Hash :
6a4cad87
Author :
Date :
2019-05-01T13:04:00
Vulkan: Tighten descriptor stage usage hints Per-stage uniform buffers are marked with the specific stage. Program uniform buffers and images are specified to be used in all graphics stages. Descriptors used in internal shaders are marked for use in either compute or fragment stages. Bug: angleproject:3220 Change-Id: Ifcac36a1224f0392ba5fba50660514e498256401 Reviewed-on: https://chromium-review.googlesource.com/c/angle/angle/+/1595439 Commit-Queue: Shahbaz Youssefi <syoussefi@chromium.org> Reviewed-by: Tobin Ehlis <tobine@google.com>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
//
// Copyright 2016 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// ProgramVk.cpp:
// Implements the class methods for ProgramVk.
//
#include "libANGLE/renderer/vulkan/ProgramVk.h"
#include "common/debug.h"
#include "libANGLE/Context.h"
#include "libANGLE/ProgramLinkedResources.h"
#include "libANGLE/renderer/renderer_utils.h"
#include "libANGLE/renderer/vulkan/BufferVk.h"
#include "libANGLE/renderer/vulkan/ContextVk.h"
#include "libANGLE/renderer/vulkan/GlslangWrapper.h"
#include "libANGLE/renderer/vulkan/RendererVk.h"
#include "libANGLE/renderer/vulkan/TextureVk.h"
namespace rx
{
namespace
{
constexpr size_t kUniformBlockDynamicBufferMinSize = 256 * 128;
void InitDefaultUniformBlock(const std::vector<sh::Uniform> &uniforms,
gl::Shader *shader,
sh::BlockLayoutMap *blockLayoutMapOut,
size_t *blockSizeOut)
{
if (uniforms.empty())
{
*blockSizeOut = 0;
return;
}
sh::Std140BlockEncoder blockEncoder;
sh::GetUniformBlockInfo(uniforms, "", &blockEncoder, blockLayoutMapOut);
size_t blockSize = blockEncoder.getCurrentOffset();
// TODO(jmadill): I think we still need a valid block for the pipeline even if zero sized.
if (blockSize == 0)
{
*blockSizeOut = 0;
return;
}
*blockSizeOut = blockSize;
return;
}
template <typename T>
void UpdateDefaultUniformBlock(GLsizei count,
uint32_t arrayIndex,
int componentCount,
const T *v,
const sh::BlockMemberInfo &layoutInfo,
angle::MemoryBuffer *uniformData)
{
const int elementSize = sizeof(T) * componentCount;
uint8_t *dst = uniformData->data() + layoutInfo.offset;
if (layoutInfo.arrayStride == 0 || layoutInfo.arrayStride == elementSize)
{
uint32_t arrayOffset = arrayIndex * layoutInfo.arrayStride;
uint8_t *writePtr = dst + arrayOffset;
ASSERT(writePtr + (elementSize * count) <= uniformData->data() + uniformData->size());
memcpy(writePtr, v, elementSize * count);
}
else
{
// Have to respect the arrayStride between each element of the array.
int maxIndex = arrayIndex + count;
for (int writeIndex = arrayIndex, readIndex = 0; writeIndex < maxIndex;
writeIndex++, readIndex++)
{
const int arrayOffset = writeIndex * layoutInfo.arrayStride;
uint8_t *writePtr = dst + arrayOffset;
const T *readPtr = v + (readIndex * componentCount);
ASSERT(writePtr + elementSize <= uniformData->data() + uniformData->size());
memcpy(writePtr, readPtr, elementSize);
}
}
}
template <typename T>
void ReadFromDefaultUniformBlock(int componentCount,
uint32_t arrayIndex,
T *dst,
const sh::BlockMemberInfo &layoutInfo,
const angle::MemoryBuffer *uniformData)
{
ASSERT(layoutInfo.offset != -1);
const int elementSize = sizeof(T) * componentCount;
const uint8_t *source = uniformData->data() + layoutInfo.offset;
if (layoutInfo.arrayStride == 0 || layoutInfo.arrayStride == elementSize)
{
const uint8_t *readPtr = source + arrayIndex * layoutInfo.arrayStride;
memcpy(dst, readPtr, elementSize);
}
else
{
// Have to respect the arrayStride between each element of the array.
const int arrayOffset = arrayIndex * layoutInfo.arrayStride;
const uint8_t *readPtr = source + arrayOffset;
memcpy(dst, readPtr, elementSize);
}
}
angle::Result SyncDefaultUniformBlock(ContextVk *contextVk,
vk::DynamicBuffer *dynamicBuffer,
const angle::MemoryBuffer &bufferData,
uint32_t *outOffset,
bool *outBufferModified)
{
dynamicBuffer->releaseRetainedBuffers(contextVk->getRenderer());
ASSERT(!bufferData.empty());
uint8_t *data = nullptr;
VkBuffer *outBuffer = nullptr;
VkDeviceSize offset = 0;
ANGLE_TRY(dynamicBuffer->allocate(contextVk, bufferData.size(), &data, outBuffer, &offset,
outBufferModified));
*outOffset = static_cast<uint32_t>(offset);
memcpy(data, bufferData.data(), bufferData.size());
ANGLE_TRY(dynamicBuffer->flush(contextVk));
return angle::Result::Continue;
}
uint32_t GetUniformBlockArraySize(const std::vector<gl::InterfaceBlock> &uniformBlocks,
uint32_t bufferIndex)
{
const gl::InterfaceBlock &uniformBlock = uniformBlocks[bufferIndex];
if (!uniformBlock.isArray)
{
return 1;
}
ASSERT(uniformBlock.arrayElement == 0);
// Search consecutively until all array indices of this block are visited.
uint32_t arraySize;
for (arraySize = 1; bufferIndex + arraySize < uniformBlocks.size(); ++arraySize)
{
const gl::InterfaceBlock &nextBlock = uniformBlocks[bufferIndex + arraySize];
if (nextBlock.arrayElement != arraySize)
{
break;
}
// It's unexpected for an array to start at a non-zero array size, so we can always rely on
// the sequential `arrayElement`s to belong to the same block.
