
* \ \
* k-1 0 1 2 3 4 5
* \ A B C D E
* 0 o-o-o-o-o-o
* X | | | | | |
* 1 o-o-o-o-o-o
* B | |\| | | |
* 2 o-o-o-o-o-o
* C | | |\| | |
* 3 o-o-o-o-o-o
* Y | | | | | |\
* 4 o-o-o-o-o-o c1
* \ \
* c-1 c0
*
* Moving right means delete an atom from the left-hand-side,
* Moving down means add an atom from the right-hand-side.
* Diagonals indicate identical atoms on both sides, the challenge is to use as
* many diagonals as possible.
*
* The original Myers algorithm walks all the way from the top left to the
* bottom right, remembers all steps, and then backtraces to find the shortest
* path. However, that requires keeping the entire graph in memory, which needs
* quadratic space.
*
* Myers adds a variant that uses linear space -- note, not linear time, only
* linear space: walk forward and backward, find a meeting point in the middle,
* and recurse on the two separate sections. This is called "divide and
* conquer".
*
* d: the step number, starting with 0, a.k.a. the distance from the starting
* point.
* k: relative index in the state array for the forward scan, indicating on
* which diagonal through the diff graph we currently are.
* c: relative index in the state array for the backward scan, indicating the
* diagonal number from the bottom up.
*
* The "divide and conquer" traversal through the Myers graph looks like this:
*
* | d= 0 1 2 3 2 1 0
* ----+--------------------------------------------
* k= | c=
* 4 | 3
* |
* 3 | 3,0 5,2 2
* | / \
* 2 | 2,0 5,3 1
* | / \
* 1 | 1,0 4,3 >= 4,3 5,4<-- 0
* | / / \ /
* 0 | -->0,0 3,3 4,4 -1
* | \ / /
* -1 | 0,1 1,2 3,4 -2
* | \ /
* -2 | 0,2 -3
* | \
* | 0,3
* | forward-> <-backward
*
* x,y pairs here are the coordinates in the Myers graph:
* x = atom index in left-side source, y = atom index in the right-side source.
*
* Only one forward column and one backward column are kept in mem, each need at
* most left.len + 1 + right.len items. Note that each d step occupies either
* the even or the odd items of a column: if e.g. the previous column is in the
* odd items, the next column is formed in the even items, without overwriting
* the previous column's results.
*
* Also note that from the diagonal index k and the x coordinate, the y
* coordinate can be derived:
* y = x - k
* Hence the state array only needs to keep the x coordinate, i.e. the position
* in the left-hand file, and the y coordinate, i.e. position in the right-hand
* file, is derived from the index in the state array.
*
* The two traces meet at 4,3, the first step (here found in the forward
* traversal) where a forward position is on or past a backward traced position
* on the same diagonal.
*
* This divides the problem space into:
*
* 0 1 2 3 4 5
* A B C D E
* 0 o-o-o-o-o
* X | | | | |
* 1 o-o-o-o-o
* B | |\| | |
* 2 o-o-o-o-o
* C | | |\| |
* 3 o-o-o-o-*-o *: forward and backward meet here
* Y | |
* 4 o-o
*
* Doing the same on each section lead to:
*
* 0 1 2 3 4 5
* A B C D E
* 0 o-o
* X | |
* 1 o-b b: backward d=1 first reaches here (sliding up the snake)
* B \ f: then forward d=2 reaches here (sliding down the snake)
* 2 o As result, the box from b to f is found to be identical;
* C \ leaving a top box from 0,0 to 1,1 and a bottom trivial
* 3 f-o tail 3,3 to 4,3.
*
* 3 o-*
* Y |
* 4 o *: forward and backward meet here
*
* and solving the last top left box gives:
*
* 0 1 2 3 4 5
* A B C D E -A
* 0 o-o +X
* X | B
* 1 o C
* B \ -D
* 2 o -E
* C \ +Y
* 3 o-o-o
* Y |
* 4 o
*
*/
#define xk_to_y(X, K) ((X) - (K))
#define xc_to_y(X, C, DELTA) ((X) - (C) + (DELTA))
#define k_to_c(K, DELTA) ((K) + (DELTA))
#define c_to_k(C, DELTA) ((C) - (DELTA))
/* Do one forwards step in the "divide and conquer" graph traversal.
* left: the left side to diff.
* right: the right side to diff against.
* kd_forward: the traversal state for forwards traversal, modified by this
* function.
* This is carried over between invocations with increasing d.
* kd_forward points at the center of the state array, allowing
* negative indexes.
* kd_backward: the traversal state for backwards traversal, to find a meeting
* point.
* Since forwards is done first, kd_backward will be valid for d -
* 1, not d.
* kd_backward points at the center of the state array, allowing
* negative indexes.
* d: Step or distance counter, indicating for what value of d the kd_forward
* should be populated.
* For d == 0, kd_forward[0] is initialized, i.e. the first invocation should
* be for d == 0.
* meeting_snake: resulting meeting point, if any.
* Return true when a meeting point has been identified.
