Hash :
55c25d0c
Author :
Date :
2015-11-18T13:08:08
D3D11: Fix varying packing with structs. Previously we would try to pass an entire struct through HLSL's shader interface. Instead, split this off as if each field was its own variable, which seems to be spec compliant (see ESSL 3.10). In the future we may want to fix register packing to use specific components of float4/int4/uint4 HLSL registers. This could also fix the remaining bugs in the SM3 packing. TEST=dEQP-GLES3.functional.shaders.linkage.varying.* BUG=angleproject:910 BUG=angleproject:1202 Change-Id: I1fd8b4505abc39bd2385ed5c088c316d55d0bc2c Reviewed-on: https://chromium-review.googlesource.com/311242 Reviewed-by: Geoff Lang <geofflang@chromium.org> Reviewed-by: Corentin Wallez <cwallez@chromium.org> Tested-by: Jamie Madill <jmadill@chromium.org>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
//
// Copyright 2015 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// VaryingPacking:
// Class which describes a mapping from varyings to registers in D3D
// for linking between shader stages.
//
#include "libANGLE/renderer/d3d/VaryingPacking.h"
#include "common/utilities.h"
#include "compiler/translator/blocklayoutHLSL.h"
#include "libANGLE/renderer/d3d/DynamicHLSL.h"
#include "libANGLE/renderer/d3d/ProgramD3D.h"
namespace rx
{
// Implementation of VaryingPacking::BuiltinVarying
VaryingPacking::BuiltinVarying::BuiltinVarying() : enabled(false), index(0), systemValue(false)
{
}
std::string VaryingPacking::BuiltinVarying::str() const
{
return (systemValue ? semantic : (semantic + Str(index)));
}
void VaryingPacking::BuiltinVarying::enableSystem(const std::string &systemValueSemantic)
{
enabled = true;
semantic = systemValueSemantic;
systemValue = true;
}
void VaryingPacking::BuiltinVarying::enable(const std::string &semanticVal, unsigned int indexVal)
{
enabled = true;
semantic = semanticVal;
index = indexVal;
}
// Implementation of VaryingPacking
VaryingPacking::VaryingPacking(GLuint maxVaryingVectors)
: mRegisterMap(maxVaryingVectors), mBuiltinInfo(SHADER_TYPE_MAX)
{
}
// Packs varyings into generic varying registers, using the algorithm from
// See [OpenGL ES Shading Language 1.00 rev. 17] appendix A section 7 page 111
// Also [OpenGL ES Shading Language 3.00 rev. 4] Section 11 page 119
// Returns false if unsuccessful.
bool VaryingPacking::packVarying(const PackedVarying &packedVarying)
{
unsigned int varyingRows = 0;
unsigned int varyingColumns = 0;
const auto &varying = *packedVarying.varying;
// "Non - square matrices of type matCxR consume the same space as a square matrix of type matN
// where N is the greater of C and R.Variables of type mat2 occupies 2 complete rows."
// Here we are a bit more conservative and allow packing non-square matrices more tightly.
// Make sure we use transposed matrix types to count registers correctly.
ASSERT(!varying.isStruct());
GLenum transposedType = gl::TransposeMatrixType(varying.type);
varyingRows = gl::VariableRowCount(transposedType);
varyingColumns = gl::VariableColumnCount(transposedType);
// "Arrays of size N are assumed to take N times the size of the base type"
varyingRows *= varying.elementCount();
unsigned int maxVaryingVectors = static_cast<unsigned int>(mRegisterMap.size());
// "For 2, 3 and 4 component variables packing is started using the 1st column of the 1st row.
// Variables are then allocated to successive rows, aligning them to the 1st column."
if (varyingColumns >= 2 && varyingColumns <= 4)
{
for (unsigned int row = 0; row <= maxVaryingVectors - varyingRows; ++row)
{
if (isFree(row, 0, varyingRows, varyingColumns))
{
insert(row, 0, packedVarying);
return true;
}
}
// "For 2 component variables, when there are no spare rows, the strategy is switched to
// using the highest numbered row and the lowest numbered column where the variable will
// fit."
if (varyingColumns == 2)
{
for (unsigned int r = maxVaryingVectors - varyingRows + 1; r-- >= 1;)
{
if (isFree(r, 2, varyingRows, 2))
{
insert(r, 2, packedVarying);
return true;
}
}
}
return false;
}
// "1 component variables have their own packing rule. They are packed in order of size, largest
// first. Each variable is placed in the column that leaves the least amount of space in the
// column and aligned to the lowest available rows within that column."