ASSERT(nextBlock.name == uniformBlock.name);
ASSERT(nextBlock.isArray);
}
return arraySize;
}
class Std140BlockLayoutEncoderFactory : public gl::CustomBlockLayoutEncoderFactory
{
public:
sh::BlockLayoutEncoder *makeEncoder() override { return new sh::Std140BlockEncoder(); }
};
} // anonymous namespace
// ProgramVk::ShaderInfo implementation.
ProgramVk::ShaderInfo::ShaderInfo() {}
ProgramVk::ShaderInfo::~ShaderInfo() = default;
angle::Result ProgramVk::ShaderInfo::initShaders(ContextVk *contextVk,
const std::string &vertexSource,
const std::string &fragmentSource,
bool enableLineRasterEmulation)
{
ASSERT(!valid());
std::vector<uint32_t> vertexCode;
std::vector<uint32_t> fragmentCode;
ANGLE_TRY(GlslangWrapper::GetShaderCode(contextVk, contextVk->getCaps(),
enableLineRasterEmulation, vertexSource, fragmentSource,
&vertexCode, &fragmentCode));
ANGLE_TRY(vk::InitShaderAndSerial(contextVk, &mShaders[gl::ShaderType::Vertex].get(),
vertexCode.data(), vertexCode.size() * sizeof(uint32_t)));
ANGLE_TRY(vk::InitShaderAndSerial(contextVk, &mShaders[gl::ShaderType::Fragment].get(),
fragmentCode.data(), fragmentCode.size() * sizeof(uint32_t)));
mProgramHelper.setShader(gl::ShaderType::Vertex, &mShaders[gl::ShaderType::Vertex]);
mProgramHelper.setShader(gl::ShaderType::Fragment, &mShaders[gl::ShaderType::Fragment]);
return angle::Result::Continue;
}
void ProgramVk::ShaderInfo::release(RendererVk *renderer)
{
mProgramHelper.release(renderer);
for (vk::RefCounted<vk::ShaderAndSerial> &shader : mShaders)
{
shader.get().destroy(renderer->getDevice());
}
}
// ProgramVk implementation.
ProgramVk::DefaultUniformBlock::DefaultUniformBlock()
: storage(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
kUniformBlockDynamicBufferMinSize,
true)
{}
ProgramVk::DefaultUniformBlock::~DefaultUniformBlock() = default;
ProgramVk::ProgramVk(const gl::ProgramState &state) : ProgramImpl(state), mUniformBlocksOffsets{} {}
ProgramVk::~ProgramVk() = default;
void ProgramVk::destroy(const gl::Context *context)
{
ContextVk *contextVk = vk::GetImpl(context);
reset(contextVk->getRenderer());
}
void ProgramVk::reset(RendererVk *renderer)
{
for (auto &descriptorSetLayout : mDescriptorSetLayouts)
{
descriptorSetLayout.reset();
}
mPipelineLayout.reset();
for (auto &uniformBlock : mDefaultUniformBlocks)
{
uniformBlock.storage.release(renderer);
}
mDefaultShaderInfo.release(renderer);
mLineRasterShaderInfo.release(renderer);
mEmptyUniformBlockStorage.release(renderer);
mDescriptorSets.clear();
mEmptyDescriptorSets.fill(VK_NULL_HANDLE);
for (vk::RefCountedDescriptorPoolBinding &binding : mDescriptorPoolBindings)
{
binding.reset();
}
}
std::unique_ptr<rx::LinkEvent> ProgramVk::load(const gl::Context *context,
gl::BinaryInputStream *stream,
gl::InfoLog &infoLog)
{
UNIMPLEMENTED();
return std::make_unique<LinkEventDone>(angle::Result::Stop);
}
void ProgramVk::save(const gl::Context *context, gl::BinaryOutputStream *stream)
{
UNIMPLEMENTED();
}
void ProgramVk::setBinaryRetrievableHint(bool retrievable)
{
UNIMPLEMENTED();
}
void ProgramVk::setSeparable(bool separable)
{
UNIMPLEMENTED();
}
std::unique_ptr<LinkEvent> ProgramVk::link(const gl::Context *context,
const gl::ProgramLinkedResources &resources,
gl::InfoLog &infoLog)
{
// TODO(jie.a.chen@intel.com): Parallelize linking.