*/
static int
diff_divide_myers_forward(bool *found_midpoint,
struct diff_data *left, struct diff_data *right,
int *kd_forward, int *kd_backward, int d,
struct diff_box *meeting_snake)
{
int delta = (int)right->atoms.len - (int)left->atoms.len;
int k;
int x;
int prev_x;
int prev_y;
int x_before_slide;
*found_midpoint = false;
for (k = d; k >= -d; k -= 2) {
if (k < -(int)right->atoms.len || k > (int)left->atoms.len) {
/* This diagonal is completely outside of the Myers
* graph, don't calculate it. */
if (k < 0) {
/* We are traversing negatively, and already
* below the entire graph, nothing will come of
* this. */
debug(" break\n");
break;
}
debug(" continue\n");
continue;
}
if (d == 0) {
/* This is the initializing step. There is no prev_k
* yet, get the initial x from the top left of the Myers
* graph. */
x = 0;
prev_x = x;
prev_y = xk_to_y(x, k);
}
/* Favoring "-" lines first means favoring moving rightwards in
* the Myers graph.
* For this, all k should derive from k - 1, only the bottom
* most k derive from k + 1:
*
* | d= 0 1 2
* ----+----------------
* k= |
* 2 | 2,0 <-- from prev_k = 2 - 1 = 1
* | /
* 1 | 1,0
* | /
* 0 | -->0,0 3,3
* | \\ /
* -1 | 0,1 <-- bottom most for d=1 from
* | \\ prev_k = -1 + 1 = 0
* -2 | 0,2 <-- bottom most for d=2 from
* prev_k = -2 + 1 = -1
*
* Except when a k + 1 from a previous run already means a
* further advancement in the graph.
* If k == d, there is no k + 1 and k - 1 is the only option.
* If k < d, use k + 1 in case that yields a larger x. Also use
* k + 1 if k - 1 is outside the graph.
*/
else if (k > -d
&& (k == d
|| (k - 1 >= -(int)right->atoms.len
&& kd_forward[k - 1] >= kd_forward[k + 1]))) {
/* Advance from k - 1.
* From position prev_k, step to the right in the Myers
* graph: x += 1.
*/
int prev_k = k - 1;
prev_x = kd_forward[prev_k];
prev_y = xk_to_y(prev_x, prev_k);
x = prev_x + 1;
} else {
/* The bottom most one.
* From position prev_k, step to the bottom in the Myers
* graph: y += 1.
* Incrementing y is achieved by decrementing k while
* keeping the same x.
* (since we're deriving y from y = x - k).
*/
int prev_k = k + 1;
prev_x = kd_forward[prev_k];
prev_y = xk_to_y(prev_x, prev_k);
x = prev_x;
}
x_before_slide = x;
/* Slide down any snake that we might find here. */
while (x < left->atoms.len && xk_to_y(x, k) < right->atoms.len) {
bool same;
int r = diff_atom_same(&same,
&left->atoms.head[x],
&right->atoms.head[
xk_to_y(x, k)]);
if (r)
return r;
if (!same)
break;
x++;
}
kd_forward[k] = x;
#if 0
if (x_before_slide != x) {
debug(" down %d similar lines\n", x - x_before_slide);
}
#if DEBUG
{
int fi;
for (fi = d; fi >= k; fi--) {
debug("kd_forward[%d] = (%d, %d)\n", fi,
kd_forward[fi], kd_forward[fi] - fi);
}
}
#endif
#endif
if (x < 0 || x > left->atoms.len
|| xk_to_y(x, k) < 0 || xk_to_y(x, k) > right->atoms.len)
continue;
/* Figured out a new forwards traversal, see if this has gone
* onto or even past a preceding backwards traversal.
*
* If the delta in length is odd, then d and backwards_d hit the
* same state indexes:
* | d= 0 1 2 1 0
* ----+---------------- ----------------
* k= | c=
* 4 | 3
* |
* 3 | 2
* | same
* 2 | 2,0====5,3 1
* | / \
* 1 | 1,0 5,4<-- 0
* | / /
* 0 | -->0,0 3,3====4,4 -1
* | \ /
* -1 | 0,1 -2
* | \
* -2 | 0,2 -3
* |
*
* If the delta is even, they end up off-by-one, i.e. on
* different diagonals:
*
* | d= 0 1 2 1 0
* ----+---------------- ----------------
* | c=
* 3 | 3
* |
* 2 | 2,0 off 2
* | / \\
* 1 | 1,0 4,3 1
* | / // \
* 0 | -->0,0 3,3 4,4<-- 0
* | \ / /
* -1 | 0,1 3,4 -1
* | \ //
* -2 | 0,2 -2
* |
*
* So in the forward path, we can only match up diagonals when
* the delta is odd.
*/
if ((delta & 1) == 0)
continue;
/* Forwards is done first, so the backwards one was still at
* d - 1. Can't do this for d == 0. */
int backwards_d = d - 1;
if (backwards_d < 0)
continue;
/* If both sides have the same length, forward and backward
* start on the same diagonal, meaning the backwards state index
* c == k.
