Hash :
7f52bc5a
Author :
Date :
2018-01-20T18:19:26
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
/*
* LibXDiff by Davide Libenzi ( File Differential Library )
* Copyright (C) 2003 Davide Libenzi
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see
* <http://www.gnu.org/licenses/>.
*
* Davide Libenzi <davidel@xmailserver.org>
*
*/
#include "xinclude.h"
#include "integer.h"
#define XDL_MAX_COST_MIN 256
#define XDL_HEUR_MIN_COST 256
#define XDL_LINE_MAX (long)((1UL << (CHAR_BIT * sizeof(long) - 1)) - 1)
#define XDL_SNAKE_CNT 20
#define XDL_K_HEUR 4
/** Declare a function as always inlined. */
#if defined(_MSC_VER)
# define XDL_INLINE(type) static __inline type
#else
# define XDL_INLINE(type) static inline type
#endif
typedef struct s_xdpsplit {
long i1, i2;
int min_lo, min_hi;
} xdpsplit_t;
static long xdl_split(unsigned long const *ha1, long off1, long lim1,
unsigned long const *ha2, long off2, long lim2,
long *kvdf, long *kvdb, int need_min, xdpsplit_t *spl,
xdalgoenv_t *xenv);
static xdchange_t *xdl_add_change(xdchange_t *xscr, long i1, long i2, long chg1, long chg2);
/*
* See "An O(ND) Difference Algorithm and its Variations", by Eugene Myers.
* Basically considers a "box" (off1, off2, lim1, lim2) and scan from both
* the forward diagonal starting from (off1, off2) and the backward diagonal
* starting from (lim1, lim2). If the K values on the same diagonal crosses
* returns the furthest point of reach. We might end up having to expensive
* cases using this algorithm is full, so a little bit of heuristic is needed
* to cut the search and to return a suboptimal point.
*/
static long xdl_split(unsigned long const *ha1, long off1, long lim1,
unsigned long const *ha2, long off2, long lim2,
long *kvdf, long *kvdb, int need_min, xdpsplit_t *spl,
xdalgoenv_t *xenv) {
long dmin = off1 - lim2, dmax = lim1 - off2;
long fmid = off1 - off2, bmid = lim1 - lim2;
long odd = (fmid - bmid) & 1;
long fmin = fmid, fmax = fmid;
long bmin = bmid, bmax = bmid;
long ec, d, i1, i2, prev1, best, dd, v, k;
/*
* Set initial diagonal values for both forward and backward path.
*/
kvdf[fmid] = off1;
kvdb[bmid] = lim1;
for (ec = 1;; ec++) {
int got_snake = 0;
/*
* We need to extent the diagonal "domain" by one. If the next
* values exits the box boundaries we need to change it in the
* opposite direction because (max - min) must be a power of two.
* Also we initialize the external K value to -1 so that we can
* avoid extra conditions check inside the core loop.
*/
if (fmin > dmin)
kvdf[--fmin - 1] = -1;
else
++fmin;
if (fmax < dmax)
kvdf[++fmax + 1] = -1;
else
--fmax;
for (d = fmax; d >= fmin; d -= 2) {
if (kvdf[d - 1] >= kvdf[d + 1])
i1 = kvdf[d - 1] + 1;
else
i1 = kvdf[d + 1];
prev1 = i1;
i2 = i1 - d;
for (; i1 < lim1 && i2 < lim2 && ha1[i1] == ha2[i2]; i1++, i2++);
if (i1 - prev1 > xenv->snake_cnt)
got_snake = 1;
kvdf[d] = i1;
if (odd && bmin <= d && d <= bmax && kvdb[d] <= i1) {
spl->i1 = i1;
spl->i2 = i2;
spl->min_lo = spl->min_hi = 1;
return ec;
}
}
/*
* We need to extent the diagonal "domain" by one. If the next
* values exits the box boundaries we need to change it in the
* opposite direction because (max - min) must be a power of two.
* Also we initialize the external K value to -1 so that we can
* avoid extra conditions check inside the core loop.