// http://crbug.com/849576
return std::make_unique<LinkEventDone>(linkImpl(context, resources, infoLog));
}
angle::Result ProgramVk::linkImpl(const gl::Context *glContext,
const gl::ProgramLinkedResources &resources,
gl::InfoLog &infoLog)
{
ContextVk *contextVk = vk::GetImpl(glContext);
RendererVk *renderer = contextVk->getRenderer();
reset(renderer);
// Link resources before calling GetShaderSource to make sure they are ready for the set/binding
// assignment done in that function.
linkResources(resources);
GlslangWrapper::GetShaderSource(mState, resources, &mVertexSource, &mFragmentSource);
ANGLE_TRY(initDefaultUniformBlocks(glContext));
// Store a reference to the pipeline and descriptor set layouts. This will create them if they
// don't already exist in the cache.
vk::DescriptorSetLayoutDesc uniformsSetDesc;
uniformsSetDesc.update(kVertexUniformsBindingIndex, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC,
1, VK_SHADER_STAGE_VERTEX_BIT);
uniformsSetDesc.update(kFragmentUniformsBindingIndex, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC,
1, VK_SHADER_STAGE_FRAGMENT_BIT);
ANGLE_TRY(renderer->getDescriptorSetLayout(
contextVk, uniformsSetDesc, &mDescriptorSetLayouts[kUniformsDescriptorSetIndex]));
vk::DescriptorSetLayoutDesc uniformBlocksSetDesc;
const std::vector<gl::InterfaceBlock> &uniformBlocks = mState.getUniformBlocks();
for (uint32_t bufferIndex = 0; bufferIndex < uniformBlocks.size();)
{
const uint32_t arraySize = GetUniformBlockArraySize(uniformBlocks, bufferIndex);
uniformBlocksSetDesc.update(bufferIndex, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, arraySize,
VK_SHADER_STAGE_ALL_GRAPHICS);
bufferIndex += arraySize;
}
ANGLE_TRY(renderer->getDescriptorSetLayout(
contextVk, uniformBlocksSetDesc, &mDescriptorSetLayouts[kUniformBlockDescriptorSetIndex]));
vk::DescriptorSetLayoutDesc texturesSetDesc;
for (uint32_t textureIndex = 0; textureIndex < mState.getSamplerBindings().size();
++textureIndex)
{
const gl::SamplerBinding &samplerBinding = mState.getSamplerBindings()[textureIndex];
// The front-end always binds array sampler units sequentially.
const uint32_t count = static_cast<uint32_t>(samplerBinding.boundTextureUnits.size());
texturesSetDesc.update(textureIndex, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, count,
VK_SHADER_STAGE_ALL_GRAPHICS);
}
ANGLE_TRY(renderer->getDescriptorSetLayout(contextVk, texturesSetDesc,
&mDescriptorSetLayouts[kTextureDescriptorSetIndex]));
vk::DescriptorSetLayoutDesc driverUniformsSetDesc;
driverUniformsSetDesc.update(0, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1,
VK_SHADER_STAGE_ALL_GRAPHICS);
ANGLE_TRY(renderer->getDescriptorSetLayout(
contextVk, driverUniformsSetDesc,
&mDescriptorSetLayouts[kDriverUniformsDescriptorSetIndex]));
vk::PipelineLayoutDesc pipelineLayoutDesc;
pipelineLayoutDesc.updateDescriptorSetLayout(kUniformsDescriptorSetIndex, uniformsSetDesc);
pipelineLayoutDesc.updateDescriptorSetLayout(kUniformBlockDescriptorSetIndex,
uniformBlocksSetDesc);
pipelineLayoutDesc.updateDescriptorSetLayout(kTextureDescriptorSetIndex, texturesSetDesc);
pipelineLayoutDesc.updateDescriptorSetLayout(kDriverUniformsDescriptorSetIndex,
driverUniformsSetDesc);
ANGLE_TRY(renderer->getPipelineLayout(contextVk, pipelineLayoutDesc, mDescriptorSetLayouts,
&mPipelineLayout));
return angle::Result::Continue;
}
void ProgramVk::linkResources(const gl::ProgramLinkedResources &resources)
{
Std140BlockLayoutEncoderFactory std140EncoderFactory;
gl::ProgramLinkedResourcesLinker linker(&std140EncoderFactory);
linker.linkResources(mState, resources);
}
angle::Result ProgramVk::initDefaultUniformBlocks(const gl::Context *glContext)
{
ContextVk *contextVk = vk::GetImpl(glContext);
RendererVk *renderer = contextVk->getRenderer();
// Process vertex and fragment uniforms into std140 packing.
gl::ShaderMap<sh::BlockLayoutMap> layoutMap;
gl::ShaderMap<size_t> requiredBufferSize;
requiredBufferSize.fill(0);
for (gl::ShaderType shaderType : gl::AllGLES2ShaderTypes())
{
gl::Shader *shader = mState.getAttachedShader(shaderType);
const std::vector<sh::Uniform> &uniforms = shader->getUniforms();
InitDefaultUniformBlock(uniforms, shader, &layoutMap[shaderType],
&requiredBufferSize[shaderType]);
}
// Init the default block layout info.
const auto &uniforms = mState.getUniforms();
for (const gl::VariableLocation &location : mState.getUniformLocations())
{
gl::ShaderMap<sh::BlockMemberInfo> layoutInfo;
if (location.used() && !location.ignored)
{
const auto &uniform = uniforms[location.index];
if (uniform.isInDefaultBlock() && !uniform.isSampler())
{
std::string uniformName = uniform.name;
if (uniform.isArray())
{
// Gets the uniform name without the [0] at the end.