* As soon as the lengths are not the same, the backwards
* traversal starts on a different diagonal, and c = k shifted
* by the difference in length.
*/
int c = k_to_c(k, delta);
/* When the file sizes are very different, the traversal trees
* start on far distant diagonals.
* They don't necessarily meet straight on. See whether this
* forward value is on a diagonal that is also valid in
* kd_backward[], and match them if so. */
if (c >= -backwards_d && c <= backwards_d) {
/* Current k is on a diagonal that exists in
* kd_backward[]. If the two x positions have met or
* passed (forward walked onto or past backward), then
* we've found a midpoint / a mid-box.
*
* When forwards and backwards traversals meet, the
* endpoints of the mid-snake are not the two points in
* kd_forward and kd_backward, but rather the section
* that was slid (if any) of the current
* forward/backward traversal only.
*
* For example:
*
* o
* \
* o
* \
* o
* \
* o
* \
* X o o
* | | |
* o-o-o o
* \|
* M
* \
* o
* \
* A o
* | |
* o-o-o
*
* The forward traversal reached M from the top and slid
* downwards to A. The backward traversal already
* reached X, which is not a straight line from M
* anymore, so picking a mid-snake from M to X would
* yield a mistake.
*
* The correct mid-snake is between M and A. M is where
* the forward traversal hit the diagonal that the
* backward traversal has already passed, and A is what
* it reaches when sliding down identical lines.
*/
int backward_x = kd_backward[c];
if (x >= backward_x) {
if (x_before_slide != x) {
/* met after sliding up a mid-snake */
*meeting_snake = (struct diff_box){
.left_start = x_before_slide,
.left_end = x,
.right_start = xc_to_y(x_before_slide,
c, delta),
.right_end = xk_to_y(x, k),
};
} else {
/* met after a side step, non-identical
* line. Mark that as box divider
* instead. This makes sure that
* myers_divide never returns the same
* box that came as input, avoiding
* "infinite" looping. */
*meeting_snake = (struct diff_box){
.left_start = prev_x,
.left_end = x,
.right_start = prev_y,
.right_end = xk_to_y(x, k),
};
}
debug("HIT x=(%u,%u) - y=(%u,%u)\n",
meeting_snake->left_start,
meeting_snake->right_start,
meeting_snake->left_end,
meeting_snake->right_end);
debug_dump_myers_graph(left, right, NULL,
kd_forward, d,
kd_backward, d-1);
*found_midpoint = true;
return 0;
}
}
}
return 0;
}
/* Do one backwards step in the "divide and conquer" graph traversal.
* left: the left side to diff.
* right: the right side to diff against.
* kd_forward: the traversal state for forwards traversal, to find a meeting
* point.
* Since forwards is done first, after this, both kd_forward and
* kd_backward will be valid for d.
* kd_forward points at the center of the state array, allowing
* negative indexes.
* kd_backward: the traversal state for backwards traversal, to find a meeting
* point.
* This is carried over between invocations with increasing d.
* kd_backward points at the center of the state array, allowing
* negative indexes.
* d: Step or distance counter, indicating for what value of d the kd_backward
* should be populated.
* Before the first invocation, kd_backward[0] shall point at the bottom
* right of the Myers graph (left.len, right.len).
* The first invocation will be for d == 1.
* meeting_snake: resulting meeting point, if any.
* Return true when a meeting point has been identified.
*/
static int
diff_divide_myers_backward(bool *found_midpoint,
struct diff_data *left, struct diff_data *right,
int *kd_forward, int *kd_backward, int d,
struct diff_box *meeting_snake)
{
int delta = (int)right->atoms.len - (int)left->atoms.len;
int c;
int x;
int prev_x;
int prev_y;
int x_before_slide;
*found_midpoint = false;
for (c = d; c >= -d; c -= 2) {
if (c < -(int)left->atoms.len || c > (int)right->atoms.len) {
/* This diagonal is completely outside of the Myers
* graph, don't calculate it. */
if (c < 0) {
/* We are traversing negatively, and already
* below the entire graph, nothing will come of
* this. */
break;
}
continue;
}
if (d == 0) {
/* This is the initializing step. There is no prev_c
* yet, get the initial x from the bottom right of the
* Myers graph. */
x = left->atoms.len;
prev_x = x;
prev_y = xc_to_y(x, c, delta);
}
/* Favoring "-" lines first means favoring moving rightwards in
* the Myers graph.
* For this, all c should derive from c - 1, only the bottom
* most c derive from c + 1:
*
* 2 1 0
* ---------------------------------------------------
* c=
* 3
*
* from prev_c = c - 1 --> 5,2 2
* \
* 5,3 1
* \
* 4,3 5,4<-- 0
* \ /
* bottom most for d=1 from c + 1 --> 4,4 -1
* /
* bottom most for d=2 --> 3,4 -2
*
* Except when a c + 1 from a previous run already means a
* further advancement in the graph.
* If c == d, there is no c + 1 and c - 1 is the only option.