*/
if (bmin > dmin)
kvdb[--bmin - 1] = XDL_LINE_MAX;
else
++bmin;
if (bmax < dmax)
kvdb[++bmax + 1] = XDL_LINE_MAX;
else
--bmax;
for (d = bmax; d >= bmin; d -= 2) {
if (kvdb[d - 1] < kvdb[d + 1])
i1 = kvdb[d - 1];
else
i1 = kvdb[d + 1] - 1;
prev1 = i1;
i2 = i1 - d;
for (; i1 > off1 && i2 > off2 && ha1[i1 - 1] == ha2[i2 - 1]; i1--, i2--);
if (prev1 - i1 > xenv->snake_cnt)
got_snake = 1;
kvdb[d] = i1;
if (!odd && fmin <= d && d <= fmax && i1 <= kvdf[d]) {
spl->i1 = i1;
spl->i2 = i2;
spl->min_lo = spl->min_hi = 1;
return ec;
}
}
if (need_min)
continue;
/*
* If the edit cost is above the heuristic trigger and if
* we got a good snake, we sample current diagonals to see
* if some of the, have reached an "interesting" path. Our
* measure is a function of the distance from the diagonal
* corner (i1 + i2) penalized with the distance from the
* mid diagonal itself. If this value is above the current
* edit cost times a magic factor (XDL_K_HEUR) we consider
* it interesting.
*/
if (got_snake && ec > xenv->heur_min) {
for (best = 0, d = fmax; d >= fmin; d -= 2) {
dd = d > fmid ? d - fmid: fmid - d;
i1 = kvdf[d];
i2 = i1 - d;
v = (i1 - off1) + (i2 - off2) - dd;
if (v > XDL_K_HEUR * ec && v > best &&
off1 + xenv->snake_cnt <= i1 && i1 < lim1 &&
off2 + xenv->snake_cnt <= i2 && i2 < lim2) {
for (k = 1; ha1[i1 - k] == ha2[i2 - k]; k++)
if (k == xenv->snake_cnt) {
best = v;
spl->i1 = i1;
spl->i2 = i2;
break;
}
}
}
if (best > 0) {
spl->min_lo = 1;
spl->min_hi = 0;
return ec;
}
for (best = 0, d = bmax; d >= bmin; d -= 2) {
dd = d > bmid ? d - bmid: bmid - d;
i1 = kvdb[d];
i2 = i1 - d;
v = (lim1 - i1) + (lim2 - i2) - dd;
if (v > XDL_K_HEUR * ec && v > best &&
off1 < i1 && i1 <= lim1 - xenv->snake_cnt &&
off2 < i2 && i2 <= lim2 - xenv->snake_cnt) {
for (k = 0; ha1[i1 + k] == ha2[i2 + k]; k++)
if (k == xenv->snake_cnt - 1) {
best = v;
spl->i1 = i1;
spl->i2 = i2;
break;
}
}
}
if (best > 0) {
spl->min_lo = 0;
spl->min_hi = 1;
return ec;
}
}
/*
* Enough is enough. We spent too much time here and now we collect
* the furthest reaching path using the (i1 + i2) measure.
*/
if (ec >= xenv->mxcost) {
long fbest, fbest1, bbest, bbest1;
fbest = fbest1 = -1;
for (d = fmax; d >= fmin; d -= 2) {
i1 = XDL_MIN(kvdf[d], lim1);
i2 = i1 - d;
if (lim2 < i2)
i1 = lim2 + d, i2 = lim2;
if (fbest < i1 + i2) {
fbest = i1 + i2;
fbest1 = i1;
}
}
bbest = bbest1 = XDL_LINE_MAX;
for (d = bmax; d >= bmin; d -= 2) {
i1 = XDL_MAX(off1, kvdb[d]);
i2 = i1 - d;
if (i2 < off2)
i1 = off2 + d, i2 = off2;
if (i1 + i2 < bbest) {
bbest = i1 + i2;
bbest1 = i1;
}
}
if ((lim1 + lim2) - bbest < fbest - (off1 + off2)) {
spl->i1 = fbest1;
spl->i2 = fbest - fbest1;
spl->min_lo = 1;
spl->min_hi = 0;
} else {
spl->i1 = bbest1;
spl->i2 = bbest - bbest1;
spl->min_lo = 0;
spl->min_hi = 1;
}
return ec;
}
}
}
/*
* Rule: "Divide et Impera". Recursively split the box in sub-boxes by calling
* the box splitting function. Note that the real job (marking changed lines)
* is done in the two boundary reaching checks.
