1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
//! This library permits the creation of 2FA authentification tokens per TOTP, the verification of said tokens, with configurable time skew, validity time of each token, algorithm and number of digits! Default features are kept as low-dependency as possible to ensure small binaries and short compilation time
//!
//! # Examples
//!
//! ```rust
//! use std::time::SystemTime;
//! use totp_rs::{Algorithm, TOTP};
//!
//! let totp = TOTP::new(
//! Algorithm::SHA1,
//! 6,
//! 1,
//! 30,
//! "supersecret",
//! );
//! let time = SystemTime::now()
//! .duration_since(SystemTime::UNIX_EPOCH).unwrap()
//! .as_secs();
//! let url = totp.get_url("user@example.com", "my-org.com");
//! println!("{}", url);
//! let token = totp.generate(time);
//! println!("{}", token);
//! ```
//!
//! ```rust
//! use totp_rs::{Algorithm, TOTP};
//!
//! let totp = TOTP::new(
//! Algorithm::SHA1,
//! 6,
//! 1,
//! 30,
//! "supersecret",
//! );
//! let code = totp.get_qr("user@example.com", "my-org.com").unwrap();
//! println!("{}", code);
//! ```
#[cfg(feature = "serde_support")]
use serde::{Deserialize, Serialize};
use byteorder::{BigEndian, ReadBytesExt};
use core::fmt;
use std::io::Cursor;
#[cfg(feature = "qr")]
use {base64, image::Luma, qrcode::QrCode};
use hmac::Mac;
type HmacSha1 = hmac::Hmac<sha1::Sha1>;
type HmacSha256 = hmac::Hmac<sha2::Sha256>;
type HmacSha512 = hmac::Hmac<sha2::Sha512>;
/// Algorithm enum holds the three standards algorithms for TOTP as per the [reference implementation](https://tools.ietf.org/html/rfc6238#appendix-A)
#[derive(Debug, Copy, Clone)]
#[cfg_attr(feature = "serde_support", derive(Serialize, Deserialize))]
pub enum Algorithm {
SHA1,
SHA256,
SHA512,
}
impl fmt::Display for Algorithm {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match *self {
Algorithm::SHA1 => {
return f.write_str("SHA1");
}
Algorithm::SHA256 => {
return f.write_str("SHA256");
}
Algorithm::SHA512 => {
return f.write_str("SHA512");
}
}
}
}
impl Algorithm {
fn hash<D>(mut digest: D, data: &[u8]) -> Vec<u8>
where
D: hmac::Mac,
{
digest.update(data);
digest.finalize().into_bytes().to_vec()
}
fn sign(&self, key: &[u8], data: &[u8]) -> Vec<u8> {
match *self {
Algorithm::SHA1 => Algorithm::hash(HmacSha1::new_from_slice(key).unwrap(), data),
Algorithm::SHA256 => Algorithm::hash(HmacSha256::new_from_slice(key).unwrap(), data),
Algorithm::SHA512 => Algorithm::hash(HmacSha512::new_from_slice(key).unwrap(), data),
}
}
}
/// TOTP holds informations as to how to generate an auth code and validate it. Its [secret](struct.TOTP.html#structfield.secret) field is sensitive data, treat it accordingly
#[derive(Debug, Clone)]
#[cfg_attr(feature = "serde_support", derive(Serialize, Deserialize))]
pub struct TOTP<T = Vec<u8>> {
/// SHA-1 is the most widespread algorithm used, and for totp pursposes, SHA-1 hash collisions are [not a problem](https://tools.ietf.org/html/rfc4226#appendix-B.2) as HMAC-SHA-1 is not impacted. It's also the main one cited in [rfc-6238](https://tools.ietf.org/html/rfc6238#section-3) even though the [reference implementation](https://tools.ietf.org/html/rfc6238#appendix-A) permits the use of SHA-1, SHA-256 and SHA-512. Not all clients support other algorithms then SHA-1
pub algorithm: Algorithm,
/// The number of digits composing the auth code. Per [rfc-4226](https://tools.ietf.org/html/rfc4226#section-5.3), this can oscilate between 6 and 8 digits
pub digits: usize,
/// Number of steps allowed as network delay. 1 would mean one step before current step and one step after are valids. The recommended value per [rfc-6238](https://tools.ietf.org/html/rfc6238#section-5.2) is 1. Anything more is sketchy, and anyone recommending more is, by definition, ugly and stupid
pub skew: u8,
/// Duration in seconds of a step. The recommended value per [rfc-6238](https://tools.ietf.org/html/rfc6238#section-5.2) is 30 seconds
pub step: u64,
/// As per [rfc-4226](https://tools.ietf.org/html/rfc4226#section-4) the secret should come from a strong source, most likely a CSPRNG. It should be at least 128 bits, but 160 are recommended
pub secret: T,
}
impl<T: AsRef<[u8]>> TOTP<T> {
/// Will create a new instance of TOTP with given parameters. See [the doc](struct.TOTP.html#fields) for reference as to how to choose those values
pub fn new(algorithm: Algorithm, digits: usize, skew: u8, step: u64, secret: T) -> TOTP<T> {
TOTP {
algorithm,
digits,
skew,
step,
secret,
}
}
/// Will sign the given timestamp
pub fn sign(&self, time: u64) -> Vec<u8> {
self.algorithm.sign(
self.secret.as_ref(),
(time / self.step).to_be_bytes().as_ref(),
)
}
/// Will generate a token according to the provided timestamp in seconds
pub fn generate(&self, time: u64) -> String {
let result: &[u8] = &self.sign(time);
let offset = (result[19] & 15) as usize;
let mut rdr = Cursor::new(&result[offset..offset + 4]);
let result = rdr.read_u32::<BigEndian>().unwrap() & 0x7fff_ffff;
format!(
"{1:00$}",
self.digits,
result % (10 as u32).pow(self.digits as u32)
)
}
/// Will check if token is valid by current time, accounting [skew](struct.TOTP.html#structfield.skew)
pub fn check(&self, token: &str, time: u64) -> bool {
let basestep = time / self.step - (self.skew as u64);
for i in 0..self.skew * 2 + 1 {
let step_time = (basestep + (i as u64)) * (self.step as u64);
if self.generate(step_time) == token {
return true;
}
}
false
}
/// Will return the base32 representation of the secret, which might be useful when users want to manually add the secret to their authenticator
pub fn get_secret_base32(&self) -> String {
base32::encode(
base32::Alphabet::RFC4648 { padding: false },
self.secret.as_ref(),
)
}
/// Will generate a standard URL used to automatically add TOTP auths. Usually used with qr codes
pub fn get_url(&self, label: &str, issuer: &str) -> String {
format!(
"otpauth://totp/{}?secret={}&issuer={}&digits={}&algorithm={}",
label.to_string(),
self.get_secret_base32(),
issuer.to_string(),
self.digits.to_string(),
self.algorithm,
)
}
/// Will return a qrcode to automatically add a TOTP as a base64 string. Needs feature `qr` to be enabled!