* If c < d, use c + 1 in case that yields a larger x.
* Also use c + 1 if c - 1 is outside the graph.
*/
else if (c > -d && (c == d
|| (c - 1 >= -(int)right->atoms.len
&& kd_backward[c - 1] <= kd_backward[c + 1]))) {
/* A top one.
* From position prev_c, step upwards in the Myers
* graph: y -= 1.
* Decrementing y is achieved by incrementing c while
* keeping the same x. (since we're deriving y from
* y = x - c + delta).
*/
int prev_c = c - 1;
prev_x = kd_backward[prev_c];
prev_y = xc_to_y(prev_x, prev_c, delta);
x = prev_x;
} else {
/* The bottom most one.
* From position prev_c, step to the left in the Myers
* graph: x -= 1.
*/
int prev_c = c + 1;
prev_x = kd_backward[prev_c];
prev_y = xc_to_y(prev_x, prev_c, delta);
x = prev_x - 1;
}
/* Slide up any snake that we might find here (sections of
* identical lines on both sides). */
#if 0
debug("c=%d x-1=%d Yb-1=%d-1=%d\n", c, x-1, xc_to_y(x, c,
delta),
xc_to_y(x, c, delta)-1);
if (x > 0) {
debug(" l=");
debug_dump_atom(left, right, &left->atoms.head[x-1]);
}
if (xc_to_y(x, c, delta) > 0) {
debug(" r=");
debug_dump_atom(right, left,
&right->atoms.head[xc_to_y(x, c, delta)-1]);
}
#endif
x_before_slide = x;
while (x > 0 && xc_to_y(x, c, delta) > 0) {
bool same;
int r = diff_atom_same(&same,
&left->atoms.head[x-1],
&right->atoms.head[
xc_to_y(x, c, delta)-1]);
if (r)
return r;
if (!same)
break;
x--;
}
kd_backward[c] = x;
#if 0
if (x_before_slide != x) {
debug(" up %d similar lines\n", x_before_slide - x);
}
if (DEBUG) {
int fi;
for (fi = d; fi >= c; fi--) {
debug("kd_backward[%d] = (%d, %d)\n",
fi,
kd_backward[fi],
kd_backward[fi] - fi + delta);
}
}
#endif
if (x < 0 || x > left->atoms.len
|| xc_to_y(x, c, delta) < 0
|| xc_to_y(x, c, delta) > right->atoms.len)
continue;
/* Figured out a new backwards traversal, see if this has gone
* onto or even past a preceding forwards traversal.
*
* If the delta in length is even, then d and backwards_d hit
* the same state indexes -- note how this is different from in
* the forwards traversal, because now both d are the same:
*
* | d= 0 1 2 2 1 0
* ----+---------------- --------------------
* k= | c=
* 4 |
* |
* 3 | 3
* | same
* 2 | 2,0====5,2 2
* | / \
* 1 | 1,0 5,3 1
* | / / \
* 0 | -->0,0 3,3====4,3 5,4<-- 0
* | \ / /
* -1 | 0,1 4,4 -1
* | \
* -2 | 0,2 -2
* |
* -3
* If the delta is odd, they end up off-by-one, i.e. on
* different diagonals.
* So in the backward path, we can only match up diagonals when
* the delta is even.
*/
if ((delta & 1) != 0)
continue;
/* Forwards was done first, now both d are the same. */
int forwards_d = d;
/* As soon as the lengths are not the same, the
* backwards traversal starts on a different diagonal,
* and c = k shifted by the difference in length.
*/
int k = c_to_k(c, delta);
/* When the file sizes are very different, the traversal trees
* start on far distant diagonals.
* They don't necessarily meet straight on. See whether this
* backward value is also on a valid diagonal in kd_forward[],
* and match them if so. */
if (k >= -forwards_d && k <= forwards_d) {
/* Current c is on a diagonal that exists in
* kd_forward[]. If the two x positions have met or
* passed (backward walked onto or past forward), then
* we've found a midpoint / a mid-box.
*
* When forwards and backwards traversals meet, the
* endpoints of the mid-snake are not the two points in
* kd_forward and kd_backward, but rather the section
* that was slid (if any) of the current
* forward/backward traversal only.
*
* For example:
*
* o-o-o
* | |
* o A
* | \
* o o
* \
* M
* |\
* o o-o-o
* | | |
* o o X
* \
* o
* \
* o
* \
* o
*
* The backward traversal reached M from the bottom and
* slid upwards. The forward traversal already reached
* X, which is not a straight line from M anymore, so
* picking a mid-snake from M to X would yield a
* mistake.
*
* The correct mid-snake is between M and A. M is where
* the backward traversal hit the diagonal that the
* forwards traversal has already passed, and A is what
* it reaches when sliding up identical lines.