*/
int xdl_recs_cmp(diffdata_t *dd1, long off1, long lim1,
diffdata_t *dd2, long off2, long lim2,
long *kvdf, long *kvdb, int need_min, xdalgoenv_t *xenv) {
unsigned long const *ha1 = dd1->ha, *ha2 = dd2->ha;
/*
* Shrink the box by walking through each diagonal snake (SW and NE).
*/
for (; off1 < lim1 && off2 < lim2 && ha1[off1] == ha2[off2]; off1++, off2++);
for (; off1 < lim1 && off2 < lim2 && ha1[lim1 - 1] == ha2[lim2 - 1]; lim1--, lim2--);
/*
* If one dimension is empty, then all records on the other one must
* be obviously changed.
*/
if (off1 == lim1) {
char *rchg2 = dd2->rchg;
long *rindex2 = dd2->rindex;
for (; off2 < lim2; off2++)
rchg2[rindex2[off2]] = 1;
} else if (off2 == lim2) {
char *rchg1 = dd1->rchg;
long *rindex1 = dd1->rindex;
for (; off1 < lim1; off1++)
rchg1[rindex1[off1]] = 1;
} else {
xdpsplit_t spl;
spl.i1 = spl.i2 = 0;
/*
* Divide ...
*/
if (xdl_split(ha1, off1, lim1, ha2, off2, lim2, kvdf, kvdb,
need_min, &spl, xenv) < 0) {
return -1;
}
/*
* ... et Impera.
*/
if (xdl_recs_cmp(dd1, off1, spl.i1, dd2, off2, spl.i2,
kvdf, kvdb, spl.min_lo, xenv) < 0 ||
xdl_recs_cmp(dd1, spl.i1, lim1, dd2, spl.i2, lim2,
kvdf, kvdb, spl.min_hi, xenv) < 0) {
return -1;
}
}
return 0;
}
int xdl_do_diff(mmfile_t *mf1, mmfile_t *mf2, xpparam_t const *xpp,
xdfenv_t *xe) {
size_t ndiags, allocsize;
long *kvd, *kvdf, *kvdb;
xdalgoenv_t xenv;
diffdata_t dd1, dd2;
if (XDF_DIFF_ALG(xpp->flags) == XDF_PATIENCE_DIFF)
return xdl_do_patience_diff(mf1, mf2, xpp, xe);
if (XDF_DIFF_ALG(xpp->flags) == XDF_HISTOGRAM_DIFF)
return xdl_do_histogram_diff(mf1, mf2, xpp, xe);
if (xdl_prepare_env(mf1, mf2, xpp, xe) < 0) {
return -1;
}
/*
* Allocate and setup K vectors to be used by the differential algorithm.
* One is to store the forward path and one to store the backward path.
