Hash :
4747414e
Author :
Date :
2017-12-29T13:41:00
Use dirty bit for element array buffer BUG=angleproject:2188 Change-Id: I2b2aced542032c7c263f911ef1516af1d42190cc Reviewed-on: https://chromium-review.googlesource.com/846346 Commit-Queue: Geoff Lang <geofflang@chromium.org> Reviewed-by: Geoff Lang <geofflang@chromium.org> Reviewed-by: Corentin Wallez <cwallez@chromium.org>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
//
// Copyright 2015 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// VertexArrayGL.cpp: Implements the class methods for VertexArrayGL.
#include "libANGLE/renderer/gl/VertexArrayGL.h"
#include "common/bitset_utils.h"
#include "common/debug.h"
#include "common/mathutil.h"
#include "common/utilities.h"
#include "libANGLE/Buffer.h"
#include "libANGLE/angletypes.h"
#include "libANGLE/formatutils.h"
#include "libANGLE/renderer/gl/BufferGL.h"
#include "libANGLE/renderer/gl/FunctionsGL.h"
#include "libANGLE/renderer/gl/StateManagerGL.h"
#include "libANGLE/renderer/gl/renderergl_utils.h"
using namespace gl;
namespace rx
{
namespace
{
// Warning: you should ensure binding really matches attrib.bindingIndex before using this function.
bool AttributeNeedsStreaming(const VertexAttribute &attrib, const VertexBinding &binding)
{
return (attrib.enabled && binding.getBuffer().get() == nullptr);
}
bool SameVertexAttribFormat(const VertexAttribute &a, const VertexAttribute &b)
{
return a.size == b.size && a.type == b.type && a.normalized == b.normalized &&
a.pureInteger == b.pureInteger && a.relativeOffset == b.relativeOffset;
}
bool SameVertexBuffer(const VertexBinding &a, const VertexBinding &b)
{
return a.getStride() == b.getStride() && a.getOffset() == b.getOffset() &&
a.getBuffer().get() == b.getBuffer().get();
}
bool IsVertexAttribPointerSupported(size_t attribIndex, const VertexAttribute &attrib)
{
return (attribIndex == attrib.bindingIndex && attrib.relativeOffset == 0);
}
GLuint GetAdjustedDivisor(GLuint numViews, GLuint divisor)
{
return numViews * divisor;
}
} // anonymous namespace
VertexArrayGL::VertexArrayGL(const VertexArrayState &state,
const FunctionsGL *functions,
StateManagerGL *stateManager)
: VertexArrayImpl(state),
mFunctions(functions),
mStateManager(stateManager),
mVertexArrayID(0),
mAppliedNumViews(1),
mAppliedElementArrayBuffer(),
mAppliedBindings(state.getMaxBindings()),
mStreamingElementArrayBufferSize(0),
mStreamingElementArrayBuffer(0),
mStreamingArrayBufferSize(0),
mStreamingArrayBuffer(0)
{
ASSERT(mFunctions);
ASSERT(mStateManager);
mFunctions->genVertexArrays(1, &mVertexArrayID);
// Set the cached vertex attribute array and vertex attribute binding array size
GLuint maxVertexAttribs = static_cast<GLuint>(state.getMaxAttribs());
for (GLuint i = 0; i < maxVertexAttribs; i++)
{
mAppliedAttributes.emplace_back(i);
}
}
VertexArrayGL::~VertexArrayGL()
{
}
void VertexArrayGL::destroy(const gl::Context *context)
{
mStateManager->deleteVertexArray(mVertexArrayID);
mVertexArrayID = 0;
mAppliedNumViews = 1;
mStateManager->deleteBuffer(mStreamingElementArrayBuffer);
mStreamingElementArrayBufferSize = 0;
mStreamingElementArrayBuffer = 0;
mStateManager->deleteBuffer(mStreamingArrayBuffer);
mStreamingArrayBufferSize = 0;
mStreamingArrayBuffer = 0;
mAppliedElementArrayBuffer.set(context, nullptr);
for (auto &binding : mAppliedBindings)