*/
int forward_x = kd_forward[k];
if (forward_x >= x) {
if (x_before_slide != x) {
/* met after sliding down a mid-snake */
*meeting_snake = (struct diff_box){
.left_start = x,
.left_end = x_before_slide,
.right_start = xc_to_y(x, c, delta),
.right_end = xk_to_y(x_before_slide, k),
};
} else {
/* met after a side step, non-identical
* line. Mark that as box divider
* instead. This makes sure that
* myers_divide never returns the same
* box that came as input, avoiding
* "infinite" looping. */
*meeting_snake = (struct diff_box){
.left_start = x,
.left_end = prev_x,
.right_start = xc_to_y(x, c, delta),
.right_end = prev_y,
};
}
debug("HIT x=%u,%u - y=%u,%u\n",
meeting_snake->left_start,
meeting_snake->right_start,
meeting_snake->left_end,
meeting_snake->right_end);
debug_dump_myers_graph(left, right, NULL,
kd_forward, d,
kd_backward, d);
*found_midpoint = true;
return 0;
}
}
}
return 0;
}
/* Integer square root approximation */
static int
shift_sqrt(int val)
{
int i;
for (i = 1; val > 0; val >>= 2)
i <<= 1;
return i;
}
/* Myers "Divide et Impera": tracing forwards from the start and backwards from
* the end to find a midpoint that divides the problem into smaller chunks.
* Requires only linear amounts of memory. */
int
diff_algo_myers_divide(const struct diff_algo_config *algo_config,
struct diff_state *state)
{
int rc = ENOMEM;
struct diff_data *left = &state->left;
struct diff_data *right = &state->right;
int *kd_buf;
debug("\n** %s\n", __func__);
debug("left:\n");
debug_dump(left);
debug("right:\n");
debug_dump(right);
/* Allocate two columns of a Myers graph, one for the forward and one
* for the backward traversal. */
unsigned int max = left->atoms.len + right->atoms.len;
size_t kd_len = max + 1;
size_t kd_buf_size = kd_len << 1;
if (state->kd_buf_size < kd_buf_size) {
kd_buf = reallocarray(state->kd_buf, kd_buf_size,
sizeof(int));
if (!kd_buf)
return ENOMEM;
state->kd_buf = kd_buf;
state->kd_buf_size = kd_buf_size;
} else
kd_buf = state->kd_buf;
int i;
for (i = 0; i < kd_buf_size; i++)
kd_buf[i] = -1;
int *kd_forward = kd_buf;
int *kd_backward = kd_buf + kd_len;
int max_effort = shift_sqrt(max/2);
/* The 'k' axis in Myers spans positive and negative indexes, so point
* the kd to the middle.
* It is then possible to index from -max/2 .. max/2. */
kd_forward += max/2;
kd_backward += max/2;
int d;
struct diff_box mid_snake = {};
bool found_midpoint = false;
for (d = 0; d <= (max/2); d++) {
int r;
r = diff_divide_myers_forward(&found_midpoint, left, right,
kd_forward, kd_backward, d,
&mid_snake);
if (r)
return r;
if (found_midpoint)
break;
r = diff_divide_myers_backward(&found_midpoint, left, right,
kd_forward, kd_backward, d,
&mid_snake);
if (r)
return r;
if (found_midpoint)
break;
/* Limit the effort spent looking for a mid snake. If files have
* very few lines in common, the effort spent to find nice mid
* snakes is just not worth it, the diff result will still be
* essentially minus everything on the left, plus everything on
* the right, with a few useless matches here and there. */
if (d > max_effort) {
/* pick the furthest reaching point from
* kd_forward and kd_backward, and use that as a
* midpoint, to not step into another diff algo
* recursion with unchanged box. */
int delta = (int)right->atoms.len - (int)left->atoms.len;
int x = 0;
int y;
int i;
int best_forward_i = 0;
int best_forward_distance = 0;
int best_backward_i = 0;
int best_backward_distance = 0;
int distance;
int best_forward_x;
int best_forward_y;
int best_backward_x;
int best_backward_y;
debug("~~~ HIT d = %d > max_effort = %d\n", d, max_effort);
debug_dump_myers_graph(left, right, NULL,
kd_forward, d,
kd_backward, d);
for (i = d; i >= -d; i -= 2) {
if (i >= -(int)right->atoms.len && i <= (int)left->atoms.len) {
x = kd_forward[i];
y = xk_to_y(x, i);
distance = x + y;
if (distance > best_forward_distance) {
best_forward_distance = distance;
best_forward_i = i;
}
}
if (i >= -(int)left->atoms.len && i <= (int)right->atoms.len) {
x = kd_backward[i];
y = xc_to_y(x, i, delta);
distance = (right->atoms.len - x)
+ (left->atoms.len - y);
if (distance >= best_backward_distance) {
best_backward_distance = distance;
best_backward_i = i;
}
}
}
/* The myers-divide didn't meet in the middle. We just
* figured out the places where the forward path
* advanced the most, and the backward path advanced the
* most. Just divide at whichever one of those two is better.