*/
GITERR_CHECK_ALLOC_ADD3(&ndiags, xe->xdf1.nreff, xe->xdf2.nreff, 3);
GITERR_CHECK_ALLOC_MULTIPLY(&allocsize, ndiags, 2);
GITERR_CHECK_ALLOC_ADD(&allocsize, allocsize, 2);
GITERR_CHECK_ALLOC_MULTIPLY(&allocsize, allocsize, sizeof(long));
if (!(kvd = (long *) xdl_malloc(allocsize))) {
xdl_free_env(xe);
return -1;
}
kvdf = kvd;
kvdb = kvdf + ndiags;
kvdf += xe->xdf2.nreff + 1;
kvdb += xe->xdf2.nreff + 1;
xenv.mxcost = xdl_bogosqrt(ndiags);
if (xenv.mxcost < XDL_MAX_COST_MIN)
xenv.mxcost = XDL_MAX_COST_MIN;
xenv.snake_cnt = XDL_SNAKE_CNT;
xenv.heur_min = XDL_HEUR_MIN_COST;
dd1.nrec = xe->xdf1.nreff;
dd1.ha = xe->xdf1.ha;
dd1.rchg = xe->xdf1.rchg;
dd1.rindex = xe->xdf1.rindex;
dd2.nrec = xe->xdf2.nreff;
dd2.ha = xe->xdf2.ha;
dd2.rchg = xe->xdf2.rchg;
dd2.rindex = xe->xdf2.rindex;
if (xdl_recs_cmp(&dd1, 0, dd1.nrec, &dd2, 0, dd2.nrec,
kvdf, kvdb, (xpp->flags & XDF_NEED_MINIMAL) != 0, &xenv) < 0) {
xdl_free(kvd);
xdl_free_env(xe);
return -1;
}
xdl_free(kvd);
return 0;
}
static xdchange_t *xdl_add_change(xdchange_t *xscr, long i1, long i2, long chg1, long chg2) {
xdchange_t *xch;
if (!(xch = (xdchange_t *) xdl_malloc(sizeof(xdchange_t))))
return NULL;
xch->next = xscr;
xch->i1 = i1;
xch->i2 = i2;
xch->chg1 = chg1;
xch->chg2 = chg2;
xch->ignore = 0;
return xch;
}
static int recs_match(xrecord_t *rec1, xrecord_t *rec2, long flags)
{
return (rec1->ha == rec2->ha &&
xdl_recmatch(rec1->ptr, rec1->size,
rec2->ptr, rec2->size,
flags));
}
/*
* If a line is indented more than this, get_indent() just returns this value.
* This avoids having to do absurd amounts of work for data that are not
* human-readable text, and also ensures that the output of get_indent fits within
* an int.
*/
#define MAX_INDENT 200
/*
* Return the amount of indentation of the specified line, treating TAB as 8
* columns. Return -1 if line is empty or contains only whitespace. Clamp the
* output value at MAX_INDENT.
*/
static int get_indent(xrecord_t *rec)
{
long i;
int ret = 0;
for (i = 0; i < rec->size; i++) {
char c = rec->ptr[i];
if (!XDL_ISSPACE(c))
return ret;
else if (c == ' ')
ret += 1;
else if (c == '\t')
ret += 8 - ret % 8;
/* ignore other whitespace characters */
if (ret >= MAX_INDENT)
return MAX_INDENT;
}
/* The line contains only whitespace. */
return -1;
}
/*
* If more than this number of consecutive blank rows are found, just return this
* value. This avoids requiring O(N^2) work for pathological cases, and also
* ensures that the output of score_split fits in an int.
*/
#define MAX_BLANKS 20
/* Characteristics measured about a hypothetical split position. */
struct split_measurement {
/*
* Is the split at the end of the file (aside from any blank lines)?
*/
int end_of_file;
/*
* How much is the line immediately following the split indented (or -1 if
* the line is blank):
*/
int indent;
/*
* How many consecutive lines above the split are blank?
*/
int pre_blank;
/*
* How much is the nearest non-blank line above the split indented (or -1
* if there is no such line)?
*/
int pre_indent;
/*
* How many lines after the line following the split are blank?
*/
int post_blank;
/*
* How much is the nearest non-blank line after the line following the
* split indented (or -1 if there is no such line)?
*/
int post_indent;
};
struct split_score {
/* The effective indent of this split (smaller is preferred). */
int effective_indent;
/* Penalty for this split (smaller is preferred). */
int penalty;
};
/*
* Fill m with information about a hypothetical split of xdf above line split.