{
binding.setBuffer(context, nullptr);
}
}
gl::Error VertexArrayGL::syncDrawArraysState(const gl::Context *context,
const gl::AttributesMask &activeAttributesMask,
GLint first,
GLsizei count,
GLsizei instanceCount) const
{
return syncDrawState(context, activeAttributesMask, first, count, GL_NONE, nullptr,
instanceCount, false, nullptr);
}
gl::Error VertexArrayGL::syncDrawElementsState(const gl::Context *context,
const gl::AttributesMask &activeAttributesMask,
GLsizei count,
GLenum type,
const void *indices,
GLsizei instanceCount,
bool primitiveRestartEnabled,
const void **outIndices) const
{
return syncDrawState(context, activeAttributesMask, 0, count, type, indices, instanceCount,
primitiveRestartEnabled, outIndices);
}
void VertexArrayGL::updateElementArrayBufferBinding(const gl::Context *context) const
{
gl::Buffer *elementArrayBuffer = mState.getElementArrayBuffer().get();
if (elementArrayBuffer != nullptr && elementArrayBuffer != mAppliedElementArrayBuffer.get())
{
const BufferGL *bufferGL = GetImplAs<BufferGL>(elementArrayBuffer);
mStateManager->bindBuffer(gl::BufferBinding::ElementArray, bufferGL->getBufferID());
mAppliedElementArrayBuffer.set(context, elementArrayBuffer);
}
}
gl::Error VertexArrayGL::syncDrawState(const gl::Context *context,
const gl::AttributesMask &activeAttributesMask,
GLint first,
GLsizei count,
GLenum type,
const void *indices,
GLsizei instanceCount,
bool primitiveRestartEnabled,
const void **outIndices) const
{
mStateManager->bindVertexArray(mVertexArrayID, getAppliedElementArrayBufferID());
// Check if any attributes need to be streamed, determines if the index range needs to be
// computed
bool attributesNeedStreaming = mAttributesNeedStreaming.any();
// Determine if an index buffer needs to be streamed and the range of vertices that need to be
// copied
IndexRange indexRange;
if (type != GL_NONE)
{
ANGLE_TRY(syncIndexData(context, count, type, indices, primitiveRestartEnabled,
attributesNeedStreaming, &indexRange, outIndices));
}
else
{
// Not an indexed call, set the range to [first, first + count - 1]
indexRange.start = first;
indexRange.end = first + count - 1;
}
if (attributesNeedStreaming)
{
ANGLE_TRY(streamAttributes(activeAttributesMask, instanceCount, indexRange));
}
return gl::NoError();
}
gl::Error VertexArrayGL::syncIndexData(const gl::Context *context,
GLsizei count,
GLenum type,
const void *indices,
bool primitiveRestartEnabled,
bool attributesNeedStreaming,
IndexRange *outIndexRange,
const void **outIndices) const
{
ASSERT(outIndices);
gl::Buffer *elementArrayBuffer = mState.getElementArrayBuffer().get();
// Need to check the range of indices if attributes need to be streamed
if (elementArrayBuffer != nullptr)
{
ASSERT(elementArrayBuffer == mAppliedElementArrayBuffer.get());
// Only compute the index range if the attributes also need to be streamed
if (attributesNeedStreaming)
{
ptrdiff_t elementArrayBufferOffset = reinterpret_cast<ptrdiff_t>(indices);
Error error = mState.getElementArrayBuffer()->getIndexRange(
context, type, elementArrayBufferOffset, count, primitiveRestartEnabled,
outIndexRange);
if (error.isError())
{
return error;
}
}
// Indices serves as an offset into the index buffer in this case, use the same value for
// the draw call
*outIndices = indices;
}
else
{
// Need to stream the index buffer