*
* o-o
* |
* o
* \
* o
* \
* F <-- cut here
*
*
*
* or here --> B
* \
* o
* \
* o
* |
* o-o
*/
best_forward_x = kd_forward[best_forward_i];
best_forward_y = xk_to_y(best_forward_x, best_forward_i);
best_backward_x = kd_backward[best_backward_i];
best_backward_y = xc_to_y(best_backward_x, best_backward_i, delta);
if (best_forward_distance >= best_backward_distance) {
x = best_forward_x;
y = best_forward_y;
} else {
x = best_backward_x;
y = best_backward_y;
}
debug("max_effort cut at x=%d y=%d\n", x, y);
if (x < 0 || y < 0
|| x > left->atoms.len || y > right->atoms.len)
break;
found_midpoint = true;
mid_snake = (struct diff_box){
.left_start = x,
.left_end = x,
.right_start = y,
.right_end = y,
};
break;
}
}
if (!found_midpoint) {
/* Divide and conquer failed to find a meeting point. Use the
* fallback_algo defined in the algo_config (leave this to the
* caller). This is just paranoia/sanity, we normally should
* always find a midpoint.
*/
debug(" no midpoint \n");
rc = DIFF_RC_USE_DIFF_ALGO_FALLBACK;
goto return_rc;
} else {
debug(" mid snake L: %u to %u of %u R: %u to %u of %u\n",
mid_snake.left_start, mid_snake.left_end, left->atoms.len,
mid_snake.right_start, mid_snake.right_end,
right->atoms.len);
/* Section before the mid-snake. */
debug("Section before the mid-snake\n");
struct diff_atom *left_atom = &left->atoms.head[0];
unsigned int left_section_len = mid_snake.left_start;
struct diff_atom *right_atom = &right->atoms.head[0];
unsigned int right_section_len = mid_snake.right_start;
if (left_section_len && right_section_len) {
/* Record an unsolved chunk, the caller will apply
* inner_algo() on this chunk. */
if (!diff_state_add_chunk(state, false,
left_atom, left_section_len,
right_atom,
right_section_len))
goto return_rc;
} else if (left_section_len && !right_section_len) {
/* Only left atoms and none on the right, they form a
* "minus" chunk, then. */
if (!diff_state_add_chunk(state, true,
left_atom, left_section_len,
right_atom, 0))
goto return_rc;
} else if (!left_section_len && right_section_len) {
/* No left atoms, only atoms on the right, they form a
* "plus" chunk, then. */
if (!diff_state_add_chunk(state, true,
left_atom, 0,
right_atom,
right_section_len))
goto return_rc;
}
/* else: left_section_len == 0 and right_section_len == 0, i.e.
* nothing before the mid-snake. */
if (mid_snake.left_end > mid_snake.left_start
|| mid_snake.right_end > mid_snake.right_start) {
/* The midpoint is a section of identical data on both
* sides, or a certain differing line: that section
* immediately becomes a solved chunk. */
debug("the mid-snake\n");
if (!diff_state_add_chunk(state, true,
&left->atoms.head[mid_snake.left_start],
mid_snake.left_end - mid_snake.left_start,
&right->atoms.head[mid_snake.right_start],
mid_snake.right_end - mid_snake.right_start))
goto return_rc;
}
/* Section after the mid-snake. */
debug("Section after the mid-snake\n");
debug(" left_end %u right_end %u\n",
mid_snake.left_end, mid_snake.right_end);
debug(" left_count %u right_count %u\n",
left->atoms.len, right->atoms.len);
left_atom = &left->atoms.head[mid_snake.left_end];
left_section_len = left->atoms.len - mid_snake.left_end;
right_atom = &right->atoms.head[mid_snake.right_end];
right_section_len = right->atoms.len - mid_snake.right_end;
if (left_section_len && right_section_len) {
/* Record an unsolved chunk, the caller will apply
* inner_algo() on this chunk. */
if (!diff_state_add_chunk(state, false,
left_atom, left_section_len,
right_atom,
right_section_len))
goto return_rc;
} else if (left_section_len && !right_section_len) {
/* Only left atoms and none on the right, they form a
* "minus" chunk, then. */
if (!diff_state_add_chunk(state, true,
left_atom, left_section_len,
right_atom, 0))
goto return_rc;
} else if (!left_section_len && right_section_len) {
/* No left atoms, only atoms on the right, they form a
* "plus" chunk, then. */
if (!diff_state_add_chunk(state, true,
left_atom, 0,
right_atom,
right_section_len))
goto return_rc;
}
/* else: left_section_len == 0 and right_section_len == 0, i.e.