uniformName = gl::ParseResourceName(uniformName, nullptr);
}
bool found = false;
for (gl::ShaderType shaderType : gl::AllGLES2ShaderTypes())
{
auto it = layoutMap[shaderType].find(uniformName);
if (it != layoutMap[shaderType].end())
{
found = true;
layoutInfo[shaderType] = it->second;
}
}
ASSERT(found);
}
}
for (gl::ShaderType shaderType : gl::AllGLES2ShaderTypes())
{
mDefaultUniformBlocks[shaderType].uniformLayout.push_back(layoutInfo[shaderType]);
}
}
for (gl::ShaderType shaderType : gl::AllGLES2ShaderTypes())
{
if (requiredBufferSize[shaderType] > 0)
{
if (!mDefaultUniformBlocks[shaderType].uniformData.resize(
requiredBufferSize[shaderType]))
{
ANGLE_VK_CHECK(contextVk, false, VK_ERROR_OUT_OF_HOST_MEMORY);
}
size_t minAlignment = static_cast<size_t>(
renderer->getPhysicalDeviceProperties().limits.minUniformBufferOffsetAlignment);
mDefaultUniformBlocks[shaderType].storage.init(minAlignment, renderer);
// Initialize uniform buffer memory to zero by default.
mDefaultUniformBlocks[shaderType].uniformData.fill(0);
mDefaultUniformBlocksDirty.set(shaderType);
}
}
if (mDefaultUniformBlocksDirty.any())
{
// Initialize the "empty" uniform block if necessary.
if (!mDefaultUniformBlocksDirty.all())
{
VkBufferCreateInfo uniformBufferInfo = {};
uniformBufferInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
uniformBufferInfo.flags = 0;
uniformBufferInfo.size = 1;
uniformBufferInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT;
uniformBufferInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
uniformBufferInfo.queueFamilyIndexCount = 0;
uniformBufferInfo.pQueueFamilyIndices = nullptr;
constexpr VkMemoryPropertyFlags kMemoryType = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
ANGLE_TRY(mEmptyUniformBlockStorage.init(contextVk, uniformBufferInfo, kMemoryType));
}
}
return angle::Result::Continue;
}
GLboolean ProgramVk::validate(const gl::Caps &caps, gl::InfoLog *infoLog)
{
// No-op. The spec is very vague about the behavior of validation.
return GL_TRUE;
}
template <typename T>
void ProgramVk::setUniformImpl(GLint location, GLsizei count, const T *v, GLenum entryPointType)
{
const gl::VariableLocation &locationInfo = mState.getUniformLocations()[location];
const gl::LinkedUniform &linkedUniform = mState.getUniforms()[locationInfo.index];
if (linkedUniform.isSampler())
{
// We could potentially cache some indexing here. For now this is a no-op since the mapping
// is handled entirely in ContextVk.
return;
}
if (linkedUniform.typeInfo->type == entryPointType)
{
for (gl::ShaderType shaderType : gl::AllGLES2ShaderTypes())
{
DefaultUniformBlock &uniformBlock = mDefaultUniformBlocks[shaderType];
const sh::BlockMemberInfo &layoutInfo = uniformBlock.uniformLayout[location];
// Assume an offset of -1 means the block is unused.
if (layoutInfo.offset == -1)
{
continue;
}
const GLint componentCount = linkedUniform.typeInfo->componentCount;
UpdateDefaultUniformBlock(count, locationInfo.arrayIndex, componentCount, v, layoutInfo,
&uniformBlock.uniformData);
mDefaultUniformBlocksDirty.set(shaderType);
}
}
else
{
for (gl::ShaderType shaderType : gl::AllGLES2ShaderTypes())
{
DefaultUniformBlock &uniformBlock = mDefaultUniformBlocks[shaderType];
const sh::BlockMemberInfo &layoutInfo = uniformBlock.uniformLayout[location];
// Assume an offset of -1 means the block is unused.