// TODO: if GLES, nothing needs to be streamed
// Only compute the index range if the attributes also need to be streamed
if (attributesNeedStreaming)
{
*outIndexRange = ComputeIndexRange(type, indices, count, primitiveRestartEnabled);
}
// Allocate the streaming element array buffer
if (mStreamingElementArrayBuffer == 0)
{
mFunctions->genBuffers(1, &mStreamingElementArrayBuffer);
mStreamingElementArrayBufferSize = 0;
}
mStateManager->bindBuffer(gl::BufferBinding::ElementArray, mStreamingElementArrayBuffer);
mAppliedElementArrayBuffer.set(context, nullptr);
// Make sure the element array buffer is large enough
const Type &indexTypeInfo = GetTypeInfo(type);
size_t requiredStreamingBufferSize = indexTypeInfo.bytes * count;
if (requiredStreamingBufferSize > mStreamingElementArrayBufferSize)
{
// Copy the indices in while resizing the buffer
mFunctions->bufferData(GL_ELEMENT_ARRAY_BUFFER, requiredStreamingBufferSize, indices,
GL_DYNAMIC_DRAW);
mStreamingElementArrayBufferSize = requiredStreamingBufferSize;
}
else
{
// Put the indices at the beginning of the buffer
mFunctions->bufferSubData(GL_ELEMENT_ARRAY_BUFFER, 0, requiredStreamingBufferSize,
indices);
}
// Set the index offset for the draw call to zero since the supplied index pointer is to
// client data
*outIndices = nullptr;
}
return gl::NoError();
}
void VertexArrayGL::computeStreamingAttributeSizes(const gl::AttributesMask &activeAttributesMask,
GLsizei instanceCount,
const gl::IndexRange &indexRange,
size_t *outStreamingDataSize,
size_t *outMaxAttributeDataSize) const
{
*outStreamingDataSize = 0;
*outMaxAttributeDataSize = 0;
ASSERT(mAttributesNeedStreaming.any());
const auto &attribs = mState.getVertexAttributes();
const auto &bindings = mState.getVertexBindings();
gl::AttributesMask attribsToStream = (mAttributesNeedStreaming & activeAttributesMask);
for (auto idx : attribsToStream)
{
const auto &attrib = attribs[idx];
const auto &binding = bindings[attrib.bindingIndex];
ASSERT(AttributeNeedsStreaming(attrib, binding));
// If streaming is going to be required, compute the size of the required buffer
// and how much slack space at the beginning of the buffer will be required by determining
// the attribute with the largest data size.
size_t typeSize = ComputeVertexAttributeTypeSize(attrib);
GLuint adjustedDivisor = GetAdjustedDivisor(mAppliedNumViews, binding.getDivisor());
*outStreamingDataSize +=
typeSize * ComputeVertexBindingElementCount(adjustedDivisor, indexRange.vertexCount(),
instanceCount);
*outMaxAttributeDataSize = std::max(*outMaxAttributeDataSize, typeSize);
}
}
gl::Error VertexArrayGL::streamAttributes(const gl::AttributesMask &activeAttributesMask,
GLsizei instanceCount,
const gl::IndexRange &indexRange) const
{
// Sync the vertex attribute state and track what data needs to be streamed
size_t streamingDataSize = 0;
size_t maxAttributeDataSize = 0;
computeStreamingAttributeSizes(activeAttributesMask, instanceCount, indexRange,
&streamingDataSize, &maxAttributeDataSize);
if (streamingDataSize == 0)
{
return gl::NoError();
}
if (mStreamingArrayBuffer == 0)
{
mFunctions->genBuffers(1, &mStreamingArrayBuffer);
mStreamingArrayBufferSize = 0;
}
// If first is greater than zero, a slack space needs to be left at the beginning of the buffer
// so that the same 'first' argument can be passed into the draw call.