*/
static void measure_split(const xdfile_t *xdf, long split,
struct split_measurement *m)
{
long i;
if (split >= xdf->nrec) {
m->end_of_file = 1;
m->indent = -1;
} else {
m->end_of_file = 0;
m->indent = get_indent(xdf->recs[split]);
}
m->pre_blank = 0;
m->pre_indent = -1;
for (i = split - 1; i >= 0; i--) {
m->pre_indent = get_indent(xdf->recs[i]);
if (m->pre_indent != -1)
break;
m->pre_blank += 1;
if (m->pre_blank == MAX_BLANKS) {
m->pre_indent = 0;
break;
}
}
m->post_blank = 0;
m->post_indent = -1;
for (i = split + 1; i < xdf->nrec; i++) {
m->post_indent = get_indent(xdf->recs[i]);
if (m->post_indent != -1)
break;
m->post_blank += 1;
if (m->post_blank == MAX_BLANKS) {
m->post_indent = 0;
break;
}
}
}
/*
* The empirically-determined weight factors used by score_split() below.
* Larger values means that the position is a less favorable place to split.
*
* Note that scores are only ever compared against each other, so multiplying
* all of these weight/penalty values by the same factor wouldn't change the
* heuristic's behavior. Still, we need to set that arbitrary scale *somehow*.
* In practice, these numbers are chosen to be large enough that they can be
* adjusted relative to each other with sufficient precision despite using
* integer math.
*/
/* Penalty if there are no non-blank lines before the split */
#define START_OF_FILE_PENALTY 1
/* Penalty if there are no non-blank lines after the split */
#define END_OF_FILE_PENALTY 21
/* Multiplier for the number of blank lines around the split */
#define TOTAL_BLANK_WEIGHT (-30)
/* Multiplier for the number of blank lines after the split */
#define POST_BLANK_WEIGHT 6
/*
* Penalties applied if the line is indented more than its predecessor
*/
#define RELATIVE_INDENT_PENALTY (-4)
#define RELATIVE_INDENT_WITH_BLANK_PENALTY 10
/*
* Penalties applied if the line is indented less than both its predecessor and
* its successor
*/
#define RELATIVE_OUTDENT_PENALTY 24
#define RELATIVE_OUTDENT_WITH_BLANK_PENALTY 17
/*
* Penalties applied if the line is indented less than its predecessor but not
* less than its successor
*/
#define RELATIVE_DEDENT_PENALTY 23
#define RELATIVE_DEDENT_WITH_BLANK_PENALTY 17
/*
* We only consider whether the sum of the effective indents for splits are
* less than (-1), equal to (0), or greater than (+1) each other. The resulting
* value is multiplied by the following weight and combined with the penalty to
* determine the better of two scores.
*/
#define INDENT_WEIGHT 60
/*
* Compute a badness score for the hypothetical split whose measurements are
* stored in m. The weight factors were determined empirically using the tools and
* corpus described in
*
* https://github.com/mhagger/diff-slider-tools
*
* Also see that project if you want to improve the weights based on, for example,
* a larger or more diverse corpus.
*/
static void score_add_split(const struct split_measurement *m, struct split_score *s)
{
/*
* A place to accumulate penalty factors (positive makes this index more
* favored):
*/
int post_blank, total_blank, indent, any_blanks;
if (m->pre_indent == -1 && m->pre_blank == 0)
s->penalty += START_OF_FILE_PENALTY;
if (m->end_of_file)
s->penalty += END_OF_FILE_PENALTY;
/*
* Set post_blank to the number of blank lines following the split,
* including the line immediately after the split:
*/
post_blank = (m->indent == -1) ? 1 + m->post_blank : 0;
total_blank = m->pre_blank + post_blank;
/* Penalties based on nearby blank lines: */
s->penalty += TOTAL_BLANK_WEIGHT * total_blank;
s->penalty += POST_BLANK_WEIGHT * post_blank;
if (m->indent != -1)
indent = m->indent;
else
indent = m->post_indent;
any_blanks = (total_blank != 0);
/* Note that the effective indent is -1 at the end of the file: */
s->effective_indent += indent;
if (indent == -1) {
/* No additional adjustments needed. */
} else if (m->pre_indent == -1) {
/* No additional adjustments needed. */
} else if (indent > m->pre_indent) {
/*
* The line is indented more than its predecessor.