///
/// # Errors
///
/// This will return an error in case the URL gets too long to encode into a QR code
///
/// It will also return an error in case it can't encode the qr into a png. This shouldn't happen unless either the qrcode library returns malformed data, or the image library doesn't encode the data correctly
#[cfg(feature = "qr")]
pub fn get_qr(&self, label: &str, issuer: &str) -> Result<String, Box<dyn std::error::Error>> {
let url = self.get_url(label, issuer);
let code = QrCode::new(&url)?;
let mut vec = Vec::new();
let encoder = image::png::PngEncoder::new(&mut vec);
encoder.encode(
code.render::<Luma<u8>>().build().as_ref(),
((code.width() + 8) * 8) as u32,
((code.width() + 8) * 8) as u32,
image::ColorType::L8,
)?;
Ok(base64::encode(vec))
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn url_for_secret_matches_sha1() {
let totp = TOTP::new(Algorithm::SHA1, 6, 1, 1, "TestSecret");
let url = totp.get_url("test_url", "totp-rs");
assert_eq!(url.as_str(), "otpauth://totp/test_url?secret=KRSXG5CTMVRXEZLU&issuer=totp-rs&digits=6&algorithm=SHA1");
}
#[test]
fn url_for_secret_matches_sha256() {
let totp = TOTP::new(Algorithm::SHA256, 6, 1, 1, "TestSecret");
let url = totp.get_url("test_url", "totp-rs");
assert_eq!(url.as_str(), "otpauth://totp/test_url?secret=KRSXG5CTMVRXEZLU&issuer=totp-rs&digits=6&algorithm=SHA256");
}
#[test]
fn url_for_secret_matches_sha512() {
let totp = TOTP::new(Algorithm::SHA512, 6, 1, 1, "TestSecret");
let url = totp.get_url("test_url", "totp-rs");
assert_eq!(url.as_str(), "otpauth://totp/test_url?secret=KRSXG5CTMVRXEZLU&issuer=totp-rs&digits=6&algorithm=SHA512");
}
#[test]
fn returns_base32() {
let totp = TOTP::new(Algorithm::SHA1, 6, 1, 1, "TestSecret");
assert_eq!(totp.get_secret_base32().as_str(), "KRSXG5CTMVRXEZLU");
}
#[test]
fn generates_token() {
let totp = TOTP::new(Algorithm::SHA1, 6, 1, 1, "TestSecret");
assert_eq!(totp.generate(1000).as_str(), "718996");
}
#[test]
fn generates_token_sha256() {
let totp = TOTP::new(Algorithm::SHA256, 6, 1, 1, "TestSecret");
assert_eq!(totp.generate(1000).as_str(), "423657");
}
#[test]
fn generates_token_sha512() {
let totp = TOTP::new(Algorithm::SHA512, 6, 1, 1, "TestSecret");
assert_eq!(totp.generate(1000).as_str(), "416767");
}
#[test]
fn checks_token() {
let totp = TOTP::new(Algorithm::SHA1, 6, 0, 1, "TestSecret");
assert!(totp.check("718996", 1000));
assert!(totp.check("712039", 2000));
assert!(!totp.check("527544", 2000));
assert!(!totp.check("714250", 2000));
}
#[test]
fn checks_token_with_skew() {
let totp = TOTP::new(Algorithm::SHA1, 6, 1, 1, "TestSecret");
assert!(
totp.check("527544", 2000) && totp.check("712039", 2000) && totp.check("714250", 2000)
);
}
#[test]
#[cfg(feature = "qr")]
fn generates_qr() {
use sha1::{Digest, Sha1};
let totp = TOTP::new(Algorithm::SHA1, 6, 1, 1, "TestSecret");
let qr = totp.get_qr("test_url", "totp-rs").unwrap();
// Create hash from image
let hash_digest = Sha1::digest(qr.as_bytes());
assert_eq!(
format!("{:x}", hash_digest).as_str(),
"3abc0127e7a2b1013fb25c97ef14422c1fe9e878"
);
}
}