const size_t bufferEmptySpace = maxAttributeDataSize * indexRange.start;
const size_t requiredBufferSize = streamingDataSize + bufferEmptySpace;
mStateManager->bindBuffer(gl::BufferBinding::Array, mStreamingArrayBuffer);
if (requiredBufferSize > mStreamingArrayBufferSize)
{
mFunctions->bufferData(GL_ARRAY_BUFFER, requiredBufferSize, nullptr, GL_DYNAMIC_DRAW);
mStreamingArrayBufferSize = requiredBufferSize;
}
// Unmapping a buffer can return GL_FALSE to indicate that the system has corrupted the data
// somehow (such as by a screen change), retry writing the data a few times and return
// OUT_OF_MEMORY if that fails.
GLboolean unmapResult = GL_FALSE;
size_t unmapRetryAttempts = 5;
while (unmapResult != GL_TRUE && --unmapRetryAttempts > 0)
{
uint8_t *bufferPointer = MapBufferRangeWithFallback(mFunctions, GL_ARRAY_BUFFER, 0,
requiredBufferSize, GL_MAP_WRITE_BIT);
size_t curBufferOffset = bufferEmptySpace;
const auto &attribs = mState.getVertexAttributes();
const auto &bindings = mState.getVertexBindings();
gl::AttributesMask attribsToStream = (mAttributesNeedStreaming & activeAttributesMask);
for (auto idx : attribsToStream)
{
const auto &attrib = attribs[idx];
ASSERT(IsVertexAttribPointerSupported(idx, attrib));
const auto &binding = bindings[attrib.bindingIndex];
ASSERT(AttributeNeedsStreaming(attrib, binding));
GLuint adjustedDivisor = GetAdjustedDivisor(mAppliedNumViews, binding.getDivisor());
const size_t streamedVertexCount = ComputeVertexBindingElementCount(
adjustedDivisor, indexRange.vertexCount(), instanceCount);
const size_t sourceStride = ComputeVertexAttributeStride(attrib, binding);
const size_t destStride = ComputeVertexAttributeTypeSize(attrib);
// Vertices do not apply the 'start' offset when the divisor is non-zero even when doing
// a non-instanced draw call
const size_t firstIndex = adjustedDivisor == 0 ? indexRange.start : 0;
// Attributes using client memory ignore the VERTEX_ATTRIB_BINDING state.
// https://www.opengl.org/registry/specs/ARB/vertex_attrib_binding.txt
const uint8_t *inputPointer = reinterpret_cast<const uint8_t *>(attrib.pointer);
// Pack the data when copying it, user could have supplied a very large stride that
// would cause the buffer to be much larger than needed.
if (destStride == sourceStride)
{
// Can copy in one go, the data is packed
memcpy(bufferPointer + curBufferOffset, inputPointer + (sourceStride * firstIndex),
destStride * streamedVertexCount);
}
else
{
// Copy each vertex individually
for (size_t vertexIdx = 0; vertexIdx < streamedVertexCount; vertexIdx++)
{
uint8_t *out = bufferPointer + curBufferOffset + (destStride * vertexIdx);
const uint8_t *in = inputPointer + sourceStride * (vertexIdx + firstIndex);
memcpy(out, in, destStride);
}
}
// Compute where the 0-index vertex would be.