*/
s->penalty += any_blanks ?
RELATIVE_INDENT_WITH_BLANK_PENALTY :
RELATIVE_INDENT_PENALTY;
} else if (indent == m->pre_indent) {
/*
* The line has the same indentation level as its predecessor.
* No additional adjustments needed.
*/
} else {
/*
* The line is indented less than its predecessor. It could be
* the block terminator of the previous block, but it could
* also be the start of a new block (e.g., an "else" block, or
* maybe the previous block didn't have a block terminator).
* Try to distinguish those cases based on what comes next:
*/
if (m->post_indent != -1 && m->post_indent > indent) {
/*
* The following line is indented more. So it is likely
* that this line is the start of a block.
*/
s->penalty += any_blanks ?
RELATIVE_OUTDENT_WITH_BLANK_PENALTY :
RELATIVE_OUTDENT_PENALTY;
} else {
/*
* That was probably the end of a block.
*/
s->penalty += any_blanks ?
RELATIVE_DEDENT_WITH_BLANK_PENALTY :
RELATIVE_DEDENT_PENALTY;
}
}
}
static int score_cmp(struct split_score *s1, struct split_score *s2)
{
/* -1 if s1.effective_indent < s2->effective_indent, etc. */
int cmp_indents = ((s1->effective_indent > s2->effective_indent) -
(s1->effective_indent < s2->effective_indent));
return INDENT_WEIGHT * cmp_indents + (s1->penalty - s2->penalty);
}
/*
* Represent a group of changed lines in an xdfile_t (i.e., a contiguous group
* of lines that was inserted or deleted from the corresponding version of the
* file). We consider there to be such a group at the beginning of the file, at
* the end of the file, and between any two unchanged lines, though most such
* groups will usually be empty.
*
* If the first line in a group is equal to the line following the group, then
* the group can be slid down. Similarly, if the last line in a group is equal
* to the line preceding the group, then the group can be slid up. See
* group_slide_down() and group_slide_up().
*
* Note that loops that are testing for changed lines in xdf->rchg do not need
* index bounding since the array is prepared with a zero at position -1 and N.
*/
struct xdlgroup {
/*
* The index of the first changed line in the group, or the index of
* the unchanged line above which the (empty) group is located.
*/
long start;
/*
* The index of the first unchanged line after the group. For an empty
* group, end is equal to start.
*/
long end;
};
/*
* Initialize g to point at the first group in xdf.
*/
static void group_init(xdfile_t *xdf, struct xdlgroup *g)
{
g->start = g->end = 0;
while (xdf->rchg[g->end])
g->end++;
}
/*
* Move g to describe the next (possibly empty) group in xdf and return 0. If g
* is already at the end of the file, do nothing and return -1.
*/
XDL_INLINE(int) group_next(xdfile_t *xdf, struct xdlgroup *g)
{
if (g->end == xdf->nrec)
return -1;
g->start = g->end + 1;
for (g->end = g->start; xdf->rchg[g->end]; g->end++)
;
return 0;
}
/*
* Move g to describe the previous (possibly empty) group in xdf and return 0.
* If g is already at the beginning of the file, do nothing and return -1.
*/
XDL_INLINE(int) group_previous(xdfile_t *xdf, struct xdlgroup *g)
{
if (g->start == 0)
return -1;
g->end = g->start - 1;
for (g->start = g->end; xdf->rchg[g->start - 1]; g->start--)
;
return 0;
}
/*
* If g can be slid toward the end of the file, do so, and if it bumps into a
* following group, expand this group to include it. Return 0 on success or -1
* if g cannot be slid down.
*/
static int group_slide_down(xdfile_t *xdf, struct xdlgroup *g, long flags)
{
if (g->end < xdf->nrec &&
recs_match(xdf->recs[g->start], xdf->recs[g->end], flags)) {
xdf->rchg[g->start++] = 0;
xdf->rchg[g->end++] = 1;
while (xdf->rchg[g->end])
g->end++;
return 0;
} else {
return -1;
}
}
/*
* If g can be slid toward the beginning of the file, do so, and if it bumps
* into a previous group, expand this group to include it. Return 0 on success
* or -1 if g cannot be slid up.