* nothing after the mid-snake. */
}
rc = DIFF_RC_OK;
return_rc:
debug("** END %s\n", __func__);
return rc;
}
/* Myers Diff tracing from the start all the way through to the end, requiring
* quadratic amounts of memory. This can fail if the required space surpasses
* algo_config->permitted_state_size. */
int
diff_algo_myers(const struct diff_algo_config *algo_config,
struct diff_state *state)
{
/* do a diff_divide_myers_forward() without a _backward(), so that it
* walks forward across the entire files to reach the end. Keep each
* run's state, and do a final backtrace. */
int rc = ENOMEM;
struct diff_data *left = &state->left;
struct diff_data *right = &state->right;
int *kd_buf;
debug("\n** %s\n", __func__);
debug("left:\n");
debug_dump(left);
debug("right:\n");
debug_dump(right);
debug_dump_myers_graph(left, right, NULL, NULL, 0, NULL, 0);
/* Allocate two columns of a Myers graph, one for the forward and one
* for the backward traversal. */
unsigned int max = left->atoms.len + right->atoms.len;
size_t kd_len = max + 1 + max;
size_t kd_buf_size = kd_len * kd_len;
size_t kd_state_size = kd_buf_size * sizeof(int);
debug("state size: %zu\n", kd_state_size);
if (kd_buf_size < kd_len /* overflow? */
|| kd_state_size > algo_config->permitted_state_size) {
debug("state size %zu > permitted_state_size %zu, use fallback_algo\n",
kd_state_size, algo_config->permitted_state_size);
return DIFF_RC_USE_DIFF_ALGO_FALLBACK;
}
if (state->kd_buf_size < kd_buf_size) {
kd_buf = reallocarray(state->kd_buf, kd_buf_size,
sizeof(int));
if (!kd_buf)
return ENOMEM;
state->kd_buf = kd_buf;
state->kd_buf_size = kd_buf_size;
} else
kd_buf = state->kd_buf;
int i;
for (i = 0; i < kd_buf_size; i++)
kd_buf[i] = -1;
/* The 'k' axis in Myers spans positive and negative indexes, so point
* the kd to the middle.
* It is then possible to index from -max .. max. */
int *kd_origin = kd_buf + max;
int *kd_column = kd_origin;
int d;
int backtrack_d = -1;
int backtrack_k = 0;
int k;
int x, y;
for (d = 0; d <= max; d++, kd_column += kd_len) {
debug("-- %s d=%d\n", __func__, d);
for (k = d; k >= -d; k -= 2) {
if (k < -(int)right->atoms.len
|| k > (int)left->atoms.len) {
/* This diagonal is completely outside of the
* Myers graph, don't calculate it. */
if (k < -(int)right->atoms.len)
debug(" %d k <"
" -(int)right->atoms.len %d\n",
k, -(int)right->atoms.len);
else
debug(" %d k > left->atoms.len %d\n", k,
left->atoms.len);
if (k < 0) {
/* We are traversing negatively, and
* already below the entire graph,
* nothing will come of this. */
debug(" break\n");
break;
}
debug(" continue\n");
continue;
}
if (d == 0) {
/* This is the initializing step. There is no
* prev_k yet, get the initial x from the top
* left of the Myers graph. */
x = 0;
} else {
int *kd_prev_column = kd_column - kd_len;
/* Favoring "-" lines first means favoring
* moving rightwards in the Myers graph.
* For this, all k should derive from k - 1,
* only the bottom most k derive from k + 1:
*
* | d= 0 1 2
* ----+----------------
* k= |
* 2 | 2,0 <-- from
* | / prev_k = 2 - 1 = 1
* 1 | 1,0
* | /
* 0 | -->0,0 3,3
* | \\ /
* -1 | 0,1 <-- bottom most for d=1
* | \\ from prev_k = -1+1 = 0
* -2 | 0,2 <-- bottom most for
* d=2 from
* prev_k = -2+1 = -1
*
* Except when a k + 1 from a previous run
* already means a further advancement in the
* graph.
* If k == d, there is no k + 1 and k - 1 is the
* only option.
* If k < d, use k + 1 in case that yields a
* larger x. Also use k + 1 if k - 1 is outside
* the graph.
*/
if (k > -d
&& (k == d
|| (k - 1 >= -(int)right->atoms.len
&& kd_prev_column[k - 1]
>= kd_prev_column[k + 1]))) {
/* Advance from k - 1.
* From position prev_k, step to the
* right in the Myers graph: x += 1.
*/
int prev_k = k - 1;
int prev_x = kd_prev_column[prev_k];
x = prev_x + 1;
} else {
/* The bottom most one.
* From position prev_k, step to the
* bottom in the Myers graph: y += 1.
* Incrementing y is achieved by
* decrementing k while keeping the same
* x. (since we're deriving y from y =
* x - k).
*/
int prev_k = k + 1;
int prev_x = kd_prev_column[prev_k];
x = prev_x;
}
}
/* Slide down any snake that we might find here. */
while (x < left->atoms.len
&& xk_to_y(x, k) < right->atoms.len) {
bool same;
int r = diff_atom_same(&same,
&left->atoms.head[x],
&right->atoms.head[
xk_to_y(x, k)]);
if (r)
return r;
if (!same)
break;
x++;
}
kd_column[k] = x;
if (x == left->atoms.len
&& xk_to_y(x, k) == right->atoms.len) {
/* Found a path */
backtrack_d = d;
backtrack_k = k;
debug("Reached the end at d = %d, k = %d\n",
backtrack_d, backtrack_k);
break;
}
}
if (backtrack_d >= 0)
break;
}
debug_dump_myers_graph(left, right, kd_origin, NULL, 0, NULL, 0);
/* backtrack. A matrix spanning from start to end of the file is ready:
*
* | d= 0 1 2 3 4
* ----+---------------------------------
* k= |
* 3 |
* |
* 2 | 2,0
* | /
* 1 | 1,0 4,3
* | / / \
* 0 | -->0,0 3,3 4,4 --> backtrack_d = 4, backtrack_k = 0
* | \ / \
* -1 | 0,1 3,4
* | \
* -2 | 0,2
* |
*
* From (4,4) backwards, find the previous position that is the largest, and remember it.