const size_t vertexStartOffset = curBufferOffset - (firstIndex * destStride);
callVertexAttribPointer(static_cast<GLuint>(idx), attrib,
static_cast<GLsizei>(destStride),
static_cast<GLintptr>(vertexStartOffset));
curBufferOffset += destStride * streamedVertexCount;
}
unmapResult = mFunctions->unmapBuffer(GL_ARRAY_BUFFER);
}
if (unmapResult != GL_TRUE)
{
return gl::OutOfMemory() << "Failed to unmap the client data streaming buffer.";
}
return gl::NoError();
}
GLuint VertexArrayGL::getVertexArrayID() const
{
return mVertexArrayID;
}
GLuint VertexArrayGL::getAppliedElementArrayBufferID() const
{
if (mAppliedElementArrayBuffer.get() == nullptr)
{
return mStreamingElementArrayBuffer;
}
return GetImplAs<BufferGL>(mAppliedElementArrayBuffer.get())->getBufferID();
}
void VertexArrayGL::updateNeedsStreaming(size_t attribIndex)
{
const auto &attrib = mState.getVertexAttribute(attribIndex);
const auto &binding = mState.getBindingFromAttribIndex(attribIndex);
mAttributesNeedStreaming.set(attribIndex, AttributeNeedsStreaming(attrib, binding));
}
void VertexArrayGL::updateAttribEnabled(size_t attribIndex)
{
const bool enabled = mState.getVertexAttribute(attribIndex).enabled;
if (mAppliedAttributes[attribIndex].enabled == enabled)
{
return;
}
updateNeedsStreaming(attribIndex);
if (enabled)
{
mFunctions->enableVertexAttribArray(static_cast<GLuint>(attribIndex));
}
else
{
mFunctions->disableVertexAttribArray(static_cast<GLuint>(attribIndex));
}
mAppliedAttributes[attribIndex].enabled = enabled;
}
void VertexArrayGL::updateAttribPointer(const gl::Context *context, size_t attribIndex)
{
const VertexAttribute &attrib = mState.getVertexAttribute(attribIndex);
// According to SPEC, VertexAttribPointer should update the binding indexed attribIndex instead
// of the binding indexed attrib.bindingIndex (unless attribIndex == attrib.bindingIndex).
const VertexBinding &binding = mState.getVertexBinding(attribIndex);
// Since mAttributesNeedStreaming[attribIndex] keeps the value set in the last draw, here we
// only need to update it when the buffer has been changed. e.g. When we set an attribute to be
// streamed in the last draw, and only change its format in this draw without calling
// updateNeedsStreaming, it will still be streamed because the flag is already on.
const auto &bindingBuffer = binding.getBuffer();
if (bindingBuffer != mAppliedBindings[attribIndex].getBuffer())
{
updateNeedsStreaming(attribIndex);
}
// Early return when the vertex attribute isn't using a buffer object:
// - If we need to stream, defer the attribPointer to the draw call.
// - Skip the attribute that is disabled and uses a client memory pointer.
// - Skip the attribute whose buffer is detached by BindVertexBuffer. Since it cannot have a
// client memory pointer either, it must be disabled and shouldn't affect the draw.
const Buffer *arrayBuffer = bindingBuffer.get();
if (arrayBuffer == nullptr)
{
// Mark the applied binding isn't using a buffer by setting its buffer to nullptr so that if
// it starts to use a buffer later, there is no chance that the caching will skip it.
mAppliedBindings[attribIndex].setBuffer(context, nullptr);
return;
}
// We do not need to compare attrib.pointer because when we use a different client memory
// pointer, we don't need to update mAttributesNeedStreaming by binding.buffer and we won't
// update attribPointer in this function.
if ((SameVertexAttribFormat(mAppliedAttributes[attribIndex], attrib)) &&
(mAppliedAttributes[attribIndex].bindingIndex == attrib.bindingIndex) &&
(SameVertexBuffer(mAppliedBindings[attribIndex], binding)))
{
return;
}
// Since ANGLE always uses a non-zero VAO, we cannot use a client memory pointer on it:
// [OpenGL ES 3.0.2] Section 2.8 page 24:
// An INVALID_OPERATION error is generated when a non-zero vertex array object is bound,
// zero is bound to the ARRAY_BUFFER buffer object binding point, and the pointer argument
// is not NULL.