*/
static int group_slide_up(xdfile_t *xdf, struct xdlgroup *g, long flags)
{
if (g->start > 0 &&
recs_match(xdf->recs[g->start - 1], xdf->recs[g->end - 1], flags)) {
xdf->rchg[--g->start] = 1;
xdf->rchg[--g->end] = 0;
while (xdf->rchg[g->start - 1])
g->start--;
return 0;
} else {
return -1;
}
}
static void xdl_bug(const char *msg)
{
fprintf(stderr, "BUG: %s\n", msg);
exit(1);
}
/*
* Move back and forward change groups for a consistent and pretty diff output.
* This also helps in finding joinable change groups and reducing the diff
* size.
*/
int xdl_change_compact(xdfile_t *xdf, xdfile_t *xdfo, long flags) {
struct xdlgroup g, go;
long earliest_end, end_matching_other;
long groupsize;
group_init(xdf, &g);
group_init(xdfo, &go);
while (1) {
/* If the group is empty in the to-be-compacted file, skip it: */
if (g.end == g.start)
goto next;
/*
* Now shift the change up and then down as far as possible in
* each direction. If it bumps into any other changes, merge them.
*/
do {
groupsize = g.end - g.start;
/*
* Keep track of the last "end" index that causes this
* group to align with a group of changed lines in the
* other file. -1 indicates that we haven't found such
* a match yet:
*/
end_matching_other = -1;
/* Shift the group backward as much as possible: */
while (!group_slide_up(xdf, &g, flags))
if (group_previous(xdfo, &go))
xdl_bug("group sync broken sliding up");
/*
* This is this highest that this group can be shifted.
* Record its end index:
*/
earliest_end = g.end;
if (go.end > go.start)
end_matching_other = g.end;
/* Now shift the group forward as far as possible: */
while (1) {
if (group_slide_down(xdf, &g, flags))
break;
if (group_next(xdfo, &go))
xdl_bug("group sync broken sliding down");
if (go.end > go.start)
end_matching_other = g.end;
}
} while (groupsize != g.end - g.start);
/*
* If the group can be shifted, then we can possibly use this
* freedom to produce a more intuitive diff.
*
* The group is currently shifted as far down as possible, so the
* heuristics below only have to handle upwards shifts.
*/
if (g.end == earliest_end) {
/* no shifting was possible */
} else if (end_matching_other != -1) {
/*
* Move the possibly merged group of changes back to line
* up with the last group of changes from the other file
* that it can align with.
*/
while (go.end == go.start) {
if (group_slide_up(xdf, &g, flags))
xdl_bug("match disappeared");
if (group_previous(xdfo, &go))
xdl_bug("group sync broken sliding to match");
}
} else if (flags & XDF_INDENT_HEURISTIC) {
/*
* Indent heuristic: a group of pure add/delete lines
* implies two splits, one between the end of the "before"
* context and the start of the group, and another between
* the end of the group and the beginning of the "after"
* context. Some splits are aesthetically better and some
* are worse. We compute a badness "score" for each split,
* and add the scores for the two splits to define a
* "score" for each position that the group can be shifted
* to. Then we pick the shift with the lowest score.