if (layoutInfo.offset == -1)
{
continue;
}
const GLint componentCount = linkedUniform.typeInfo->componentCount;
ASSERT(linkedUniform.typeInfo->type == gl::VariableBoolVectorType(entryPointType));
GLint initialArrayOffset =
locationInfo.arrayIndex * layoutInfo.arrayStride + layoutInfo.offset;
for (GLint i = 0; i < count; i++)
{
GLint elementOffset = i * layoutInfo.arrayStride + initialArrayOffset;
GLint *dest =
reinterpret_cast<GLint *>(uniformBlock.uniformData.data() + elementOffset);
const T *source = v + i * componentCount;
for (int c = 0; c < componentCount; c++)
{
dest[c] = (source[c] == static_cast<T>(0)) ? GL_FALSE : GL_TRUE;
}
}
mDefaultUniformBlocksDirty.set(shaderType);
}
}
}
template <typename T>
void ProgramVk::getUniformImpl(GLint location, T *v, GLenum entryPointType) const
{
const gl::VariableLocation &locationInfo = mState.getUniformLocations()[location];
const gl::LinkedUniform &linkedUniform = mState.getUniforms()[locationInfo.index];
ASSERT(!linkedUniform.isSampler());
const gl::ShaderType shaderType = linkedUniform.getFirstShaderTypeWhereActive();
ASSERT(shaderType != gl::ShaderType::InvalidEnum);
const DefaultUniformBlock &uniformBlock = mDefaultUniformBlocks[shaderType];
const sh::BlockMemberInfo &layoutInfo = uniformBlock.uniformLayout[location];
ASSERT(linkedUniform.typeInfo->componentType == entryPointType ||
linkedUniform.typeInfo->componentType == gl::VariableBoolVectorType(entryPointType));
if (gl::IsMatrixType(linkedUniform.type))
{
const uint8_t *ptrToElement = uniformBlock.uniformData.data() + layoutInfo.offset +
(locationInfo.arrayIndex * layoutInfo.arrayStride);
GetMatrixUniform(linkedUniform.type, v, reinterpret_cast<const T *>(ptrToElement), false);
}
else
{
ReadFromDefaultUniformBlock(linkedUniform.typeInfo->componentCount, locationInfo.arrayIndex,
v, layoutInfo, &uniformBlock.uniformData);
}
}
void ProgramVk::setUniform1fv(GLint location, GLsizei count, const GLfloat *v)
{
setUniformImpl(location, count, v, GL_FLOAT);
}
void ProgramVk::setUniform2fv(GLint location, GLsizei count, const GLfloat *v)
{
setUniformImpl(location, count, v, GL_FLOAT_VEC2);
}
void ProgramVk::setUniform3fv(GLint location, GLsizei count, const GLfloat *v)
{
setUniformImpl(location, count, v, GL_FLOAT_VEC3);
}
void ProgramVk::setUniform4fv(GLint location, GLsizei count, const GLfloat *v)
{
setUniformImpl(location, count, v, GL_FLOAT_VEC4);
}
void ProgramVk::setUniform1iv(GLint location, GLsizei count, const GLint *v)
{
setUniformImpl(location, count, v, GL_INT);
}
void ProgramVk::setUniform2iv(GLint location, GLsizei count, const GLint *v)
{
setUniformImpl(location, count, v, GL_INT_VEC2);
}
void ProgramVk::setUniform3iv(GLint location, GLsizei count, const GLint *v)
{
setUniformImpl(location, count, v, GL_INT_VEC3);
}
void ProgramVk::setUniform4iv(GLint location, GLsizei count, const GLint *v)
{
setUniformImpl(location, count, v, GL_INT_VEC4);
}
void ProgramVk::setUniform1uiv(GLint location, GLsizei count, const GLuint *v)
{
setUniformImpl(location, count, v, GL_UNSIGNED_INT);
}
void ProgramVk::setUniform2uiv(GLint location, GLsizei count, const GLuint *v)
{
setUniformImpl(location, count, v, GL_UNSIGNED_INT_VEC2);
}
void ProgramVk::setUniform3uiv(GLint location, GLsizei count, const GLuint *v)
{
setUniformImpl(location, count, v, GL_UNSIGNED_INT_VEC3);
}
void ProgramVk::setUniform4uiv(GLint location, GLsizei count, const GLuint *v)
{
setUniformImpl(location, count, v, GL_UNSIGNED_INT_VEC4);
}
template <int cols, int rows>
void ProgramVk::setUniformMatrixfv(GLint location,
GLsizei count,
GLboolean transpose,
const GLfloat *value)
{
const gl::VariableLocation &locationInfo = mState.getUniformLocations()[location];
const gl::LinkedUniform &linkedUniform = mState.getUniforms()[locationInfo.index];
for (gl::ShaderType shaderType : gl::AllGLES2ShaderTypes())
{
DefaultUniformBlock &uniformBlock = mDefaultUniformBlocks[shaderType];
const sh::BlockMemberInfo &layoutInfo = uniformBlock.uniformLayout[location];
// Assume an offset of -1 means the block is unused.
if (layoutInfo.offset == -1)
{
continue;
}
bool updated = SetFloatUniformMatrixGLSL<cols, rows>(
locationInfo.arrayIndex, linkedUniform.getArraySizeProduct(), count, transpose, value,
uniformBlock.uniformData.data() + layoutInfo.offset);
// If the uniformsDirty flag was true, we don't want to flip it to false here if the
// setter did not update any data. We still want the uniform to be included when we'll
// update the descriptor sets.
if (updated)
{
mDefaultUniformBlocksDirty.set(shaderType);
}
}
}
void ProgramVk::setUniformMatrix2fv(GLint location,
GLsizei count,
GLboolean transpose,
const GLfloat *value)
{
setUniformMatrixfv<2, 2>(location, count, transpose, value);
}
void ProgramVk::setUniformMatrix3fv(GLint location,
GLsizei count,
GLboolean transpose,
const GLfloat *value)
{
setUniformMatrixfv<3, 3>(location, count, transpose, value);
}
void ProgramVk::setUniformMatrix4fv(GLint location,
GLsizei count,
GLboolean transpose,
const GLfloat *value)
{
setUniformMatrixfv<4, 4>(location, count, transpose, value);
}
void ProgramVk::setUniformMatrix2x3fv(GLint location,
GLsizei count,
GLboolean transpose,
const GLfloat *value)
{
setUniformMatrixfv<2, 3>(location, count, transpose, value);
}
void ProgramVk::setUniformMatrix3x2fv(GLint location,
GLsizei count,
GLboolean transpose,
const GLfloat *value)
{
setUniformMatrixfv<3, 2>(location, count, transpose, value);
}
void ProgramVk::setUniformMatrix2x4fv(GLint location,
GLsizei count,
GLboolean transpose,
const GLfloat *value)
{
setUniformMatrixfv<2, 4>(location, count, transpose, value);
}
void ProgramVk::setUniformMatrix4x2fv(GLint location,
GLsizei count,
GLboolean transpose,
const GLfloat *value)
{
setUniformMatrixfv<4, 2>(location, count, transpose, value);
}
void ProgramVk::setUniformMatrix3x4fv(GLint location,
GLsizei count,
GLboolean transpose,
const GLfloat *value)
{
setUniformMatrixfv<3, 4>(location, count, transpose, value);
}
void ProgramVk::setUniformMatrix4x3fv(GLint location,
GLsizei count,
GLboolean transpose,
const GLfloat *value)
{
setUniformMatrixfv<4, 3>(location, count, transpose, value);
}
void ProgramVk::setPathFragmentInputGen(const std::string &inputName,
GLenum genMode,
GLint components,
const GLfloat *coeffs)
{
UNIMPLEMENTED();
}
angle::Result ProgramVk::allocateDescriptorSet(ContextVk *contextVk, uint32_t descriptorSetIndex)
{
// Write out to a new a descriptor set.