const BufferGL *arrayBufferGL = GetImplAs<BufferGL>(arrayBuffer);
mStateManager->bindBuffer(gl::BufferBinding::Array, arrayBufferGL->getBufferID());
callVertexAttribPointer(static_cast<GLuint>(attribIndex), attrib, binding.getStride(),
binding.getOffset());
mAppliedAttributes[attribIndex].size = attrib.size;
mAppliedAttributes[attribIndex].type = attrib.type;
mAppliedAttributes[attribIndex].normalized = attrib.normalized;
mAppliedAttributes[attribIndex].pureInteger = attrib.pureInteger;
// After VertexAttribPointer, attrib.relativeOffset is set to 0 and attrib.bindingIndex is set
// to attribIndex in driver. If attrib.relativeOffset != 0 or attrib.bindingIndex !=
// attribIndex, they should be set in updateAttribFormat and updateAttribBinding. The cache
// should be consistent with driver so that we won't miss anything.
mAppliedAttributes[attribIndex].relativeOffset = 0;
mAppliedAttributes[attribIndex].bindingIndex = static_cast<GLuint>(attribIndex);
mAppliedBindings[attribIndex].setStride(binding.getStride());
mAppliedBindings[attribIndex].setOffset(binding.getOffset());
mAppliedBindings[attribIndex].setBuffer(context, binding.getBuffer().get());
}
void VertexArrayGL::callVertexAttribPointer(GLuint attribIndex,
const VertexAttribute &attrib,
GLsizei stride,
GLintptr offset) const
{
const GLvoid *pointer = reinterpret_cast<const GLvoid *>(offset);
if (attrib.pureInteger)
{
ASSERT(!attrib.normalized);
mFunctions->vertexAttribIPointer(attribIndex, attrib.size, attrib.type, stride, pointer);
}
else
{
mFunctions->vertexAttribPointer(attribIndex, attrib.size, attrib.type, attrib.normalized,
stride, pointer);
}
}
bool VertexArrayGL::supportVertexAttribBinding() const
{
ASSERT(mFunctions);
return (mFunctions->vertexAttribBinding != nullptr);
}
void VertexArrayGL::updateAttribFormat(size_t attribIndex)
{
ASSERT(supportVertexAttribBinding());
const VertexAttribute &attrib = mState.getVertexAttribute(attribIndex);
if (SameVertexAttribFormat(mAppliedAttributes[attribIndex], attrib))
{
return;
}
if (attrib.pureInteger)
{
ASSERT(!attrib.normalized);
mFunctions->vertexAttribIFormat(static_cast<GLuint>(attribIndex), attrib.size, attrib.type,
attrib.relativeOffset);
}
else
{
mFunctions->vertexAttribFormat(static_cast<GLuint>(attribIndex), attrib.size, attrib.type,
attrib.normalized, attrib.relativeOffset);
}
mAppliedAttributes[attribIndex].size = attrib.size;
mAppliedAttributes[attribIndex].type = attrib.type;
mAppliedAttributes[attribIndex].normalized = attrib.normalized;
mAppliedAttributes[attribIndex].pureInteger = attrib.pureInteger;
mAppliedAttributes[attribIndex].relativeOffset = attrib.relativeOffset;
}
void VertexArrayGL::updateAttribBinding(size_t attribIndex)
{
ASSERT(supportVertexAttribBinding());
GLuint bindingIndex = mState.getVertexAttribute(attribIndex).bindingIndex;
if (mAppliedAttributes[attribIndex].bindingIndex == bindingIndex)
{
return;
}
mFunctions->vertexAttribBinding(static_cast<GLuint>(attribIndex), bindingIndex);
mAppliedAttributes[attribIndex].bindingIndex = bindingIndex;
}
void VertexArrayGL::updateBindingBuffer(const gl::Context *context, size_t bindingIndex)
{
ASSERT(supportVertexAttribBinding());
const VertexBinding &binding = mState.getVertexBinding(bindingIndex);
if (SameVertexBuffer(mAppliedBindings[bindingIndex], binding))
{
return;
}
const Buffer *arrayBuffer = binding.getBuffer().get();
GLuint bufferId = 0;
if (arrayBuffer != nullptr)
{
bufferId = GetImplAs<BufferGL>(arrayBuffer)->getBufferID();
}
mFunctions->bindVertexBuffer(static_cast<GLuint>(bindingIndex), bufferId, binding.getOffset(),
binding.getStride());
mAppliedBindings[bindingIndex].setStride(binding.getStride());
mAppliedBindings[bindingIndex].setOffset(binding.getOffset());
mAppliedBindings[bindingIndex].setBuffer(context, binding.getBuffer().get());
}
void VertexArrayGL::updateBindingDivisor(size_t bindingIndex)
{
GLuint adjustedDivisor =
GetAdjustedDivisor(mAppliedNumViews, mState.getVertexBinding(bindingIndex).getDivisor());
if (mAppliedBindings[bindingIndex].getDivisor() == adjustedDivisor)
{
return;
}
if (supportVertexAttribBinding())
{
mFunctions->vertexBindingDivisor(static_cast<GLuint>(bindingIndex), adjustedDivisor);
}
else
{
// We can only use VertexAttribDivisor on platforms that don't support Vertex Attrib
// Binding.