*/
long shift, best_shift = -1;
struct split_score best_score;
for (shift = earliest_end; shift <= g.end; shift++) {
struct split_measurement m;
struct split_score score = {0, 0};
measure_split(xdf, shift, &m);
score_add_split(&m, &score);
measure_split(xdf, shift - groupsize, &m);
score_add_split(&m, &score);
if (best_shift == -1 ||
score_cmp(&score, &best_score) <= 0) {
best_score.effective_indent = score.effective_indent;
best_score.penalty = score.penalty;
best_shift = shift;
}
}
while (g.end > best_shift) {
if (group_slide_up(xdf, &g, flags))
xdl_bug("best shift unreached");
if (group_previous(xdfo, &go))
xdl_bug("group sync broken sliding to blank line");
}
}
next:
/* Move past the just-processed group: */
if (group_next(xdf, &g))
break;
if (group_next(xdfo, &go))
xdl_bug("group sync broken moving to next group");
}
if (!group_next(xdfo, &go))
xdl_bug("group sync broken at end of file");
return 0;
}
int xdl_build_script(xdfenv_t *xe, xdchange_t **xscr) {
xdchange_t *cscr = NULL, *xch;
char *rchg1 = xe->xdf1.rchg, *rchg2 = xe->xdf2.rchg;
long i1, i2, l1, l2;
/*
* Trivial. Collects "groups" of changes and creates an edit script.
*/
for (i1 = xe->xdf1.nrec, i2 = xe->xdf2.nrec; i1 >= 0 || i2 >= 0; i1--, i2--)
if (rchg1[i1 - 1] || rchg2[i2 - 1]) {
for (l1 = i1; rchg1[i1 - 1]; i1--);
for (l2 = i2; rchg2[i2 - 1]; i2--);
if (!(xch = xdl_add_change(cscr, i1, i2, l1 - i1, l2 - i2))) {
xdl_free_script(cscr);
return -1;
}
cscr = xch;
}
*xscr = cscr;
return 0;
}
void xdl_free_script(xdchange_t *xscr) {
xdchange_t *xch;
while ((xch = xscr) != NULL) {
xscr = xscr->next;
xdl_free(xch);
}
}
static int xdl_call_hunk_func(xdfenv_t *xe, xdchange_t *xscr, xdemitcb_t *ecb,
xdemitconf_t const *xecfg)
{
xdchange_t *xch, *xche;
(void)xe;
for (xch = xscr; xch; xch = xche->next) {
xche = xdl_get_hunk(&xch, xecfg);
if (!xch)
break;
if (xecfg->hunk_func(xch->i1, xche->i1 + xche->chg1 - xch->i1,
xch->i2, xche->i2 + xche->chg2 - xch->i2,
ecb->priv) < 0)
return -1;
}
return 0;
}
static void xdl_mark_ignorable(xdchange_t *xscr, xdfenv_t *xe, long flags)
{
xdchange_t *xch;
for (xch = xscr; xch; xch = xch->next) {
int ignore = 1;
xrecord_t **rec;
long i;
rec = &xe->xdf1.recs[xch->i1];
for (i = 0; i < xch->chg1 && ignore; i++)
ignore = xdl_blankline(rec[i]->ptr, rec[i]->size, flags);
rec = &xe->xdf2.recs[xch->i2];
for (i = 0; i < xch->chg2 && ignore; i++)
ignore = xdl_blankline(rec[i]->ptr, rec[i]->size, flags);
xch->ignore = ignore;
}
}
int xdl_diff(mmfile_t *mf1, mmfile_t *mf2, xpparam_t const *xpp,
xdemitconf_t const *xecfg, xdemitcb_t *ecb) {
xdchange_t *xscr;
xdfenv_t xe;
emit_func_t ef = xecfg->hunk_func ? xdl_call_hunk_func : xdl_emit_diff;
if (xdl_do_diff(mf1, mf2, xpp, &xe) < 0) {
return -1;
}
if (xdl_change_compact(&xe.xdf1, &xe.xdf2, xpp->flags) < 0 ||
xdl_change_compact(&xe.xdf2, &xe.xdf1, xpp->flags) < 0 ||
xdl_build_script(&xe, &xscr) < 0) {
xdl_free_env(&xe);
return -1;
}
if (xscr) {
if (xpp->flags & XDF_IGNORE_BLANK_LINES)
xdl_mark_ignorable(xscr, &xe, xpp->flags);
if (ef(&xe, xscr, ecb, xecfg) < 0) {
xdl_free_script(xscr);
xdl_free_env(&xe);
return -1;
}
xdl_free_script(xscr);
}
xdl_free_env(&xe);
return 0;
}