Hash :
76b258f8
Author :
Date :
2014-04-03T10:59:42
Rename getBaseTexture to getResource, and refactor swizzleRequired. BUG=angle:596 Change-Id: I72d8796172c5db57ddeb86bbc6c08cbb2ec125f1 Reviewed-on: https://chromium-review.googlesource.com/193230 Tested-by: Nicolas Capens <nicolascapens@chromium.org> Reviewed-by: Jamie Madill <jmadill@chromium.org> Reviewed-by: Geoff Lang <geofflang@chromium.org>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
#include "precompiled.h"
//
// Copyright (c) 2013 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// angletypes.h : Defines a variety of structures and enum types that are used throughout libGLESv2
#include "libGLESv2/angletypes.h"
#include "libGLESv2/ProgramBinary.h"
#include "libGLESv2/VertexAttribute.h"
namespace gl
{
bool SamplerState::swizzleRequired() const
{
return swizzleRed != GL_RED || swizzleGreen != GL_GREEN ||
swizzleBlue != GL_BLUE || swizzleAlpha != GL_ALPHA;
}
static void MinMax(int a, int b, int *minimum, int *maximum)
{
if (a < b)
{
*minimum = a;
*maximum = b;
}
else
{
*minimum = b;
*maximum = a;
}
}
bool ClipRectangle(const Rectangle &source, const Rectangle &clip, Rectangle *intersection)
{
int minSourceX, maxSourceX, minSourceY, maxSourceY;
MinMax(source.x, source.x + source.width, &minSourceX, &maxSourceX);
MinMax(source.y, source.y + source.height, &minSourceY, &maxSourceY);
int minClipX, maxClipX, minClipY, maxClipY;
MinMax(clip.x, clip.x + clip.width, &minClipX, &maxClipX);
MinMax(clip.y, clip.y + clip.height, &minClipY, &maxClipY);
if (minSourceX >= maxClipX || maxSourceX <= minClipX || minSourceY >= maxClipY || maxSourceY <= minClipY)
{
if (intersection)
{
intersection->x = minSourceX;
intersection->y = maxSourceY;
intersection->width = maxSourceX - minSourceX;
intersection->height = maxSourceY - minSourceY;
}
return false;
}
else
{
if (intersection)
{
intersection->x = std::max(minSourceX, minClipX);
intersection->y = std::max(minSourceY, minClipY);
intersection->width = std::min(maxSourceX, maxClipX) - std::max(minSourceX, minClipX);
intersection->height = std::min(maxSourceY, maxClipY) - std::max(minSourceY, minClipY);
}
return true;
}
}
VertexFormat::VertexFormat()
: mType(GL_NONE),
mNormalized(GL_FALSE),
mComponents(0),
mPureInteger(false)
{}
VertexFormat::VertexFormat(GLenum type, GLboolean normalized, GLuint components, bool pureInteger)
: mType(type),
mNormalized(normalized),
mComponents(components),
mPureInteger(pureInteger)
{
// Float data can not be normalized, so ignore the user setting
if (mType == GL_FLOAT || mType == GL_HALF_FLOAT || mType == GL_FIXED)
{
mNormalized = GL_FALSE;
}
}
VertexFormat::VertexFormat(const VertexAttribute &attribute)
: mType(attribute.mType),
mNormalized(attribute.mNormalized ? GL_TRUE : GL_FALSE),
mComponents(attribute.mSize),
mPureInteger(attribute.mPureInteger)
{
// Ensure we aren't initializing a vertex format which should be using
// the current-value type
ASSERT(attribute.mArrayEnabled);
// Float data can not be normalized, so ignore the user setting
if (mType == GL_FLOAT || mType == GL_HALF_FLOAT || mType == GL_FIXED)
{
mNormalized = GL_FALSE;
}
}
VertexFormat::VertexFormat(const VertexAttribute &attribute, GLenum currentValueType)
: mType(attribute.mType),
mNormalized(attribute.mNormalized ? GL_TRUE : GL_FALSE),
mComponents(attribute.mSize),
mPureInteger(attribute.mPureInteger)
{
if (!attribute.mArrayEnabled)
{
mType = currentValueType;
mNormalized = GL_FALSE;
mComponents = 4;
mPureInteger = (currentValueType != GL_FLOAT);
}
// Float data can not be normalized, so ignore the user setting
if (mType == GL_FLOAT || mType == GL_HALF_FLOAT || mType == GL_FIXED)
{
mNormalized = GL_FALSE;
}
}
void VertexFormat::GetInputLayout(VertexFormat *inputLayout,
ProgramBinary *programBinary,
const VertexAttribute *attributes,
const gl::VertexAttribCurrentValueData *currentValues)
{
for (unsigned int attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; attributeIndex++)
{
int semanticIndex = programBinary->getSemanticIndex(attributeIndex);
if (semanticIndex != -1)
{
inputLayout[semanticIndex] = VertexFormat(attributes[attributeIndex], currentValues[attributeIndex].Type);
}
}
}
bool VertexFormat::operator==(const VertexFormat &other) const
{
return (mType == other.mType &&
mComponents == other.mComponents &&
mNormalized == other.mNormalized &&
mPureInteger == other.mPureInteger );
}
bool VertexFormat::operator!=(const VertexFormat &other) const
{
return !(*this == other);
}
bool VertexFormat::operator<(const VertexFormat& other) const
{
if (mType != other.mType)
{
return mType < other.mType;
}
if (mNormalized != other.mNormalized)
{
return mNormalized < other.mNormalized;
}
if (mComponents != other.mComponents)
{
return mComponents < other.mComponents;
}
return mPureInteger < other.mPureInteger;
}
}