mFunctions->vertexAttribDivisor(static_cast<GLuint>(bindingIndex), adjustedDivisor);
}
mAppliedBindings[bindingIndex].setDivisor(adjustedDivisor);
}
void VertexArrayGL::syncState(const gl::Context *context, const VertexArray::DirtyBits &dirtyBits)
{
mStateManager->bindVertexArray(mVertexArrayID, getAppliedElementArrayBufferID());
for (size_t dirtyBit : dirtyBits)
{
if (dirtyBit == VertexArray::DIRTY_BIT_ELEMENT_ARRAY_BUFFER)
{
updateElementArrayBufferBinding(context);
continue;
}
size_t index = VertexArray::GetVertexIndexFromDirtyBit(dirtyBit);
if (dirtyBit >= VertexArray::DIRTY_BIT_ATTRIB_0_ENABLED &&
dirtyBit < VertexArray::DIRTY_BIT_ATTRIB_MAX_ENABLED)
{
updateAttribEnabled(index);
}
else if (dirtyBit >= VertexArray::DIRTY_BIT_ATTRIB_0_POINTER &&
dirtyBit < VertexArray::DIRTY_BIT_ATTRIB_MAX_POINTER)
{
updateAttribPointer(context, index);
}
else if (dirtyBit >= VertexArray::DIRTY_BIT_ATTRIB_0_FORMAT &&
dirtyBit < VertexArray::DIRTY_BIT_ATTRIB_MAX_FORMAT)
{
ASSERT(supportVertexAttribBinding());
updateAttribFormat(index);
}
else if (dirtyBit >= VertexArray::DIRTY_BIT_ATTRIB_0_BINDING &&
dirtyBit < VertexArray::DIRTY_BIT_ATTRIB_MAX_BINDING)
{
ASSERT(supportVertexAttribBinding());
updateAttribBinding(index);
}
else if (dirtyBit >= VertexArray::DIRTY_BIT_BINDING_0_BUFFER &&
dirtyBit < VertexArray::DIRTY_BIT_BINDING_MAX_BUFFER)
{
ASSERT(supportVertexAttribBinding());
updateBindingBuffer(context, index);
}
else if (dirtyBit >= VertexArray::DIRTY_BIT_BINDING_0_DIVISOR &&
dirtyBit < VertexArray::DIRTY_BIT_BINDING_MAX_DIVISOR)
{
updateBindingDivisor(index);
}
else
UNREACHABLE();
}
}
void VertexArrayGL::applyNumViewsToDivisor(int numViews)
{
if (numViews != mAppliedNumViews)
{
mStateManager->bindVertexArray(mVertexArrayID, getAppliedElementArrayBufferID());
mAppliedNumViews = numViews;
for (size_t index = 0u; index < mAppliedBindings.size(); ++index)
{
updateBindingDivisor(index);
}
}
}
} // rx