vk::DynamicDescriptorPool *dynamicDescriptorPool =
contextVk->getDynamicDescriptorPool(descriptorSetIndex);
uint32_t potentialNewCount = descriptorSetIndex + 1;
if (potentialNewCount > mDescriptorSets.size())
{
mDescriptorSets.resize(potentialNewCount, VK_NULL_HANDLE);
}
const vk::DescriptorSetLayout &descriptorSetLayout =
mDescriptorSetLayouts[descriptorSetIndex].get();
ANGLE_TRY(dynamicDescriptorPool->allocateSets(contextVk, descriptorSetLayout.ptr(), 1,
&mDescriptorPoolBindings[descriptorSetIndex],
&mDescriptorSets[descriptorSetIndex]));
mEmptyDescriptorSets[descriptorSetIndex] = VK_NULL_HANDLE;
return angle::Result::Continue;
}
void ProgramVk::getUniformfv(const gl::Context *context, GLint location, GLfloat *params) const
{
getUniformImpl(location, params, GL_FLOAT);
}
void ProgramVk::getUniformiv(const gl::Context *context, GLint location, GLint *params) const
{
getUniformImpl(location, params, GL_INT);
}
void ProgramVk::getUniformuiv(const gl::Context *context, GLint location, GLuint *params) const
{
getUniformImpl(location, params, GL_UNSIGNED_INT);
}
angle::Result ProgramVk::updateUniforms(ContextVk *contextVk)
{
ASSERT(dirtyUniforms());
// Update buffer memory by immediate mapping. This immediate update only works once.
bool anyNewBufferAllocated = false;
for (gl::ShaderType shaderType : gl::AllGLES2ShaderTypes())
{
DefaultUniformBlock &uniformBlock = mDefaultUniformBlocks[shaderType];
if (mDefaultUniformBlocksDirty[shaderType])
{
bool bufferModified = false;
ANGLE_TRY(SyncDefaultUniformBlock(contextVk, &uniformBlock.storage,
uniformBlock.uniformData,
&mUniformBlocksOffsets[shaderType], &bufferModified));
mDefaultUniformBlocksDirty.reset(shaderType);
if (bufferModified)
{
anyNewBufferAllocated = true;
}
}
}
if (anyNewBufferAllocated)
{
// We need to reinitialize the descriptor sets if we newly allocated buffers since we can't
// modify the descriptor sets once initialized.
ANGLE_TRY(allocateDescriptorSet(contextVk, kUniformsDescriptorSetIndex));
ANGLE_TRY(updateDefaultUniformsDescriptorSet(contextVk));
}
return angle::Result::Continue;
}
angle::Result ProgramVk::updateDefaultUniformsDescriptorSet(ContextVk *contextVk)
{
gl::ShaderMap<VkDescriptorBufferInfo> descriptorBufferInfo;
gl::ShaderMap<VkWriteDescriptorSet> writeDescriptorInfo;
// Write default uniforms for each shader type.
for (gl::ShaderType shaderType : gl::AllGLES2ShaderTypes())
{
DefaultUniformBlock &uniformBlock = mDefaultUniformBlocks[shaderType];
VkDescriptorBufferInfo &bufferInfo = descriptorBufferInfo[shaderType];
VkWriteDescriptorSet &writeInfo = writeDescriptorInfo[shaderType];
if (!uniformBlock.uniformData.empty())
{
const vk::BufferHelper *bufferHelper = uniformBlock.storage.getCurrentBuffer();
bufferInfo.buffer = bufferHelper->getBuffer().getHandle();
}
else
{
bufferInfo.buffer = mEmptyUniformBlockStorage.getBuffer().getHandle();
}
bufferInfo.offset = 0;
bufferInfo.range = VK_WHOLE_SIZE;
writeInfo.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
writeInfo.pNext = nullptr;
writeInfo.dstSet = mDescriptorSets[kUniformsDescriptorSetIndex];
writeInfo.dstBinding = static_cast<uint32_t>(shaderType);
writeInfo.dstArrayElement = 0;
writeInfo.descriptorCount = 1;
writeInfo.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC;
writeInfo.pImageInfo = nullptr;
writeInfo.pBufferInfo = &bufferInfo;
writeInfo.pTexelBufferView = nullptr;
}
VkDevice device = contextVk->getDevice();
constexpr uint32_t kShaderTypeMin = static_cast<uint32_t>(gl::kGLES2ShaderTypeMin);
constexpr uint32_t kShaderTypeMax = static_cast<uint32_t>(gl::kGLES2ShaderTypeMax);
constexpr uint32_t kGLES2ShaderCount = kShaderTypeMax - kShaderTypeMin + 1;
vkUpdateDescriptorSets(device, kGLES2ShaderCount, writeDescriptorInfo.data(), 0, nullptr);
return angle::Result::Continue;
}
angle::Result ProgramVk::updateUniformBuffersDescriptorSet(ContextVk *contextVk,
vk::FramebufferHelper *framebuffer)
{
ASSERT(hasUniformBuffers());
ANGLE_TRY(allocateDescriptorSet(contextVk, kUniformBlockDescriptorSetIndex));
VkDescriptorSet descriptorSet = mDescriptorSets[kUniformBlockDescriptorSetIndex];
gl::UniformBuffersArray<VkDescriptorBufferInfo> descriptorBufferInfo;
gl::UniformBuffersArray<VkWriteDescriptorSet> writeDescriptorInfo;
uint32_t writeCount = 0;
uint32_t currentBinding = 0;
// Write uniform buffers.