ASSERT(varyingColumns == 1);
unsigned int contiguousSpace[4] = {0};
unsigned int bestContiguousSpace[4] = {0};
unsigned int totalSpace[4] = {0};
for (unsigned int row = 0; row < maxVaryingVectors; ++row)
{
for (unsigned int column = 0; column < 4; ++column)
{
if (mRegisterMap[row][column])
{
contiguousSpace[column] = 0;
}
else
{
contiguousSpace[column]++;
totalSpace[column]++;
if (contiguousSpace[column] > bestContiguousSpace[column])
{
bestContiguousSpace[column] = contiguousSpace[column];
}
}
}
}
unsigned int bestColumn = 0;
for (unsigned int column = 1; column < 4; ++column)
{
if (bestContiguousSpace[column] >= varyingRows &&
(bestContiguousSpace[bestColumn] < varyingRows ||
totalSpace[column] < totalSpace[bestColumn]))
{
bestColumn = column;
}
}
if (bestContiguousSpace[bestColumn] >= varyingRows)
{
for (unsigned int row = 0; row < maxVaryingVectors; row++)
{
if (isFree(row, bestColumn, varyingRows, 1))
{
for (unsigned int arrayIndex = 0; arrayIndex < varyingRows; ++arrayIndex)
{
// If varyingRows > 1, it must be an array.
PackedVaryingRegister registerInfo;
registerInfo.packedVarying = &packedVarying;
registerInfo.registerRow = row + arrayIndex;
registerInfo.registerColumn = bestColumn;
registerInfo.varyingArrayIndex = arrayIndex;
registerInfo.varyingRowIndex = 0;
mRegisterList.push_back(registerInfo);
mRegisterMap[row + arrayIndex][bestColumn] = true;
}
break;
}
}
return true;
}
return false;
}
bool VaryingPacking::isFree(unsigned int registerRow,
unsigned int registerColumn,
unsigned int varyingRows,
unsigned int varyingColumns) const
{
for (unsigned int row = 0; row < varyingRows; ++row)
{
ASSERT(registerRow + row < mRegisterMap.size());
for (unsigned int column = 0; column < varyingColumns; ++column)
{
ASSERT(registerColumn + column < 4);
if (mRegisterMap[registerRow + row][registerColumn + column])
{
return false;
}
}
}
return true;
}
void VaryingPacking::insert(unsigned int registerRow,
unsigned int registerColumn,
const PackedVarying &packedVarying)
{
unsigned int varyingRows = 0;
unsigned int varyingColumns = 0;
const auto &varying = *packedVarying.varying;
ASSERT(!varying.isStruct());
GLenum transposedType = gl::TransposeMatrixType(varying.type);
varyingRows = gl::VariableRowCount(transposedType);
varyingColumns = gl::VariableColumnCount(transposedType);
PackedVaryingRegister registerInfo;
registerInfo.packedVarying = &packedVarying;
registerInfo.registerColumn = registerColumn;
for (unsigned int arrayElement = 0; arrayElement < varying.elementCount(); ++arrayElement)
{
for (unsigned int varyingRow = 0; varyingRow < varyingRows; ++varyingRow)
{
registerInfo.registerRow = registerRow + (arrayElement * varyingRows) + varyingRow;
registerInfo.varyingRowIndex = varyingRow;
registerInfo.varyingArrayIndex = arrayElement;
mRegisterList.push_back(registerInfo);
for (unsigned int columnIndex = 0; columnIndex < varyingColumns; ++columnIndex)
{
mRegisterMap[registerInfo.registerRow][registerColumn + columnIndex] = true;
}
}
}
}
// See comment on packVarying.
bool VaryingPacking::packVaryings(gl::InfoLog &infoLog,
const std::vector<PackedVarying> &packedVaryings,
const std::vector<std::string> &transformFeedbackVaryings)
{
std::set<std::string> uniqueVaryingNames;
// "Variables are packed into the registers one at a time so that they each occupy a contiguous
// subrectangle. No splitting of variables is permitted."