*
*/
for (d = backtrack_d, k = backtrack_k; d >= 0; d--) {
x = kd_column[k];
y = xk_to_y(x, k);
/* When the best position is identified, remember it for that
* kd_column.
* That kd_column is no longer needed otherwise, so just
* re-purpose kd_column[0] = x and kd_column[1] = y,
* so that there is no need to allocate more memory.
*/
kd_column[0] = x;
kd_column[1] = y;
debug("Backtrack d=%d: xy=(%d, %d)\n",
d, kd_column[0], kd_column[1]);
/* Don't access memory before kd_buf */
if (d == 0)
break;
int *kd_prev_column = kd_column - kd_len;
/* When y == 0, backtracking downwards (k-1) is the only way.
* When x == 0, backtracking upwards (k+1) is the only way.
*
* | d= 0 1 2 3 4
* ----+---------------------------------
* k= |
* 3 |
* | ..y == 0
* 2 | 2,0
* | /
* 1 | 1,0 4,3
* | / / \
* 0 | -->0,0 3,3 4,4 --> backtrack_d = 4,
* | \ / \ backtrack_k = 0
* -1 | 0,1 3,4
* | \
* -2 | 0,2__
* | x == 0
*/
if (y == 0
|| (x > 0
&& kd_prev_column[k - 1] >= kd_prev_column[k + 1])) {
k = k - 1;
debug("prev k=k-1=%d x=%d y=%d\n",
k, kd_prev_column[k],
xk_to_y(kd_prev_column[k], k));
} else {
k = k + 1;
debug("prev k=k+1=%d x=%d y=%d\n",
k, kd_prev_column[k],
xk_to_y(kd_prev_column[k], k));
}
kd_column = kd_prev_column;
}
/* Forwards again, this time recording the diff chunks.
* Definitely start from 0,0. kd_column[0] may actually point to the
* bottom of a snake starting at 0,0 */
x = 0;
y = 0;
kd_column = kd_origin;
for (d = 0; d <= backtrack_d; d++, kd_column += kd_len) {
int next_x = kd_column[0];
int next_y = kd_column[1];
debug("Forward track from xy(%d,%d) to xy(%d,%d)\n",
x, y, next_x, next_y);
struct diff_atom *left_atom = &left->atoms.head[x];
int left_section_len = next_x - x;
struct diff_atom *right_atom = &right->atoms.head[y];
int right_section_len = next_y - y;
rc = ENOMEM;
if (left_section_len && right_section_len) {
/* This must be a snake slide.
* Snake slides have a straight line leading into them
* (except when starting at (0,0)). Find out whether the
* lead-in is horizontal or vertical:
*
* left
* ---------->
* |
* r| o-o o
* i| \ |
* g| o o
* h| \ \
* t| o o
* v
*
* If left_section_len > right_section_len, the lead-in
* is horizontal, meaning first remove one atom from the
* left before sliding down the snake.
* If right_section_len > left_section_len, the lead-in
* is vetical, so add one atom from the right before
* sliding down the snake. */
if (left_section_len == right_section_len + 1) {
if (!diff_state_add_chunk(state, true,
left_atom, 1,
right_atom, 0))
goto return_rc;
left_atom++;
left_section_len--;
} else if (right_section_len == left_section_len + 1) {
if (!diff_state_add_chunk(state, true,
left_atom, 0,
right_atom, 1))
goto return_rc;
right_atom++;
right_section_len--;
} else if (left_section_len != right_section_len) {
/* The numbers are making no sense. Should never
* happen. */
rc = DIFF_RC_USE_DIFF_ALGO_FALLBACK;
goto return_rc;
}
if (!diff_state_add_chunk(state, true,
left_atom, left_section_len,
right_atom,
right_section_len))
goto return_rc;
} else if (left_section_len && !right_section_len) {
/* Only left atoms and none on the right, they form a
* "minus" chunk, then. */
if (!diff_state_add_chunk(state, true,
left_atom, left_section_len,
right_atom, 0))
goto return_rc;
} else if (!left_section_len && right_section_len) {
/* No left atoms, only atoms on the right, they form a
* "plus" chunk, then. */
if (!diff_state_add_chunk(state, true,
left_atom, 0,
right_atom,
right_section_len))
goto return_rc;
}
x = next_x;
y = next_y;
}
rc = DIFF_RC_OK;
return_rc:
debug("** END %s rc=%d\n", __func__, rc);
return rc;
}