const gl::State &glState = contextVk->getState();
const std::vector<gl::InterfaceBlock> &uniformBlocks = mState.getUniformBlocks();
for (uint32_t bufferIndex = 0; bufferIndex < uniformBlocks.size(); ++bufferIndex)
{
if (glState.getIndexedUniformBuffer(uniformBlocks[bufferIndex].binding).get() == nullptr)
{
continue;
}
VkWriteDescriptorSet &writeInfo = writeDescriptorInfo[writeCount];
VkDescriptorBufferInfo &bufferInfo = descriptorBufferInfo[writeCount];
const gl::InterfaceBlock &uniformBlock = uniformBlocks[bufferIndex];
const gl::OffsetBindingPointer<gl::Buffer> &bufferBinding =
glState.getIndexedUniformBuffer(uniformBlock.binding);
gl::Buffer *buffer = bufferBinding.get();
ASSERT(buffer != nullptr);
// Make sure there's no possible under/overflow with binding size.
static_assert(sizeof(VkDeviceSize) >= sizeof(bufferBinding.getSize()),
"VkDeviceSize too small");
ASSERT(bufferBinding.getSize() >= 0);
BufferVk *bufferVk = vk::GetImpl(buffer);
GLintptr offset = bufferBinding.getOffset();
VkDeviceSize size = bufferBinding.getSize();
VkDeviceSize blockSize = uniformBlock.dataSize;
vk::BufferHelper &bufferHelper = bufferVk->getBuffer();
ANGLE_TRY(bufferVk->onRead(contextVk, framebuffer, VK_ACCESS_UNIFORM_READ_BIT));
// If size is 0, we can't always use VK_WHOLE_SIZE (or bufferHelper.getSize()), as the
// backing buffer may be larger than maxUniformBufferRange. In that case, we use the
// minimum of the backing buffer size (what's left after offset) and the uniform buffer
// size as defined by the shader.
size = std::min(size > 0 ? size : (bufferHelper.getSize() - offset), blockSize);
bufferInfo.buffer = bufferHelper.getBuffer().getHandle();
bufferInfo.offset = offset;
bufferInfo.range = size;
if (!uniformBlock.isArray || uniformBlock.arrayElement == 0)
{
// Array indices of the same buffer binding are placed sequentially in `uniformBlocks`.
// Thus, the uniform block binding is updated only when array index 0 is encountered.
currentBinding = bufferIndex;
}
writeInfo.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
writeInfo.pNext = nullptr;
writeInfo.dstSet = descriptorSet;
writeInfo.dstBinding = currentBinding;
writeInfo.dstArrayElement = uniformBlock.isArray ? uniformBlock.arrayElement : 0;
writeInfo.descriptorCount = 1;
writeInfo.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
writeInfo.pImageInfo = nullptr;
writeInfo.pBufferInfo = &bufferInfo;
writeInfo.pTexelBufferView = nullptr;
ASSERT(writeInfo.pBufferInfo[0].buffer != VK_NULL_HANDLE);
++writeCount;
}
VkDevice device = contextVk->getDevice();
vkUpdateDescriptorSets(device, writeCount, writeDescriptorInfo.data(), 0, nullptr);
return angle::Result::Continue;
}
angle::Result ProgramVk::updateTexturesDescriptorSet(ContextVk *contextVk,
vk::FramebufferHelper *framebuffer)
{
ASSERT(hasTextures());
ANGLE_TRY(allocateDescriptorSet(contextVk, kTextureDescriptorSetIndex));
VkDescriptorSet descriptorSet = mDescriptorSets[kTextureDescriptorSetIndex];
gl::ActiveTextureArray<VkDescriptorImageInfo> descriptorImageInfo;
gl::ActiveTextureArray<VkWriteDescriptorSet> writeDescriptorInfo;
uint32_t writeCount = 0;
const gl::ActiveTextureArray<TextureVk *> &activeTextures = contextVk->getActiveTextures();
for (uint32_t textureIndex = 0; textureIndex < mState.getSamplerBindings().size();
++textureIndex)
{
const gl::SamplerBinding &samplerBinding = mState.getSamplerBindings()[textureIndex];
ASSERT(!samplerBinding.unreferenced);
for (uint32_t arrayElement = 0; arrayElement < samplerBinding.boundTextureUnits.size();
++arrayElement)
{
GLuint textureUnit = samplerBinding.boundTextureUnits[arrayElement];
TextureVk *textureVk = activeTextures[textureUnit];
// Ensure any writes to the textures are flushed before we read from them.