for (const PackedVarying &packedVarying : packedVaryings)
{
const auto &varying = *packedVarying.varying;
// Do not assign registers to built-in or unreferenced varyings
if (varying.isBuiltIn() || (!varying.staticUse && !packedVarying.isStructField()))
{
continue;
}
ASSERT(!varying.isStruct());
ASSERT(uniqueVaryingNames.count(varying.name) == 0);
if (packVarying(packedVarying))
{
uniqueVaryingNames.insert(varying.name);
}
else
{
infoLog << "Could not pack varying " << varying.name;
return false;
}
}
for (const std::string &transformFeedbackVaryingName : transformFeedbackVaryings)
{
if (transformFeedbackVaryingName.compare(0, 3, "gl_") == 0)
{
// do not pack builtin XFB varyings
continue;
}
for (const PackedVarying &packedVarying : packedVaryings)
{
const auto &varying = *packedVarying.varying;
// Make sure transform feedback varyings aren't optimized out.
if (uniqueVaryingNames.count(transformFeedbackVaryingName) == 0)
{
bool found = false;
if (transformFeedbackVaryingName == varying.name)
{
if (!packVarying(packedVarying))
{
infoLog << "Could not pack varying " << varying.name;
return false;
}
found = true;
break;
}
if (!found)
{
infoLog << "Transform feedback varying " << transformFeedbackVaryingName
<< " does not exist in the vertex shader.";
return false;
}
}
}
}
// Sort the packed register list
std::sort(mRegisterList.begin(), mRegisterList.end());
// Assign semantic indices
for (unsigned int semanticIndex = 0;
semanticIndex < static_cast<unsigned int>(mRegisterList.size()); ++semanticIndex)
{
mRegisterList[semanticIndex].semanticIndex = semanticIndex;
}
return true;
}
unsigned int VaryingPacking::getRegisterCount() const
{
unsigned int count = 0;
for (const Register ® : mRegisterMap)
{
if (reg.data[0] || reg.data[1] || reg.data[2] || reg.data[3])
{
++count;
}
}
if (mBuiltinInfo[SHADER_PIXEL].glFragCoord.enabled)
{
++count;
}
if (mBuiltinInfo[SHADER_PIXEL].glPointCoord.enabled)
{
++count;
}
return count;
}
void VaryingPacking::enableBuiltins(ShaderType shaderType,
const ProgramD3DMetadata &programMetadata)
{
int majorShaderModel = programMetadata.getRendererMajorShaderModel();
bool position = programMetadata.usesTransformFeedbackGLPosition();
bool fragCoord = programMetadata.usesFragCoord();
bool pointCoord = shaderType == SHADER_VERTEX ? programMetadata.addsPointCoordToVertexShader()
: programMetadata.usesPointCoord();
bool pointSize = programMetadata.usesSystemValuePointSize();
bool hlsl4 = (majorShaderModel >= 4);
const std::string &userSemantic = GetVaryingSemantic(majorShaderModel, pointSize);
unsigned int reservedSemanticIndex = getMaxSemanticIndex();
BuiltinInfo *builtins = &mBuiltinInfo[shaderType];
if (hlsl4)
{
builtins->dxPosition.enableSystem("SV_Position");
}
else if (shaderType == SHADER_PIXEL)
{
builtins->dxPosition.enableSystem("VPOS");
}
else
{
builtins->dxPosition.enableSystem("POSITION");
}
if (position)
{
builtins->glPosition.enable(userSemantic, reservedSemanticIndex++);
}
if (fragCoord)
{
builtins->glFragCoord.enable(userSemantic, reservedSemanticIndex++);
}
if (pointCoord)
{
// SM3 reserves the TEXCOORD semantic for point sprite texcoords (gl_PointCoord)
// In D3D11 we manually compute gl_PointCoord in the GS.
if (hlsl4)
{
builtins->glPointCoord.enable(userSemantic, reservedSemanticIndex++);
}
else
{
builtins->glPointCoord.enable("TEXCOORD", 0);
}
}
// Special case: do not include PSIZE semantic in HLSL 3 pixel shaders
if (pointSize && (shaderType != SHADER_PIXEL || hlsl4))
{
builtins->glPointSize.enableSystem("PSIZE");
}
}
} // namespace rx