ANGLE_TRY(textureVk->ensureImageInitialized(contextVk));
vk::ImageHelper &image = textureVk->getImage();
// Ensure the image is in read-only layout
if (image.isLayoutChangeNecessary(vk::ImageLayout::FragmentShaderReadOnly))
{
vk::CommandBuffer *srcLayoutChange;
ANGLE_TRY(image.recordCommands(contextVk, &srcLayoutChange));
VkImageAspectFlags aspectFlags = image.getAspectFlags();
ASSERT(aspectFlags != 0);
image.changeLayout(aspectFlags, vk::ImageLayout::FragmentShaderReadOnly,
srcLayoutChange);
}
image.addReadDependency(framebuffer);
VkDescriptorImageInfo &imageInfo = descriptorImageInfo[writeCount];
imageInfo.sampler = textureVk->getSampler().getHandle();
imageInfo.imageView = textureVk->getReadImageView().getHandle();
imageInfo.imageLayout = image.getCurrentLayout();
VkWriteDescriptorSet &writeInfo = writeDescriptorInfo[writeCount];
writeInfo.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
writeInfo.pNext = nullptr;
writeInfo.dstSet = descriptorSet;
writeInfo.dstBinding = textureIndex;
writeInfo.dstArrayElement = arrayElement;
writeInfo.descriptorCount = 1;
writeInfo.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
writeInfo.pImageInfo = &imageInfo;
writeInfo.pBufferInfo = nullptr;
writeInfo.pTexelBufferView = nullptr;
writeCount++;
}
}
VkDevice device = contextVk->getDevice();
ASSERT(writeCount > 0);
vkUpdateDescriptorSets(device, writeCount, writeDescriptorInfo.data(), 0, nullptr);
return angle::Result::Continue;
}
void ProgramVk::setDefaultUniformBlocksMinSizeForTesting(size_t minSize)
{
for (DefaultUniformBlock &block : mDefaultUniformBlocks)
{
block.storage.setMinimumSizeForTesting(minSize);
}
}
angle::Result ProgramVk::updateDescriptorSets(ContextVk *contextVk,
vk::CommandBuffer *commandBuffer)
{
// Can probably use better dirty bits here.
if (mDescriptorSets.empty())
return angle::Result::Continue;
// Find the maximum non-null descriptor set. This is used in conjunction with a driver
// workaround to bind empty descriptor sets only for gaps in between 0 and max and avoid
// binding unnecessary empty descriptor sets for the sets beyond max.
size_t descriptorSetRange = 0;
for (size_t descriptorSetIndex = 0; descriptorSetIndex < mDescriptorSets.size();
++descriptorSetIndex)
{
if (mDescriptorSets[descriptorSetIndex] != VK_NULL_HANDLE)
{
descriptorSetRange = descriptorSetIndex + 1;
}
}
for (size_t descriptorSetIndex = 0; descriptorSetIndex < descriptorSetRange;
++descriptorSetIndex)
{
VkDescriptorSet descSet = mDescriptorSets[descriptorSetIndex];
if (descSet == VK_NULL_HANDLE)
{
if (!contextVk->getRenderer()->getFeatures().bindEmptyForUnusedDescriptorSets.enabled)
{
continue;
}
// Workaround a driver bug where missing (though unused) descriptor sets indices cause
// later sets to misbehave.
if (mEmptyDescriptorSets[descriptorSetIndex] == VK_NULL_HANDLE)
{
vk::DynamicDescriptorPool *dynamicDescriptorPool =
contextVk->getDynamicDescriptorPool(descriptorSetIndex);
const vk::DescriptorSetLayout &descriptorSetLayout =
mDescriptorSetLayouts[descriptorSetIndex].get();
ANGLE_TRY(dynamicDescriptorPool->allocateSets(
contextVk, descriptorSetLayout.ptr(), 1,
&mDescriptorPoolBindings[descriptorSetIndex],
&mEmptyDescriptorSets[descriptorSetIndex]));
}
descSet = mEmptyDescriptorSets[descriptorSetIndex];
}
constexpr uint32_t kShaderTypeMin = static_cast<uint32_t>(gl::kGLES2ShaderTypeMin);
constexpr uint32_t kShaderTypeMax = static_cast<uint32_t>(gl::kGLES2ShaderTypeMax);
constexpr uint32_t kShaderTypeCount = kShaderTypeMax - kShaderTypeMin + 1;
// Default uniforms are encompassed in a block per shader stage, and they are assigned
// through dynamic uniform buffers (requiring dynamic offsets). No other descriptor
// requires a dynamic offset.
const uint32_t uniformBlockOffsetCount =
descriptorSetIndex == kUniformsDescriptorSetIndex ? kShaderTypeCount : 0;
commandBuffer->bindGraphicsDescriptorSets(mPipelineLayout.get(), descriptorSetIndex, 1,
&descSet, uniformBlockOffsetCount,
mUniformBlocksOffsets.data() + kShaderTypeMin);
}
return angle::Result::Continue;
}
} // namespace rx